TOWARDS HIGH-FIDELITY INDUSTRIAL CFD

Fredéric Chalot*, Pierre-Elie Normandt

*Dassault Aviation
78, quai Marcel Dassault — 92252 Saint-Cloud — France
e-mail: frederic.chalot@dassault-aviation.com

fUniversité de Bordeaux
341, cours de la Libération — 33405 Talence — France
e-mail: pierre-elie.normand@external.dassault-asiatiom

P1

Figure 1: Falcon 900EXM = 0.80, o = 2.0°, Re = 14,500, 000. Pressure contours on the aircraft
surface, entropy in the wake; linear (left) and quadratrants (right) on the same 19,905,887-node
mesh.

1 Introduction

The European projecdDIGMA (Adaptive Higher-Order Variational Methods for AerodyrnanAp-
plication in Industry) (see [1] andtt p: // www. dl r. de/ as/ ) proposed a framework to address
many of the accuracy and cost issues of current industri@l G¥ees. The different partners have put
together innovative higher-order methods which will cangt key ingredients for the next generation
of industrial flow solvers. The participation of Dassaulti@ion focused on higher-order stabilized
finite elements for its industrial Navier-Stokes code Aethe

Today’s complex applications require an ever increasingber of grid points for which mesh conver-
gence can seemingly never be attained.

Although Dassault Aviation started from the beginning wittstructured meshes and a Navier-Stokes
code based on a finite element formulation, the claim thatefieiements can fairly effortlessly and



in a straightforward manner go high in order was never fullpleited. We currently still use for all
Navier-Stokes calculations linear elements which yielwbad-order accuracy [6, 10, 11]. A single but
successful attempt was made to compute the flow past a saperamp [3] using quadratic elements.

In this paper, higher-order {8and 4" order) finite elements in the SUPG/Galerkin-least squasesd-
work are revisited. We present results showing the balaet@den the resulting improved accuracy
and the potentially reduced robustness. Mesh generatattssare treated and especially the issue of
highly-stretched curved elements close to the wall boundaNavier-Stokes meshes. The high-order
approach is carefully assessed using subsonic and transmiscid flows, laminar flows, and high
Reynolds number turbulent flows. Industrial aspects tosraamplex 3-D geometries are discussed.
First higher-order results on a full aircraft configurateme presented.

2 Higher-order stabilized finite element schemes for the RAS equations

We present our numerical method in the following sectiors lighlight the adjustments required by
higher-order elements.

2.1 General description of our flow solver

Dassault Aviation's Navier-Stokes code, callBHTHER, uses a finite element approach, based on a
symmetric form of the equations written in terms of entropyiables. The advantages of this change
of variables are numerous: in addition to the strong mathieadaand numerical coherence they pro-
vide (dimensionally correct dot product, symmetric opgratwvith positivity properties, efficient pre-
conditioning), entropy variables yield further improvemse over the usual conservation variables, in
particular in the context of chemically reacting flows (s&eq]).

The code can handle the unstructured mixture of numerowstgpelements (triangles and quadrilat-
erals in 2-D; tetrahedra, bricks, and prisms in 3-D). In pcacmostly linear triangular and tetrahedral
meshes are used.

Different one- and two-equation Reynolds-averaged tere models are available: Spalart-Allmaras,
K-e, K-w, K-¢, K-KL...These models are either integrated down to the wall, usedayer ap-
proach with a low-Reynolds modelization of the near walisagor adopt a wall function treatment of
the boundary layer. More advanced RANS models, such as EARBMRSM, and extensions to LES
and DES are also available (see [8], [9], and [11]).

Convergence to steady state of the compressible NavieeSduations is achieved through a fully-
implicit iterative time-marching procedure based on the REM& algorithm with nodal block-diagonal
or incompletel. DU preconditioning (see [16]).

The code has been successfully ported on many computeteatches. It is fully vectorized and par-

allelized for shared or distributed memory machines udimegMP| message passing library (IBM SP2
Series, IBM Blue Gene, Itanium II- and Xeon-based Bull Nax&i8) or native parallelization directives

(NEC SX-4) (see [7]).

