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Abstract. The majority of flows of practical relevance are inhomogeneous, such that
seamless hybrid RANS-LES models suffer from a conceptual weakness: LES is based on
spatial filtering and RANS on statistical averaging, which are only compatible in homo-
geneous flows. On the contrary, in the limit of statistically steady (stationary) flows,
Temporal Large-Eddy Simulation (TLES), with a filter width continuously going to infin-
ity, is compatible with the RANS approach. An explicit filter can be defined that ensures
the Galilean invariance, and, coupled with the correct limiting behavior associated with the
temporal filter, forms the basis for consistently defined variables that can represent both
filtered or averaged field variables.

This formalism can be readily coupled to an adaptation of the Partially Integrated Trans-
port Model (PITM) to a temporal-PITM (TPITM) model. The result is a hybrid method
that incorporates transport equations used to govern the subfilter scales (SFS). Addition-
ally, the resulting equation system within this TPITM framework can be amended in order
to account for nonlocal wall-blockage by employing the elliptic blending methodology.

The formalism adopted for the TPITM theory can be used to interpret widely used
hybrid methods, such as DES, as hybrid TLES/RANS approaches. Indeed, it can be
shown that the cutoff frequency does not explicitly appears in the model equations. The
relevant parameter is km/k, the ratio of modeled energy to total energy. In particular, it
can be analytically shown that DES is equivalent to TPITM in that it provides the same
partition of energy and, thus, very similar statistics of the resolved field if the coefficient
Cdes is made a function of the energy ratio r. This result enables DES to be interpreted as
a hybrid Temporal-LES/RANS approach, i.e., as a model to close the temporally filtered
Navier-Stokes equations, and compatible with the limit of infinite temporal filter width
(RANS).
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1 INTRODUCTION

Many hybrid RANS-LES models can be described as seamless, in the sense that the
computation progressively transitions from a RANS model to an LES in other region.
However, the majority of flows of practical relevance are inhomogeneous, and in that case
such models suffer from an important conceptual weakness: LES gives spatially filtered
fields; whereas, RANS gives long-time averaged fields.

As will be shown in section 2, this issue can be addressed in the frame of temporal
filtering, in the context of statistically steady (stationary) flows, with a filter width ∆T

continuously going to infinity, which is the limit corresponding to the RANS approach.
Models derived within this formalism are then hybrid RANS/Temporal Large-Eddy Sim-
ulation (TLES) models. All the flows for which the boundary conditions are not varying
in time are stationary, i.e., are statistically independent on a shift in time, including mas-
sively separated wakes with vortex shedding, such that the formalism can be rigorously
applied to many flows of practical importance. In practice, for flows with time-dependent
boundary conditions, the present approach can also be applied although the theoretical
link between RANS and TLES is then lost, similar to what is usually done for approaches
developed in homogeneous turbulence.

In section 3, it will be shown that this formalism enables the adaptation of the Par-
tially Integrated Transport Model (PITM) [1] to a temporal-PITM (TPITM) model. The
resulting hybrid method is based on transport equations for the subfilter scales, and,
in order to account for nonlocal wall-blockage, the elliptic blending methodology [2] is
applied.

Finally, section 4 is dedicated to the investigation of the equivalence between DES and
TPITM. Indeed, in TPITM, the temporal filter width ∆T is not explicitly involved in the
model, and the fundamental parameter is r, the energy ratio of modeled energy to total
energy. Therefore, many approaches, can be regarded as temporally filtered approaches
in which this energy ratio is empirically related to the local grid step (e.g., DES) or the
integral length scale (e.g., URANS) [3]. Moreover, the equivalence between DES and
TPITM can be explicitly found in some particular cases, by analyzing the equilibrium
states of the two approaches.

2 TEMPORAL FILTERING: A CONSISTENT FORMALISM FOR HY-
BRID MODELS

2.1 Definition of the filter

A Galilean invariant, time filtering operator can be defined, in order to decompose the
instantaneous velocity u∗ into filtered (resolved) Ũ =<u∗> and residual u′′ parts, where
the resolved part is

<u∗> (x, t) =

∫∫
G(x′

− ξ(x, t′ − t), t′ − t) u∗(x′, t′) dx′dt′, (1)
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Rémi Manceau, Thomas B. Gatski, Christophe Friess

with a filter of the form

G(x′
− ξ(x, t′ − t), t′ − t) = δ(x′

− ξ(x, t′ − t)) G∆T
(t′ − t) (2)

with ∆T the temporal filter width. The introduction of ξ(x, t′− t) = x+Vref (t
′− t), with

a Vref reference velocity related to the flow configuration, e.g., the boundary conditions,
aims at ensuring that the filtering operation preserves the Galilean invariance [3].

