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Figure 1: Falcon 900EX:M = 0.80, α = 2.0◦, Re = 14, 500, 000. Pressure contours on the aircraft
surface, entropy in the wake; linear (left) and quadratic elements (right) on the same 19,905,887-node
mesh.

1 Introduction

The European projectADIGMA (Adaptive Higher-Order Variational Methods for Aerodynamic Ap-
plication in Industry) (see [1] andhttp://www.dlr.de/as/) proposed a framework to address
many of the accuracy and cost issues of current industrial CFD codes. The different partners have put
together innovative higher-order methods which will constitute key ingredients for the next generation
of industrial flow solvers. The participation of Dassault Aviation focused on higher-order stabilized
finite elements for its industrial Navier-Stokes code Aether.

Today’s complex applications require an ever increasing number of grid points for which mesh conver-
gence can seemingly never be attained.

Although Dassault Aviation started from the beginning withunstructured meshes and a Navier-Stokes
code based on a finite element formulation, the claim that finite elements can fairly effortlessly and



in a straightforward manner go high in order was never fully exploited. We currently still use for all
Navier-Stokes calculations linear elements which yield second-order accuracy [6, 10, 11]. A single but
successful attempt was made to compute the flow past a supersonic ramp [3] using quadratic elements.

In this paper, higher-order (3rd and 4th order) finite elements in the SUPG/Galerkin-least squares frame-
work are revisited. We present results showing the balance between the resulting improved accuracy
and the potentially reduced robustness. Mesh generation aspects are treated and especially the issue of
highly-stretched curved elements close to the wall boundary of Navier-Stokes meshes. The high-order
approach is carefully assessed using subsonic and transonic inviscid flows, laminar flows, and high
Reynolds number turbulent flows. Industrial aspects towards complex 3-D geometries are discussed.
First higher-order results on a full aircraft configurationare presented.

2 Higher-order stabilized finite element schemes for the RANS equations

We present our numerical method in the following sections and highlight the adjustments required by
higher-order elements.

2.1 General description of our flow solver

Dassault Aviation’s Navier-Stokes code, calledAETHER, uses a finite element approach, based on a
symmetric form of the equations written in terms of entropy variables. The advantages of this change
of variables are numerous: in addition to the strong mathematical and numerical coherence they pro-
vide (dimensionally correct dot product, symmetric operators with positivity properties, efficient pre-
conditioning), entropy variables yield further improvements over the usual conservation variables, in
particular in the context of chemically reacting flows (see [5, 6]).

The code can handle the unstructured mixture of numerous types of elements (triangles and quadrilat-
erals in 2-D; tetrahedra, bricks, and prisms in 3-D). In practice mostly linear triangular and tetrahedral
meshes are used.

Different one- and two-equation Reynolds-averaged turbulence models are available: Spalart-Allmaras,
K-ε, K-ω, K-ℓ, K-KL. . . These models are either integrated down to the wall, use atwo-layer ap-
proach with a low-Reynolds modelization of the near wall region, or adopt a wall function treatment of
the boundary layer. More advanced RANS models, such as EARSMand RSM, and extensions to LES
and DES are also available (see [8], [9], and [11]).

Convergence to steady state of the compressible Navier Stokes equations is achieved through a fully-
implicit iterative time-marching procedure based on the GMRES algorithm with nodal block-diagonal
or incompleteLDU preconditioning (see [16]).

The code has been successfully ported on many computer architectures. It is fully vectorized and par-
allelized for shared or distributed memory machines using the MPI message passing library (IBM SP2
Series, IBM Blue Gene, Itanium II- and Xeon-based Bull NovaScale) or native parallelization directives
(NEC SX-4) (see [7]).

2.2 The symmetric Navier-Stokes equations

As a starting point, we consider the compressible Navier-stokes equations written in conservative form:U,t + F adv
i,i = F diff

i,i (1)



whereU is the vector of conservative variables;F adv
i andF diff

i are, respectively, the advective and the
diffusive fluxes in theith-direction. Inferior commas denote partial differentiation and repeated indices
indicate summation.