2.2 The symmetric Navier-Stokes equations

As a starting point, we consider the compressible Navighest equations written in conservative form:

U+ F = FT ®



whereU is the vector of conservative variableg2! and F1' are, respectively, the advective and the
diffusive fluxes in the*®-direction. Inferior commas denote partial differentiatiand repeated indices
indicate summation.

Equation (1) can be rewritten in quasi-linear form:

where A; = FJY is thei'® advective Jacobian matrix, all = [K;;] is the diffusivity matrix,
defined byFdiff = K;;U ;. The A;’s and K do not possess any particular property of symmetry or
positiveness.

We now introduce a new set of variables,
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where’H is the generalized entropy function given by
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ands is the thermodynamic entropy per unit mass. Under the chaihgiablesV — V/, (2) becomes:

AVQV:t + jz‘f,z = (EJVJ),i 3)
where
Ay = Uy
Avi = AZAVO
Ei' = KijAVO~

The Riemannian metric tensef, is symmetric positive-definite; thd,'s are symmetric; and< =
[K;;] is symmetric positive-semidefinite. In view of these praiesy (3) is referred to as a symmetric
advective-diffusive system.

For a general divariant gas, the vector of so-called (physentropy variablesV, reads
p—lul?/2
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wherep = e + pv — T's is the chemical potential per unit mass:= 1/p is the specific volume. More
complex equations of state are treated in [4]. We would liksttess the formal similarity between the
conservation variable& and the entropy variableg’, which can be made more apparent if we write
the conservation variables in the following form:

1
1
U=- u
U et uf?/2

wherev = 1/p is the specific volume.

Taking the dot product of (3) with the vectdf yields the Clausius-Duhem inequality, which constitutes
the basic nonlinear stability condition for the solutiorfg®). This fundamental property is inherited
by appropriately defined finite element methods, such asrtbalescribed in the next section.



2.3 The Galerkin/least-squares formulation

Originally introduced by Hughes and Johnson, the Galddast-squares (GLS) formulation is a full

space-time finite element technique employing the disnaotis Galerkin method in time (see [2, 17]).

The least-squares operator ensures good stability cleasditts while retaining a high level of accuracy.

The local control of the solution in the vicinity of sharp drants is further enhanced by the use of a
nonlinear discontinuity-capturing operator.

Let © be the spatial domain of interest afiidts boundary. The semi-discrete Galerkin/least-squares
variational problem can be stated as:

Find V* ¢ S” (trial function space), such that for & < V" (weighting function space), the
following equation holds:

[ (W vty W B v W R V) do
Q
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The first and last integrals of (4) represent the Galerkimfdation written in integrated-by-parts form
to ensure conservation under reduced quadrature integrati

The second integral constitutes the least-squares opavhtoe, is defined as

L= Aoa+Aa 9 %. 9

5 oz, 8—:Q(Kij87j)' (5)

T is a symmetric time-scale matrix for which definitions carfdaend in [17].

The third integral is the nonlinear discontinuity-captgrioperator, which is designed to control os-
cillations about discontinuities, without upsetting hégforder accuracy in smooth regiong! is the
contravariant metric tensor defined by

9] = [€i- €57

where¢ = £(z) is the inverse isoparametric element mapping @hé a scalar-valued homogeneous
function of the residuallV". The discontinuity capturing factar” used for linear elements is an
extension of that introduced by Hughes, Mallet, and Shadele (15, 17]).

A key ingredient to the formulation is its consistency: thvaa solution of (1) satisfies the variational
formulation (4). This constitutes an essential propertyprider to attain higher-order spatial conver-
gence.



2.4 Extension to higher-order elements

In principle everything is contained in the weighted residyiven by Eq. (4). There is no new term to
code, no interpolation technique specific to higher ordeteidve: everything is already there. We just
have to compute the integrals of (4), taking into accounnie higher-order shape functions.

The volume and surface integrals are numerically evaluatddquadrature rules. All is needed is the
values of the shape functions (and their gradients) at tiegiiation points. Higher-order functions only
require more precise integration rules. In 2-D, we use 3-ai6d 12-point rules, respectively for linear,
quadratic, and cubic triangles. They have orders of acgundiich integrate exactly polynomials of
degrees 2, 4, and 6 respectively.