In the case of a stationary flow, Reynolds averaged quantities are obtained as the limit
of filtered quantities when the temporal width of the filter goes to infinity. For example,
if the filter kernel G∆T

is a top-hat filter, the filtering operation is equivalent to a running
average from t− ∆T to t, denoted by [ . ]{∆T ;Vref},

<u∗> (x, t) =
1

∆T

∫ t

t−∆T

u∗(ξ, t′) dt′ = [u∗]{∆T ;Vref}(x, t) , (3)

and the generalized long-time averaging, defined by

[u∗]{∞;Vref}(x, t) = lim
∆T→∞

<u∗> (x, t) , (4)

inherits the Galilean invariance from the filter. This property ensures that, in any refer-
ence frame, the generalized long-time average (4) is equivalent to the Reynolds average.
These definitions thus provide the consistent formalism for seamless hybrid TLES–RANS
for flows that are stationary in a particular reference frame.

2.2 Filtered equations

The filtered velocity is denoted by Ũ =<u∗> and the residual velocity is defined by

u′′ = u∗
− Ũ. (5)

The Reynolds-averaged, or long-time-averaged, velocity is denoted by U, and the fluctu-
ating part of the filtered velocity by

u′ = Ũ − U, (6)

such that the total fluctuation is

u = u∗
− U = u′ + u′′. (7)

For a commutative filter, the filtered momentum equation reads

∂Ũi
∂t

+ Ũk
∂Ũi
∂xk

= −
1

ρ

∂P̃

∂xi
+ ν

∂2Ũi
∂xj∂xj

−
∂τij

sfs

∂xj
. (8)
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The subfilter-scale (SFS) tensor τij
sfs

is defined as the generalized central second moment
τij

sfs
= τ(u∗i , u

∗
j), where τ(a, b) =< ab > − < a>< b >. The transport equation for the

subfilter stress reads

∂τij
sfs

∂t
+ Ũk

∂τij
sfs

∂xk
= −

∂τ(u∗i , u
∗
j , u

∗
k)

∂xk︸ ︷︷ ︸
DT
ij

sfs

+ ν
∂2τij

sfs

∂xk∂xk︸ ︷︷ ︸
Dν
ij

sfs

− 2ντ

(
∂u∗i
∂xk

,
∂u∗j
∂xk

)

︸ ︷︷ ︸
εij

sfs

−
1

ρ
τ

(
u∗i ,

∂p∗

∂xj

)
−

1

ρ
τ

(
u∗j ,

∂p∗

∂xi

)

︸ ︷︷ ︸
φij

sfs

−τiksfs

∂Ũj
∂xk

− τjk
sfs

∂Ũi
∂xk︸ ︷︷ ︸

Pij
sfs

, (9)

where

τ(a, b, c) =<abc> − <a> τ(b, c)− <b> τ(a, c)− <c> τ(a, b)− <a><b><c> .

It is worth emphasizing that this equation is formally identical to the Reynolds stress
(uiuj) transport equation: this feature forms the basis for the adaptation of a RANS
second moment closure to the hybrid TLES–RANS context presented in section 3.3.

For stationary flows, the temporal filter satisfies

<u∗> = u∗, (10)

such that the total Reynolds stress uiuj and turbulent energy are exactly decomposed as

uiuj =
(
ŨiŨj − UiUj

)
+ τij

sfs
. (11)

and

k =
1

2
uiui = km + kr, (12)

where the subfilter scale (modeled) and resolved parts are

km = ksfs =
1

2
τiisfs and kr =

1

2

(
ŨiŨi − UiUi

)
=

1

2
u′iu

′
i. (13)

The formalism introduced in this section provides an appropriate framework for hy-
brid methodologies. The definition of the filtering operator, based on a temporal kernel,
ensures that the variables Ũi, P̃ and τij

sfs
consistently and continuously tend to their

corresponding RANS counterparts, Ui, P and uiuj, when the temporal filter width goes
to infinity [4]. The main issue is thus the modeling of the subfilter stress, which must be
compatible with a characteristic cutoff frequency ωc ranging from 0 (RANS) to the iner-
tial range (TLES). The form-invariance of TLES and RANS equations suggests that the
form of the models used in TLES and RANS regions can be identical, with an appropriate
modification of the coefficients or scales to ensure the transition.
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3 TEMPORAL PITM (TPITM)

In order to model the subfilter stresses, Fadai-Ghotbi et al. [3] proposed the Temporal
Partially Integrated Transport Model (TPITM), an adaptation to time filtering of the
PITM model [1]. Only a summary of the analytical derivation is provided here. For
details, the reader is referred to the original article [3].