Equation (1) can be rewritten in quasi-linear form:U,t +AiU,i = (KijU,j),i (2)

whereAi = F adv

i,U
is the ith advective Jacobian matrix, andK = [Kij ] is the diffusivity matrix,

defined byF diff
i = KijU,j. TheAi’s andK do not possess any particular property of symmetry or

positiveness.

We now introduce a new set of variables, V T =
∂H

∂U
whereH is the generalized entropy function given by

H = H(U) = −ρs

ands is the thermodynamic entropy per unit mass. Under the changeof variablesU 7→ V , (2) becomes:Ã0V,t + ÃiV,i = (K̃ijV,j),i (3)

where Ã0 = U,VÃi = AiÃ0K̃ij = KijÃ0.

The Riemannian metric tensor̃A0 is symmetric positive-definite; thẽAi’s are symmetric; and̃K =
[K̃ij ] is symmetric positive-semidefinite. In view of these properties, (3) is referred to as a symmetric
advective-diffusive system.

For a general divariant gas, the vector of so-called (physical) entropy variables,V , readsV =
1

T





µ − |u|2/2u
−1





whereµ = e + pv − Ts is the chemical potential per unit mass;v = 1/ρ is the specific volume. More
complex equations of state are treated in [4]. We would like to stress the formal similarity between the
conservation variablesU and the entropy variablesV , which can be made more apparent if we write
the conservation variables in the following form:U =

1

v





1u
e + |u|2/2 




wherev = 1/ρ is the specific volume.

Taking the dot product of (3) with the vectorV yields the Clausius-Duhem inequality, which constitutes
the basic nonlinear stability condition for the solutions of (3). This fundamental property is inherited
by appropriately defined finite element methods, such as the one described in the next section.



2.3 The Galerkin/least-squares formulation

Originally introduced by Hughes and Johnson, the Galerkin/least-squares (GLS) formulation is a full
space-time finite element technique employing the discontinuous Galerkin method in time (see [2, 17]).
The least-squares operator ensures good stability characteristics while retaining a high level of accuracy.
The local control of the solution in the vicinity of sharp gradients is further enhanced by the use of a
nonlinear discontinuity-capturing operator.

Let Ω be the spatial domain of interest andΓ its boundary. The semi-discrete Galerkin/least-squares
variational problem can be stated as:

Find V h ∈ Sh (trial function space), such that for allW h ∈ Vh (weighting function space), the
following equation holds:

∫

Ω

(
W h ·U,t(V h) − W h

,i · F adv
i (V h) +W h

,i · K̃ijV h
,j

)
dΩ

+

nel∑

e=1

∫

Ωe

(
LW h

)
· �(

LV h
)

dΩ

+

nel∑

e=1

∫

Ωe

νhgijW h
,i · Ã0V h

,j dΩ

=

∫

Γ

W h ·
(
− F adv

i (V h) + F diff
i (V h)

)
ni dΓ. (4)

The first and last integrals of (4) represent the Galerkin formulation written in integrated-by-parts form
to ensure conservation under reduced quadrature integration.

The second integral constitutes the least-squares operator whereL is defined as

L = Ã0

∂

∂t
+ Ãi

∂

∂xi

−
∂

∂xi

(K̃ij

∂

∂xj

). (5)� is a symmetric time-scale matrix for which definitions can befound in [17].

The third integral is the nonlinear discontinuity-capturing operator, which is designed to control os-
cillations about discontinuities, without upsetting higher-order accuracy in smooth regions.gij is the
contravariant metric tensor defined by

[gij ] = [�,i · �,j]
−1

where� = �(x) is the inverse isoparametric element mapping andνh is a scalar-valued homogeneous
function of the residualLV h. The discontinuity capturing factorνh used for linear elements is an
extension of that introduced by Hughes, Mallet, and Shakib (see [15, 17]).

A key ingredient to the formulation is its consistency: the exact solution of (1) satisfies the variational
formulation (4). This constitutes an essential property inorder to attain higher-order spatial conver-
gence.



2.4 Extension to higher-order elements

In principle everything is contained in the weighted residual given by Eq. (4). There is no new term to
code, no interpolation technique specific to higher order toderive: everything is already there. We just
have to compute the integrals of (4), taking into account thenew higher-order shape functions.