For a given number of degrees of freedom, higher-order nseshretain much fewer elements than P1
meshes. In 2-D the ratio is 1/4th for quadratic triangles, Hth for cubic. Although more integration
points are required, the higher-order computation of (4ctsially cheaper. The extra cost comes from
the implicit linear system which possesses a much largedviigith. For a regular 2-D mesh with six
triangles connected to a given node, each line of the intpti@trix contains 7, 19, and 37 non-zero
blocks, respectively for P1, P2, and P3 elements (for vatégxees of freedom).

Preliminary quadratic and cubic element results obtainial tive original stabilization and discontinu-
ity capturing term used for linear elements, appeared tfhosilie especially for inviscid transonic test
cases. This is an indication that the intrinsic time scal&ima must be reduced for higher-order ele-
ments. Theoretical study of the 1-D scalar advection diffugquation showed that the optimamust
indeed be reduced in the advective limit for any higher-omlement. The shock capturing operator
must also be tuned in a similar fashion.

In fact, one term in the weighted residual must be speciadigtéd in the context of higher-order el-
ements for the Navier-Stokes equations. The last term ivgBjshes to zero for linear elements. It
appears in the second integral of (4). This term must be ctedpuith higher-degree shape and test
functions in order to preserve consistency. In practids, évaluated using ah,-projection.

One-dimensional studies showed that there was no sigriifiitiarences between SUPG and Galer-
kin/least-squares. We have chosen to concentrate soleh&G which is easier to implement.

As a final remark, we want to stress the fact that whatever ttermf the elements, all operations
remain local (viz. at the element level). Consequently éigirder elements engender no implicitation
nor parallelization issue (see [7]).

2.5 Isoparametric meshes with curved boundaries

We have made the seemingly obvious choice of higher-asdgrarametric elements. One of the ad-

vantages of these elements, besides the higher-order &iragimns, is the use of higher-order poly-
nomials to represent curved boundaries. They only enSlireontinuity across elements, but locate all
the nodes on the actual surface.

We had thought at first that the slope discontinuity acrosmeht boundaries could be minimized by
adjusting the location of the extra nodes along the sidestenfdices of elements beyond PL1. In practice
it is very easy to generate negative elements with “shaniilak edges if one tries to play with node
location along edges to optimize curvature. Consequendysticked in this study to elements with
equally distributed nodes along the edges and faces.

All higher-order meshes were obtained by adding nodes t@eseadnitial P1 mesh. For more detailed
information about higher-order mesh generation, the meiadeferred to [12].



3 Two-dimensional validation test cases

Dassault Aviation computed four of the Mandatory Test Cdseferred to as MTC's) defined in the
ADIGMA Project (see [18]). They cover a wide range of apgiimas: from inviscid subsonic and
transonic flows (MTC’s 1 and 2), to laminar Navier-Stokes 3), and finally a profile in transonic
turbulent conditions (MTC 5). All four test cases were rurihathe baseline second-order version of
Dassault Aviation’s industrial Navier-Stokes coflETHER and with the present work third and fourth
order extensions.

3.1 MTC 1: NACA0012, M = 0.50, o = 2°, inviscid

Higher-order meshes for both inviscid test cases were mddddy adding nodes to a coarse 1106-node
P1 mesh. This yields a 4336-node P2 mesh and a 9690-node R3koes finer quadratic grids (up to
1,088,896 nodes) and two finer cubic grids (up to 775,386 sjodere generated. All new nodes are
added on the actual profile. This produces boundary eleméttteurved edges. Elements with no face
along the boundary have straight edges.

(4336 nodes) (4336 nodes)

P1 (9690 nodes)

e

Figure 2: MTC 1: NACA0012M = 0.50, o = 2°, inviscid. Mach number contours on matching P1
iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

Higher-order MTC 1 results are compared with those obtagrethe corresponding P1 mesh with the
same number of nodes in Figure 2. They clearly show the adgaruf the increased order of accuracy
brought by quadratic and cubic elements. The entropy lageeigted at the stagnation point is much
reduced with quadratic elements and virtually disappeatis eubic elements. This directly impacts
the Mach number contours which traditionally present kin&ar the wall on coarse P1 meshes. These



kinks are removed from higher-order calculations, whicdoglresent much cleaner contours for the
same number of degrees of freedom.