3.1 Energy partition in frequency space

The Eulerian frequency spectrum is defined by the relation

k(x) =

∫ ∞

0

ET (x, ω)dω, (14)

and is the temporal Fourier transform of the two-time correlation tensor

Qi,j(x, τ) = ui(x, t)uj(x, t+ τ) (15)

The resolved part of the turbulent energy is given by

kr(x) =

∫ ∞

0

Ĝ∆T
(ω) Ĝ∗

∆T
(ω)ET (x, ω)dω , (16)

and the modeled energy, km = k − kr,

km(x) =

∫ ∞

0

[
1 − Ĝ∆T

(ω) Ĝ∗
∆T

(ω)
]
ET (x, ω)dω , (17)

where Ĝ∆T
(ω) is the Fourier transform of the temporal filter kernel G∆T

(τ), as shown in
Fig. 1.

From the Fourier transform of the transport equation for Qi,i, the Eulerian temporal
energy spectrum equation can be written as [3]

DET
Dt

= P̂ + D̂ − Ê + T̂ , (18)

in which P̂ is the production by the mean velocity, D̂ the diffusion term, sum of the
turbulent D̂

T , molecular D̂
ν and pressure D̂

P diffusions, and Ê the dissipation rate. The
spectral flux T̂ originates from the non-linear interactions.

Using Eq. (17), the transport equation for the subfilter energy is

Dkm
Dt

= Pm +Dm − εm − TG (19)

where

Dm =

∫ ∞

0

(1 − Ĝ∆T
Ĝ∗

∆T
)D̂ dω; Pm =

∫ ∞

0

(1 − Ĝ∆T
Ĝ∗

∆T
)(P̂ + T̂) dω; (20)
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εm =

∫ ∞

0

(1 − Ĝ∆T
Ĝ∗

∆T
)Ê dω; TG =

∫ ∞

0

ET
D

Dt
(Ĝ∆T

Ĝ∗
∆T

) dω. (21)

TG is a transfer term arising from the variations of filter width. The other terms are
the subfilter parts of the corresponding terms in the total turbulent energy k, which is
recovered term by term when ∆T → ∞.

3.2 Dissipation rate equation

In order to ensure the transition from RANS to LES, the model must be made depen-
dent on the filter width, aiming at controlling the amount of resolved energy. In order to
know how to modify the equations to make the solution dependent on the characteristic
frequency of the filter ωc = π/∆T , a second filter G′

∆T
is introduced, at the frequency ωd,

such that the turbulent spectrum is divided into three parts, the resolved range [0;ωc], the
subfilter energetic range [ωc;ωd] and the subfilter dissipative range [ωd;∞], as illustrated
in Fig. 1. Similar to the case of spatially filtered PITM [1], ωd is defined as

ωd = ωc + χm
εm
km

, (22)

where χm is a constant chosen in such a way that the energy in the range [ωd;∞] is
negligible compared to the energy in the range [ωc;ωd].

Taking the material derivative of Eq. (22) and using Eq. (19), a transport equation for
the subfilter dissipation rate can be written as

Dεm
Dt

=
εm
km

Pm −
ε2
m

km

[
1 −

(
km
εm

)
dωd/dt− dωc/dt

ωd − ωc
+
TG
εm

]
+
εm
km

Dm . (23)

Fadai-Ghotbi et al. [3] have shown that, after some algebraic manipulations, the equation
can be recast under the form

Dεm
Dt

= Cε1
εm
km

Pm −

[
Cε1 + r (Cε2 − Cε1)

]

︸ ︷︷ ︸
C∗
ε2

ε2
m

km
+Dεm

, (24)

which is similar to the equation found in the spatial PITM approach [1], with the addi-
tional diffusion term Dεm

. The fundamental parameter in this formulation is the energy
ratio r = km/(km + kr) that controls the transition from RANS to TLES via the variable
coefficient C∗

ε2
. In principle, kr can be computed from the resolved field, such that r will

be adapted to the amount of energy contained in the resolved turbulent structures.