The volume and surface integrals are numerically evaluatedwith quadrature rules. All is needed is the
values of the shape functions (and their gradients) at the integration points. Higher-order functions only
require more precise integration rules. In 2-D, we use 3-, 6-, and 12-point rules, respectively for linear,
quadratic, and cubic triangles. They have orders of accuracy which integrate exactly polynomials of
degrees 2, 4, and 6 respectively.

For a given number of degrees of freedom, higher-order meshes contain much fewer elements than P1
meshes. In 2-D the ratio is 1/4th for quadratic triangles, and 1/9th for cubic. Although more integration
points are required, the higher-order computation of (4) isactually cheaper. The extra cost comes from
the implicit linear system which possesses a much larger bandwidth. For a regular 2-D mesh with six
triangles connected to a given node, each line of the implicit matrix contains 7, 19, and 37 non-zero
blocks, respectively for P1, P2, and P3 elements (for vertexdegrees of freedom).

Preliminary quadratic and cubic element results obtained with the original stabilization and discontinu-
ity capturing term used for linear elements, appeared too diffusive especially for inviscid transonic test
cases. This is an indication that the intrinsic time scale matrix � must be reduced for higher-order ele-
ments. Theoretical study of the 1-D scalar advection diffusion equation showed that the optimal� must
indeed be reduced in the advective limit for any higher-order element. The shock capturing operator
must also be tuned in a similar fashion.

In fact, one term in the weighted residual must be specially treated in the context of higher-order el-
ements for the Navier-Stokes equations. The last term in (5)vanishes to zero for linear elements. It
appears in the second integral of (4). This term must be computed with higher-degree shape and test
functions in order to preserve consistency. In practice, itis evaluated using anL2-projection.

One-dimensional studies showed that there was no significant differences between SUPG and Galer-
kin/least-squares. We have chosen to concentrate solely onSUPG which is easier to implement.

As a final remark, we want to stress the fact that whatever the order of the elements, all operations
remain local (viz. at the element level). Consequently higher-order elements engender no implicitation
nor parallelization issue (see [7]).

2.5 Isoparametric meshes with curved boundaries

We have made the seemingly obvious choice of higher-orderisoparametric elements. One of the ad-
vantages of these elements, besides the higher-order shapefunctions, is the use of higher-order poly-
nomials to represent curved boundaries. They only ensureC0 continuity across elements, but locate all
the nodes on the actual surface.

We had thought at first that the slope discontinuity across element boundaries could be minimized by
adjusting the location of the extra nodes along the sides andthe faces of elements beyond P1. In practice
it is very easy to generate negative elements with “shamrock”-like edges if one tries to play with node
location along edges to optimize curvature. Consequently we sticked in this study to elements with
equally distributed nodes along the edges and faces.

All higher-order meshes were obtained by adding nodes to a coarse initial P1 mesh. For more detailed
information about higher-order mesh generation, the reader is referred to [12].



3 Two-dimensional validation test cases

Dassault Aviation computed four of the Mandatory Test Cases(referred to as MTC’s) defined in the
ADIGMA Project (see [18]). They cover a wide range of applications: from inviscid subsonic and
transonic flows (MTC’s 1 and 2), to laminar Navier-Stokes (MTC 3), and finally a profile in transonic
turbulent conditions (MTC 5). All four test cases were run with the baseline second-order version of
Dassault Aviation’s industrial Navier-Stokes codeAETHER and with the present work third and fourth
order extensions.

3.1 MTC 1: NACA0012,M = 0.50, α = 2
◦, inviscid

Higher-order meshes for both inviscid test cases were obtained by adding nodes to a coarse 1106-node
P1 mesh. This yields a 4336-node P2 mesh and a 9690-node P3 mesh. Four finer quadratic grids (up to
1,088,896 nodes) and two finer cubic grids (up to 775,386 nodes) were generated. All new nodes are
added on the actual profile. This produces boundary elementswith curved edges. Elements with no face
along the boundary have straight edges.