3.3 Transport model for the subfilter stresses

The cutoff frequency can be located in the large-scale region of the turbulent spectrum
in hybrid TLES–RANS, such that complex production and redistribution mechanisms
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can play a major role. Therefore, the model is based on the subfilter-stress transport
equations. Because of the formal similarity between these equations and the transport
equations for the Reynolds-stress tensor, using a model formally identical to a RANS
second-moment closure is legitimate, provided that length and time scales are modified
to account for the variable cutoff frequency.

Fadai-Ghotbi et al. [5] proposed, in the context of spatial PITM, an adaptation of the
Elliptic Blending Reynolds-Stress Model (EB-RSM), usually applied in a RANS context,
which is an extension of the SSG model [6] to the near-wall region. The velocity–pressure-
gradient correlation and dissipation terms are modeled using a blending of near-wall and
homogeneous models

φij
sfs

= (1 − α3)φwij + α3φhij, (25)

εij
sfs

= (1 − α3)
τij

sfs

ksfs

εsfs + α3 2

3
εsfsδij , (26)

where, the blending parameter α goes from zero at the wall, to unity far from the wall.
The elliptic relaxation equation

α− L2
sfs

∇
2α = 1 (27)

is solved to preserve the nonlocal character of the pressure. The near-wall form of the
model

φwij = −5
εsfs

ksfs

[
τiksfs

njnk + τjk
sfs
nink −

1

2
τklsfsnknl (ninj + δij)

]
(28)

ensures the correct asymptotic behavior of all the variables at the wall. As shown by
Fadai-Ghotbi et al. [5], the length scale of the elliptic equation (27) must be made a
function of the parameter r

Lsfs = CL max

(
k

3/2
sfs

εsfs

, r3/2Cη
ν3/4

ε1/4

)
. (29)

in order to account for the fact that a part of the turbulent scales are explicitly resolved.

3.4 Control of the energy partition

The choice of the temporal filter width ∆T is not as obvious as in spatial LES: it would
seem straightforward to link ∆T to the time step used in the computation, ∆t, for instance
by ∆T = 2∆t, but, in order to allow local variations of the filter width, the possibility of
linking the temporal filter width to the local mesh refinement is investigated.

The dispersion relation ω = f(κ), necessary to evaluate the frequency ωc corresponding
to a given cutoff wavenumber κc, is not known in general. However, the Eulerian frequency
spectrum ET (ω) and the wavenumber spectrum E(κ) are related by

dk = E(κ) dκ = ET (ω) dω . (30)
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Therefore, a simple analytical expression of the energy ratio r can be obtained in the case
of a cutoff filter

r =
1

k

∫ ∞

ωc

ET (ω)dω =
1

k

∫ ∞

κc

ET (ω)
E(κ)

ET (ω)
dκ =

1

k

∫ ∞

κc

E(κ) dκ . (31)

Since the model does not directly involve ωc but only r, Eq. (31) shows that the dispersion
relation is actually not required. Using a standard Kolmogorov spectrum in wavenumber
space yields

r =
3

2
Cκ

(
κc
k3/2

ε

)− 2

3

. (32)

The use of this relation does not imply that the temporal filtering is replaced by spatial
filtering: it is only a convenient way, justified by Eq. (31), of making the equations of the
model sensitive to the local grid step. As shown by Fadai-Ghotbi et al. [5], a better control
of the parameter r in the near-wall region is obtained with the empirical formulation

r = (1 − α3) + α3β−1
0

(
κc
k3/2

ε

)− 2

3

, (33)

used to enforce the RANS mode in the near-wall region.
This relation gives the energy ratio r the user targets, which drives the coefficient C∗

ε2

in the dissipation rate equation. However, one of the difficulties is that this value is in
general not exactly observed in the solution. In particular in a channel flow, the model
has a tendency to underestimate the resolved energy, and to eventually tend to a steady
solution.

Therefore, a dynamical correction of the coefficient C∗
ε2

C∗
ε2

= Cε1 + r (Cε2 − Cε1),

is used. The energy ratio km/(km + kr), called the observed ratio ro is monitored during
the calculation and compared with the ratio given by Eq. (33), which is called the target
ratio rt. The coefficient C∗

ε2
in the dissipation equation is replaced by C∗

ε2
+ δC∗

ε2
, in order

to drive the observed ratio toward the target ratio.
As will be shown in section 4.3 (see, for instance, Eq. 58), the desired variation of

the level of modeled energy δkm and the variation δC∗
ε2 of the coefficient are linked by a

relation of the form

δC∗
ε2 = C

δkm
km

. (34)