P1 (4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P3 (9690 nodes)

Figure 2: MTC 1: NACA0012,M = 0.50, α = 2◦, inviscid. Mach number contours on matching P1
iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

Higher-order MTC 1 results are compared with those obtainedon the corresponding P1 mesh with the
same number of nodes in Figure 2. They clearly show the advantage of the increased order of accuracy
brought by quadratic and cubic elements. The entropy layer generated at the stagnation point is much
reduced with quadratic elements and virtually disappears with cubic elements. This directly impacts
the Mach number contours which traditionally present kinksnear the wall on coarse P1 meshes. These



kinks are removed from higher-order calculations, which also present much cleaner contours for the
same number of degrees of freedom.

The kinks in Mach number contours observed in second-order solutions along the profile are not due
to a lower degree of accuracy boundary condition or boundaryintegral computation as may have been
suggested, but in fact to the level of spurious entropy generated at the leading edge. It is convected
along the profile and affects the solution close to the airfoil. This fact is confirmed in [13], where local
mesh refinement in the sole leading edge region suppresses the spurious entropy production.
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Figure 3: MTC 1: NACA0012,M = 0.50, α = 2◦, inviscid. Line plots of entropy deviation along the
profile. Comparison of P1 vs P2, and P1 vs P3 results for the same numbers of degrees of freedom.

Figure 3 displays line plots of entropy deviation along the profile, comparing the baseline linear-element
formulation with quadratic and cubic results obtained withthe same number of degrees of freedom. The
reference P1 calculation was calculated on the finest 1,088,896-node mesh

Entropy line plots show that the spurious entropy layer generated at the stagnation point is much re-
duced with quadratic elements and virtually disappears with cubic elements. Much finer P1 meshes are



required to match the low level of entropy deviation observed with P2 and P3 elements.

Figure 4 presents the convergence of the drag and lift coefficients with respect to the grid size given
by its node number or “number of degrees of freedom per equation.” The error bars represent the
convergence definitions provided for the test case: when a given coefficient reaches within the error
bars, the solution is assumed converged for that particularcoefficient.

We can notice a dramatic increase in convergence rate with the order of the scheme. Lift is converged for
every tested higher-order mesh; drag requires more effort,and may still gain from an increase in scheme
order beyond 4 as shown in the last plots of Figure 4. Even CPU time shows a gain with scheme order
(note that a few higher-order values in these plots have beenextrapolated). The times for convergence
are scaled by the corresponding time for linear elements.
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Figure 4: MTC 1: NACA0012,M = 0.50, α = 2◦, inviscid. Convergence of force coefficients for P1,
P2, and P3 elements.



3.2 MTC 2: NACA0012,M = 0.80, α = 1.25
◦, inviscid

MTC 2 is a transonic inviscid test case. It is interesting in its own respect, since it can challenge the
ability of higher-order elements to treat shocks with the help of the discontinuity capturing operator.

Figure 5 shows Mach number contours on the same set of meshes used for MTC 1. In spite of the
presence of the shock wave, no obvious degradation in the solution quality can be observed. P3 elements
even produce the best result with a well resolved slip line and a finely captured windward-side weak
shock.

P1 (4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P3 (9690 nodes)

Figure 5: MTC 2: NACA0012,M = 0.80, α = 1.25◦, inviscid. Mach number contours on matching
P1 iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

The pressure line plots shown in Figure 6 display smooth behaviors with sharp shocks, actually sharper
than corresponding second order solutions. The windward side weak shock is more accurately captured.
The reference solution is that obtained in the asymptotic convergence study with the finest P1 mesh
containing 1,088,896 nodes. It must be noted that these lineplots do not represent the actual higher-
order shape functions within each higher-order element; a linear variation between nodes is assumed.

The spurious entropy layer generated at the stagnation point is again much reduced with quadratic
elements and even more so with cubic elements. The levels arenot as low as those obtained for the
previous subsonic test case; this is probably due to the presence of the Discontinuity Capturing operator.
What is very striking is the accuracy of the entropy rise through the shock wave obtained with higher-
order elements: the entropy level after the shock closely matches the reference level obtained on a mesh
containing over one million nodes.
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Figure 6: MTC 2: NACA0012,M = 0.80, α = 1.25◦, inviscid. Line plots of pressure coefficient and
entropy deviation along the profile. Comparison of P1 vs P2, and P1 vs P3 results for the same numbers
of degrees of freedom.

Figure 7 presents the convergence of the drag and lift coefficients. As with MTC 1, all higher-order
meshes display a converged lift coefficient, whereas drag requires more mesh points. Most of the gain
is obtained with third order elements. On the average, CPU time to convergence is reduced by 80%.
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Figure 7: MTC 2: NACA0012,M = 0.80, α = 1.25◦, inviscid. Convergence of force coefficients for
P1, P2, and P3 elements.

3.3 MTC 3: NACA0012,M = 0.50, α = 2
◦, Re = 5, 000

We now come to MTC 3, one of the most interesting test cases in the selection. It concerns the laminar
computation of an airfoil. Although a Navier-Stokes test case, it is still far from concrete industrial
applications. We will see however that it exemplifies the difficulty of getting converged Navier-Stokes
solutions. One can anticipate an even greater challenge with complex 3-D RANS computations. . .

Navier-Stokes meshes with their stretched elements along the boundary bring a specific difficulty: extra
nodes added along the boundary may produce negative elements. An initial coarse 1533-node mesh is
the starting point of all grids generated for MTC 3. The first P2 and P3 grids contain respectively 6034
and 13,503 nodes. Four finer quadratic grids (up to 1,521,184nodes) and two finer cubic grids (up to
1,083,159 nodes) were generated.

A mesh deformation technique based on linear elasticity wasused to generate stretched and curved
higher-order elements close to the airfoil boundary for theNavier-Stokes cases. Unlike the meshes built
for the inviscid test cases, these meshes contains elementswith curved faces in the volume away from
the airfoil surface.

Figure 8 presents pressure contours obtained on the coarsest quadratic and cubic meshes. They are
compared with results computed on corresponding linear meshes containing the very same numbers of
grid points. P1 results show the difficulty of preserving a constant pressure through an underresolved
boundary layer and highly stretched elements. This difficulty is alleviated with the increasing order of
the elements.



P1 (6034 nodes) P2 (6034 nodes)

P1 (13,503 nodes) P3 (13,503 nodes)

Figure 8: MTC 3: NACA0012,M = 0.50, α = 2◦, Re = 5, 000. Pressure contours on matching P1
iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

Figure 9 presents the convergence of force coefficients: pressure drag and lift, friction drag, and heat
flux. The advantage of higher-order elements is even more blatant than for the inviscid test cases de-
scribed previously. Pressure drag and lift converge fasterwith quadratic elements; cubic elements yield
values close to the asymptotic limit for every computed grid, even the coarser ones.

Unexpectedly viscous fluxes appear as a real challenge for this laminar test case. Second order viscous
drag is still not converged for the finest mesh which containsover 1.5 million nodes: the asymptotic
value is provided by the quadratic results. The magnified plot is even more striking: linear elements
have a hard time getting within one drag count of the asymptotic value of the friction drag, whereas as
all higher-order results are within half of the same margin.Heat flux convergence plotted in log scale
shows the substantial advantage of higher-order elements.The error in heat flux (which should be zero
for an adiabatic wall condition) can be reduced by several orders of magnitude.

The number of nodes and the CPU time for convergence are againreduced with the order of the scheme
used. Quadratic elements bring most of the reduction, except for lift which seems to converge at a
slower rate and may benefit from an element order beyond 3.

Regarding CPU cost and memory requirements, we can be more specific for this particular test case.
For the same number of degrees of freedom, the extra cost of P2elements over P1 is only 30%; P3
elements are 2 to 2.5 times as expensive as P1 elements. The overhead due to theL2 projection can
however be reduced. The rise in CPU cost is overtaken by the drastic reduction in the number of nodes
required for convergence. Consequently the CPU time for convergence decreases with the degree of the
scheme. Memory requirements are mostly consumed by the implicit Jacobian matrix. Compared with
linear elements, they increase by 30% and 70% respectively for quadratic and cubic elements
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Figure 9: MTC 3: NACA0012,M = 0.50, α = 2◦, Re = 5, 000. Convergence of force and heat flux
coefficients for P1, P2, and P3 elements.