Eq. (58) shows that the parameter C is equal to 3 (C∗
ε2 −Cε2) = 3 r (Cε2 −Cε1) and, thus,

is dependent on the energy ratio r. In practice, this parameter is taken constant. In order
to reach the target ratio rt, the desired variation δkm is

δkm = km
δro

ro
= km

(
rt

ro
− 1

)
, (35)
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Rémi Manceau, Thomas B. Gatski, Christophe Friess

10
-1

10
0

10
1

10
2

10
3

10
410

-10

10
-8

10
-6

10
-4

10
-2

10
0

ω

ET (ω)
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Figure 1: Example of application of the two
filters of the TPITM approach to a generic
spectrum.

Figure 2: Channel flow at Reτ = 395. Mean
velocity profiles.

such that the following relation is obtained

δC∗
ε2

= C

(
rt

ro
− 1

)
, (36)

which provides an estimate of the dynamic correction to be applied.

3.5 Validation in channel flow

A channel flow at Reτ = 395 is computed using the open-source software Code Saturne,
a parallel, finite volume solver on unstructured grids, developed at EDF [7], distributed
under Gnu GPL license1. The numerical method is based on a SIMPLEC algorithm, with
a Rhie & Chow interpolation, and is second-order accurate in space and time.

Computations are performed in a domain spanning 8h × 2h × 4h, corresponding to
3160 × 790 × 1580 in wall units. The reference mesh, called M2, contains 64 × 54 × 64
cells. In order to assess the ability of the model to tend to a RANS mode on a coarser
mesh and to a TLES mode on a finer mesh, the reference mesh is respectively coarsened by
a factor of 2 (mesh M1) or refined by a factor 1.5 (mesh M3) in streamwise and spanwise
directions.

Fig. 3 shows the profiles of the modeled, resolved and total shear stress, in comparison
with the DNS data [8]. It can be seen that the method indeed provides the appropriate
control of the respective contributions of the resolved (filtered) and modeled (subfilter)
fields. Relation (33) enforces a RANS solution in the near-wall region, independently of
the grid. The computation continuously transitions to TLES toward the outer part of
the flow. Moreover, Fig. 4 shows a remarkable feature of the model: when the mesh is
refined, the partition of energy is radically modified, but the total energy remains almost
constant.

1http://www.code-saturne.org
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Figure 3: Channel flow at Reτ = 395. Shear stress profiles. Left: Contribution of the subfilter scales;
Middle: Contribution of the resolved scales; Right: Total.
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Figure 4: Channel flow at Reτ = 395. Turbulent energy profiles. Left: Contribution of the subfilter
scales; Middle: Contribution of the resolved scales; Right: Total.
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Fig. 5 shows a satisfactory reproduction of the normal components of the Reynolds
stress. In the near-wall region, these results are to be credited to the RANS model.
The case of the reference mesh M2 is the most difficult configuration for the model,
since the resolution is not sufficient to compute a true TLES. It can be seen that the
streamwise component is overestimated, but, as shown in Figs. 2 and 4, the predictions
of the turbulent energy and of the mean velocity profile remain very satisfactory.

Fig. 2 shows an important feature of this approach: the mean velocity profile is very
acceptable, even using meshes much coarser than a LES-type mesh. When the mesh is
refined, although the relative weights of the resolved and modeled contributions to the
flow field are drastically modified, the prediction of the mean velocity profile shows a very
moderate sensitivity to the mesh, the variation of the flow rate being less than 0.5%.

4 EQUIVALENT DES

It can be argued that many, if not all, seamless methods should be regarded as RANS–
TLES hybrid methods [3]. This remark also applies to the basic URANS in stationary
flows. Indeed, although the RANS equations are recovered by making the temporal filter
width go to infinity, the time scale entering the RANS models is the integral time scale;
therefore, the equations of the model are formally identical to the equations of a subfilter
stress model with a filter width equal to the integral time scale.

In the following of this section, the case of DES [9, 10] is investigated in details. DES, as
with TPITM, consists of a modification of RANS model equations. DES uses an increase
of the dissipation term in the turbulent energy equation, and TPITM a reduction of the
destruction term in the dissipation equation, in order to control the energy partition among
resolved and modeled scales. Therefore, the question arises whether some equivalence,
following the definition given in section 4.2, can be found between the two approaches.