3.4 MTC 5: RAE2822,M = 0.734, α = 2.79
◦, Re = 6, 500, 000

The final test case deals with a transonic high Reynolds number RANS problem.

A series of P1, P2, and P3 meshes was also generated for MTC 5. The same mesh deformation technique
used for MTC 3 grids was applied to obtain stretched and curved higher-order elements close to the
airfoil boundary. Highly stretched elements are present close to the airfoil surface and in the wake with
aspect ratios up to2 × 106!

In the numerical method described in Section 2.1, the turbulence equations are solved in a staggered
manner, with a second-order residual distribution scheme,and are weakly coupled to the Navier-Stokes
field through the turbulent viscosityµt.

As a first step, for higher-order calculations, RANS turbulent equations are solved on an underlying
P1 mesh, and thus remain second-order accurate. These first results show the robustness of the SUPG
finite element method. As for the more elementary MTC’s (1, 2,and 3), the convergence of quadratic
and cubic elements is similar to that obtained for linear elements with the same CFL settings. High
aspect ratios do not seem to be an issue.

Figure 10 presents Mach number contours obtained with P1, P2, and P3 elements on matching grids.
On these fairly coarse meshes, it’s hard to see any difference between the solutions.

Figure 10: MTC 5: RAE2822,M = 0.734, α = 2.79◦, Re = 6, 500, 000. Mach number contours on
matching P1 iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

The force coefficient convergence plots are gathered in Figure 11. The open symbol curves represent
the second-, third-, and fourth-order methods described above (with a second order turbulence model).
There is no real distinction between the three schemes. Theyconverge at the same rate toward the same
asymptotic values. Nevertheless heat flux shows once more anindisputable advantage of higher-order



elements over linear ones. The error is smaller by as much as three orders of magnitude. There is no
additional benefit brought by cubic elements though.

In an attempt to simulate a “higher-order” turbulence model, we used the interpolation of theµt field
computed on the finest P1 mesh (2,669,536 nodes). The outcomeof this test is indicated in the different
convergence plots of Fig. 11 with filled symbols. We have onlytested linear and quadratic elements.
Results show that the turbulence model has a huge impact on the convergence of force coefficients.
Quadratic elements have a slight edge over linear elements,especially for the coarsest meshes. Heat
flux convergence is unaffected. This demonstrates the need for a higher-order turbulence model to fully
exploit in RANS computations the benefit of higher-order elements observed in inviscid and laminar
test cases.
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Figure 11: MTC 5: RAE2822,M = 0.734, α = 2.79◦, Re = 6, 500, 000. Convergence of force and
heat flux coefficients for P1, P2, and P3 elements.

4 Towards industrial applications:
a first higher-order full aircraft computation

After the gradual and careful 2-D testing of quadratic and cubic triangular elements for different flow
conditions, the higher-order three-dimensional capability of the code was checked on simple test cases
such as an inviscid subsonic sphere (which showed drag vanish with the increased order of the elements)
and the ONERA M6 wing (both inviscid and laminar). Higher-order quadratic and cubic tetrahedral
meshes were obtained by enriching a reference P1 mesh in a fashion similar to what was done in two
dimensions.

Unfortunately the systematic asymptotic convergence analysis performed for 2-D test cases is just not
feasible even for these simple 3-D geometries: meshes wouldexceed very quickly hundreds of millions
nodes. A dedicated way to generate higher-order meshes fromscratch is really needed.

In the mean time, since all the ingredients are here, it feelsnonetheless very tempting to test a real 3-D
industrial geometry. What is missing is a higher-order 3-D mesh. We looked for the coarsest full aircraft
mesh available. We found a Falcon 900EX design mesh from a fewyears back, complete with vertical
tail and empennage, pylons, nacelles and S-duct. It contains “only” 2,512,073 nodes. A cut through this
mesh downstream of the wings, at the level of the engines is presented in Figure 12 in blue. One must
note that this mesh is not adjusted for drag prediction with heavy refinement in the wake regions.