4.1 Definition of self-consistency

A hybrid model is called henceforth self-consistent if it satisfies the behavior expected
from a filtered approach: firstly, the transition from RANS to LES corresponds to a
variation of location of the cutoff frequency, modifying the energy partition while leaving
the total turbulent energy unchanged; secondly, since the cutoff frequency is located below
the dissipative range of the spectrum, the dissipation rate is not affected by this transition.

Self-consistency is desirable in flow regions close to equilibrium. In regions far from
equilibrium, such as massively separated wakes, hybrid methods are on the contrary
expected to improve the flow prediction compared to the RANS model.

4.2 Definition of equivalence

Two self-consistent hybrid models based on the same RANS model are distinguished by
the method used to control the energy partition. In this case, if their control parameters
are adjusted such a way that the level of modeled energy is the same for the two models,

11
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their respective resolved fields will be very similar. In order to be able to proceed in the
analysis, we will admit the following postulate:

Postulate: Two hybrid approaches based on the same underlying RANS
model, but using a different method of control of the energy partition, yield
similar resolved velocity fields provided that they give the same level of sub-
filter energy.

Similar simply means here that the statistics will not differ significantly. In this case, the
two approaches will be considered equivalent.

4.3 Equivalence between DES and TPITM

In DES based on two-equation RANS model, the transition from RANS to LES is
obtained by introducing the factor

ψ = max

(
1;
k3/2/ε

Cdes∆

)
(37)

in the term ε in the turbulent energy equation, where ∆ is the grid step.
The present section addresses the issue of establishing a relation between the functions

C∗
ε2 of TPITM and ψ of DES in particular cases.

Equilibrium layers

For flows such as homogeneous shear or in the logarithmic region of a boundary layer,
the turbulence evolves to a state where equilibrium values are reached for quantities such
as the production-to-dissipation ratio, the ratio of turbulent to mean shear time scales,
and the turbulent stress anisotropies.

In these cases, the system of equations for the TPITM model reduces to

dkm
dt

= Pm − ε

dε

dt
= Cε1

ε

k
Pm − C∗

ε2

ε2

k
(38)

For eddy-viscosity models, the average subfilter production is

Pm = Psfs = −τijsfs
∂Ũi
∂xj

= Cµγ
k2
m

ε
S2 , (39)

where the definitions S =

√
2S̃2 and

γ =
ε

k2
mS

2

k2
sfs

εsfs

S̃2 (40)
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have been used. The equilibrium solution is given by

τ 2 =
C∗
ε2 − 1

Cµ (Cε1 − 1) γS2
. (41)

The partition of energy, characterized by the ratio r = km/k, cannot be explicitly deter-
mined, since the resolved energy kr can only be given by a full computation.

The question that arises now is how to modify the coefficient C∗
ε2 to obtain an uniform

variation of the energy partition, such that δkm/km is a constant over the domain. Intro-
ducing the infinitesimal variation δC∗

ε2 of the coefficient C∗
ε2 in the system of equations, a

new the equilibrium solution can be evaluated, showing that the relative variation δτ/τ
of the equilibrium time scale is

δτ

τ
=

1

2

δC∗
ε2

C∗
ε2 − 1

−
1

2

δγ

γ
−
δS

S
(42)

The same result can be obtained by logarithmic differentiation of Eq. (41).
For a self-consistent hybrid model, as defined in section 4.2, the dissipation rate is not

affected by the modification of the energy partition, such that

δτ

τ
=
δkm
km

, (43)

and the variation δC∗
ε2 to be applied is

δC∗
ε2 = (C∗

ε2 − 1)

(
2
δkm
km

+
δγ

γ
+ 2

δS

S

)
. (44)

Now, for the DES system

dkm
dt

= Pm − ψε

dε

dt
= Cε1

ε

k
Pm − Cε2

ε2

k
, (45)

it can easily be shown that the variation δψ to apply in order to modify the modeled
energy by the factor δkm/km is

δψ = −(Cε2 − ψ)

(
2
δkm
km

+
δγ

γ
+ 2

δS

S

)
. (46)

Applying the postulate presented in section 4.2, the same modification δkm of the subfilter
energy for the two models, TPITM and DES, corresponds to the same modification of
the statistics. Assuming that the two models are equivalent with the initial values of C∗

ε2

and ψ, they remain equivalent with modified coefficients provided that the relation

δC∗
ε2

C∗
ε2 − 1

= −
δψ

Cε2 − ψ
(47)

13
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is satisfied. Therefore, the two models remain equivalent if, starting from a common
state, the partition of energy is progressively modified by applying successive infinitesimal
variations of the coefficients C∗

ε2 and ψ related by Eq. (47). Such a common state exists:
the RANS limit. Indeed, when C∗

ε2 = Cε2 for TPITM and ψ = 1 for DES, the equations
of the two models are identical.