We built two grids based on this reference mesh: one linear P1iso-P2 grid, and one quadratic P2 grid
both containing 19,905,887 nodes. A cut through the linear refined tetrahedral mesh can be see in red
in Figure 12.

The exercise has a few limitations. First the additional body nodes were not projected on the actual
surface of the aircraft: all the elements have straight edges and sub-parametric coordinate transforma-
tions are used (although everything is coded with isoparametric transformations). As described in sec-
tion 3.4, all computations were performed using a second-order scheme for the turbulence equations.



Only quadratic elements were tested and on a single mesh size.

We used respectively a 1-point integration rule for linear tetrahedra and an 8-point rule for quadratic
ones. The ratio between the number of elements of a P1 and a P2 tetrahedron mesh with the same
number of nodes is 8. Consequently in principle the cost of a residual evaluation should be similar
on the P1 and P2 meshes. Due to the higher-order coupling between degrees of freedom, the implicit
Jacobian is roughly twice as big for P2 elements. This yieldsan extra cost when generating the operator
and during the actual linear solve. Globally, the third-order computation is 68% more expensive than
the second-order one, using the same CFL setting. This couldbe reduced for instance if the implicit
operator is not updated at each time step or if the original P1matrix is used (possibly at the cost of
reduced robustness). The memory requirement is increased by 61%. Convergence is similar between
P1 and P2 calculations with the same CFL settings. Computations were done in parallel on an IBM
Blue Gene/P using 1024 tasks.

Figure 12: Falcon 900EX:M = 0.80, α = 2.0◦, Re = 14, 500, 000. Clockwise from top left: cut
through original 2,512,073-node P1 mesh (right) and corresponding uniformly refined 19,905,887-node
P1 iso-P2 mesh (left); entropy contours for the original P1 mesh (right) and the uniformly refined P1
iso-P2 mesh (left); entropy contours for the P2 mesh (right)and the uniformly refined P1 iso-P2 mesh
(left).

Figure 12 presents entropy contours in vertical cuts through the aft part of the aircraft, in the engine
region, downstream of the wing. The wake of the wing is slightly more defined in the 20-million-node
P1 mesh in comparison with the original 2.5-million-node mesh. The third order result displays a much
more detailed wake and a stronger tip vortex. This is also exemplified in Figure 1 which shows a more
persistent and stronger wake in the quadratic element result.

It is common to see discrepancies between near-field and far-field drag analyses (see [14, 19]). The
difference between these two drag evaluations is known as “spurious drag.” In the reference 2.5-million-



node P1 computation, the spurious drag amounts to 33 drag counts (10−4). With the uniformly refined
20-million-node P1 mesh, it drops to 8 counts which is prettygood. Drag analysis performed on the
third-order solution (with standard linear tools) indicates that the spurious drag is further reduced to just
1 count! This preliminary drag analysis suggests that spurious drag virtually disappears with increased
order of accuracy.

5 Concluding remarks

In this study, we have achieved:

• the implementation of higher-order (quadratic and cubic) stabilized finite elements for compress-
ible flows in an industrial code;

• the systematic convergence study of increasingly difficulttest cases: inviscid, transonic, laminar,
and turbulent flows;

• the proof that higher-order convergence can be achieved at areasonable cost;

• the demonstration that higher-order elements are robust: same CFL rules where applied in our
simulations with convergences similar to linear elements and sometimes significantly better; high
aspect ratios can be handled without difficulty;

• the verification that higher-order elements bring no particular complications in terms of implici-
tation nor parallel efficiency, which is mandatory for industrial applications.

Difficulties were encountered with the RANS test cases. We believe they can be palliated with a stronger
higher-order coupling between the Navier-Stokes solver and the turbulence model, or the use of a gen-
uine higher-order scheme for solving the turbulence equations. This is the subject of the PhD thesis of
the second co-author. In the mean time, higher-order elements might show a unique potential for Large
Eddy Simulations.

As a conclusion we’ll comment on the transition towards industrial applications. The extension to 3-
D is readily available and has been successfully tested on a complete aircraft configuration. To make
it industrially viable, one needs a dedicated way to generate higher-order meshes. Preliminary drag
analysis shows that spurious drag is considerably reduced by the use of higher-order elements.
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