Integrating between the RANS state and any arbitrary state

∫ C∗

ε2

Cε2

1

x− 1
dx = −

∫ ψ

1

1

Cε2 − y
dy ,

and using the definition of C∗
ε2 given in Eq. (24), shows that, if

ψ = 1 + (Cε2 − Cε1) (1 − r) , (48)

DES is equivalent to TPITM.
In the regions where DES is in LES mode, the ψ coefficient is

ψ =
k

3/2
m

εL
, (49)

where the length scale is L = Cdes∆. Eq. (48) shows that the length scale to be used in
DES to ensure the equivalence with TPITM is

L =
r3/2

1 + (Cε2 − Cε1)(1 − r)

k3/2

ε
. (50)

Similar to TPITM, in the so-called equivalent DES, defined by Eq. (50), the transition
from RANS to LES is driven by variations of the energy ratio r = km/(km + kr), which
can be computed during the simulation, such that the model does not explicitly involve
the grid step ∆.

Influence of diffusion

The influence of diffusion effects, neglected in the previous section, is now examined.
In order to keep a tractable system of equations, km and ε themselves, not only the time-
scale τ = km/ε, are assumed to be in equilibrium along streamlines, which is for instance
the case for fully developed flows in straight ducts.

The TPITM system of equations now reads

Pm − ε−Dm = 0 (51)

Cε1
ε

k
Pm − C∗

ε2

ε2

k
−Dε = 0 , (52)

14
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where Dm and Dε stand for the turbulent diffusion of km and ε, respectively,

Dm =
∂

∂xk

(
Cµ
k2
m

ε

∂km
∂xk

)
and Dε =

∂

∂xk

(
Cµ
k2
m

ε

∂ε

∂xk

)
. (53)

The same analysis as for equilibrium layers can be followed. Introducing infinitesimal
perturbations of the different terms of the equations (δkm, δPm, δDm, δDε), making use
of Eqs. (51) and (52) and keeping only terms linear in the infinitesimal perturbations
yields

δPm − δDm = 0 (54)

Cε1
ε

km
Pm

(
δPm
Pm

−
δkm
km

)
− C∗

ε2

ε2

km

(
δC∗

ε2

C∗
ε2

−
δkm
km

)
+ δDε = 0. (55)

The variation δPm satisfies

δPm
Pm

= 2
δkm
km

+
δγ

γ
+ 2

δS

S
(56)

and, since δkm/km is constant, the variations of the diffusion terms are

δDm

Dm

= 3
δkm
km

and
δDε

Dε

= 2
δkm
km

(57)

The 7 unknowns, δC∗
ε2, δPm, δDm, δDε, δS, Dm and Dε, are thus solution of a system of

7 equations, which gives

δC∗
ε2 = 3 (C∗

ε2 − Cε1)
δkm
km

. (58)

The same procedure can be followed for the DES system, leading to

δψ = −3
Cε2 − Cε1 ψ

Cε1

δkm
km

. (59)

Similar to the equilibrium layer case, TPITM and DES remain equivalent if

ψ = 1 +

(
Cε2
Cε1

− 1

)
(1 − r) . (60)

It is observed that the only difference with Eq. (48) is the slope of the linear function.
This same type of influence of the diffusion term was also found by Rumsey et al. [11] in
their nullcline analysis of two-equation models.

In the analysis leading to Eq. (60), the self-consistency of the hybrid approaches has
been used (ε remains constant), but not the postulate of section 4.2. If, on the contrary,
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Figure 6: Comparison of the length scales.

the same analysis is followed by allowing variations of ε, for the two approaches to remain
equivalent, the variations of the coefficients of TPITM and DES must satisfy

ψ = 1 +

(
Cε2
Cε1

− 1

)
(1 − rCε1/Cε2) . (61)

which is very close to Eq. (60), since the power Cε1/Cε2 is about 0.75, and r only varies
between 0 and 1. In order to obtain the relation between ψ and C∗

ε2, invoking the postulate
is necessary, simply because allowing variations of ε removes a constraint on the factor
γS2.

4.4 Relation between r and ∆

The results obtained above show that DES is equivalent to TPITM if the usual DES
length scale L = Cdes∆ is replaced by some function of the energy ratio r = km/k, such
that DES can be interpreted as a hybrid RANS/temporal LES, which does not involve
the grid step ∆.

However, introducing the analytical expression (32) for r, with κc = π/∆, into the

length scales L = k
3/2
m /(ε ψ) obtained for equilibrium layers or duct flows, shows that, for

the DES model to be equivalent to TPITM, the constant coefficient Cdes must be replaced
by the function

fdes =
1

β
3/2
0 πψ(r)

. (62)

If the coefficients Cdes and β0 are chosen in such a way that the length scale L of the
model reaches the integral scale for the same value of ∆, Fig. 6 shows that the standard
DES is a simple linear approximation of formulation (62), called equivalent DES.
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Figure 7: Channel flow at Reτ = 395: mean velocity (left) and turbulent kinetic energy profiles.

4.5 Computations

Comparisons between TPITM and the equivalent DES are performed for the case
described in section 3.5, using the reference mesh M2.

The results obtained using the equivalent DES, with ψ(r) given by Eq. (61), shown
in Fig. 7, are very close to those of the TPITM. In particular, the same transition from
RANS to TLES when moving away from the wall is obtained, with approximately the
same energy partition.

Moreover, it is worth paying some attention to the value of the coefficient β0. Indeed,
in TPITM, the key parameter is the energy ratio r, which, as shown by Eq. (32), can
be evaluated as a function of the grid step, and the theoretical value of the coefficient
is β0 = 2/(3Cκ) ≃ 0.44, where Cκ is the Kolmogorov constant. Therefore, contrary
to standard DES, for which the coefficient Cdes is calibrated against decaying isotropic
turbulence, the function fdes of the equivalent DES is entirely determined by the analysis,
such that the ability of the fdes function to provide the correct level of dissipation needs
to be validated.

The validation is performed in the case of incompressible decaying isotropic turbulence.
The initial velocity field at Reλ = 104.5 and the reference DNS data are from [12]. The
triply-periodic domain is a (2π)3 box. The underlying RANS model is the standard k–ε
model. Two grids, consisting of 323 and 643 cells, are used. The initial velocity field is
obtained by filtering the DNS field using a cutoff filter adapted to the grid step. The
initial fields of k and ε are obtained by running a preliminary computation with frozen
velocities (initial velocity field).

The decay of the resolved turbulent energy is shown in Fig. 8. It can be seen that,
with the theoretical value β0 = 0.44, the two versions of the equivalent DES compared in
Fig. 8 provide a correct amount of dissipation, very close to the standard DES with the
optimized coefficient Cdes = 0.6.

17
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Figure 8: Decaying isotropic turbulence: time evolutions of the energy spectra. (a) 323 (b) 643.

5 CONCLUSION

In inhomogeneous and stationary turbulent flows, temporal filtering consistently bridges
the two approaches, RANS, based on Reynolds averaging, and TLES, based on temporal
filtering. The form-invariance between the RANS and TLES equations provides the basis
for the use of similar models for the subfilter stresses.

In order to control the energy partition among resolved and modeled scales, and thus
seamlessly transition from RANS to TLES, the TPITM, the temporal version of the
PITM, has been developed, in which the key parameter is the ratio r of modeled energy
to total energy.

An important consequence of this analysis is the fact that a temporally filtered approach
does not necessarily need to use explicitly the temporal filter width. In particular, by
analyzing the equilibrium solutions of the system of equations for DES and TPITM, a
version of DES equivalent to TPITM has been proposed, in which the length scale is
parametrized by the energy ratio r, and does not explicitly depend on the grid step.
However, if r is evaluated from a Kolmogorov spectrum assumption, it can be shown
that the standard DES length scale L = Cdes∆ is recovered, however with a variable Cdes

coefficient.
This analysis and the results shown in the present article lead to the conclusion that,

although DES is originally an empirical blend of RANS and LES, it is equivalent to a
particular example of hybrid TLES–RANS model, the TPITM. Therefore, DES can be
interpreted as a model for the subfilter stress appearing in the temporally filtered Navier-
Stokes equations, compatible with the limit of infinite temporal filter width (RANS) in
stationary flows.

These results support the hypothesis originally put forth by Fadai-Ghotbi et al.[3]: the
existing seamless hybrid methodologies, such as the widely used DES, or the so-called
second-generation URANS models [13], such as SAS, and even the basic URANS, can be
regarded as temporally filtered approaches. This observation then reconciles an apparent
inconsistency in the formalisms adopted in many previously proposed hybrid methods.
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