The kinks in Mach number contours observed in second-omlatiens along the profile are not due
to a lower degree of accuracy boundary condition or bounitdegral computation as may have been
suggested, but in fact to the level of spurious entropy geadrat the leading edge. It is convected
along the profile and affects the solution close to the airfdiis fact is confirmed in [13], where local
mesh refinement in the sole leading edge region suppressspuhious entropy production.
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Figure 3: MTC 1: NACA0012M = 0.50, o« = 2°, inviscid. Line plots of entropy deviation along the
profile. Comparison of P1 vs P2, and P1 vs P3 results for the sammbers of degrees of freedom.

Figure 3 displays line plots of entropy deviation along thafite, comparing the baseline linear-element
formulation with quadratic and cubic results obtained li same number of degrees of freedom. The
reference P1 calculation was calculated on the finest 1808&o0de mesh

Entropy line plots show that the spurious entropy layer gatee at the stagnation point is much re-
duced with quadratic elements and virtually disappears @tibic elements. Much finer P1 meshes are



required to match the low level of entropy deviation obsdmuith P2 and P3 elements.

Figure 4 presents the convergence of the drag and lift casffe with respect to the grid size given
by its node number or “number of degrees of freedom per emuatThe error bars represent the
convergence definitions provided for the test case: whewvengioefficient reaches within the error
bars, the solution is assumed converged for that particolefficient.

We can notice a dramatic increase in convergence rate vetbrtter of the scheme. Lift is converged for
every tested higher-order mesh; drag requires more effiodtmay still gain from an increase in scheme
order beyond 4 as shown in the last plots of Figure 4. Even @it shows a gain with scheme order
(note that a few higher-order values in these plots have begapolated). The times for convergence
are scaled by the corresponding time for linear elements.
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Figure 4: MTC 1: NACA0012M = 0.50, o = 2°, inviscid. Convergence of force coefficients for P1,
P2, and P3 elements.



3.2 MTC 2: NACA0012, M = 0.80, = 1.25°, inviscid

MTC 2 is a transonic inviscid test case. It is interestingténawn respect, since it can challenge the
ability of higher-order elements to treat shocks with thiplod the discontinuity capturing operator.

Figure 5 shows Mach number contours on the same set of meshdsfar MTC 1. In spite of the
presence of the shock wave, no obvious degradation in thé@oluality can be observed. P3 elements
even produce the best result with a well resolved slip ling arfinely captured windward-side weak
shock.

P1 (4336 nodes) P2 (4336 nodes)

| [ [P1 (9690 nodes) P3 (9690 nodes)

Figure 5: MTC 2: NACA0012M = 0.80, o = 1.25°, inviscid. Mach number contours on matching
P1iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

The pressure line plots shown in Figure 6 display smoothwhetsawith sharp shocks, actually sharper
than corresponding second order solutions. The windwdeshgeak shock is more accurately captured.
The reference solution is that obtained in the asymptotizvemence study with the finest P1 mesh
containing 1,088,896 nodes. It must be noted that theseplote do not represent the actual higher-
order shape functions within each higher-order elemerntieat variation between nodes is assumed.

The spurious entropy layer generated at the stagnatiort moamgain much reduced with quadratic
elements and even more so with cubic elements. The levelsadras low as those obtained for the
previous subsonic test case; this is probably due to thepcesof the Discontinuity Capturing operator.
What is very striking is the accuracy of the entropy rise tigto the shock wave obtained with higher-
order elements: the entropy level after the shock closelgines the reference level obtained on a mesh
containing over one million nodes.
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Figure 6: MTC 2: NACA0012M = 0.80, o = 1.25°, inviscid. Line plots of pressure coefficient and
entropy deviation along the profile. Comparison of P1 vs Ré,Rl vs P3 results for the same numbers
of degrees of freedom.

Figure 7 presents the convergence of the drag and lift camffee As with MTC 1, all higher-order
meshes display a converged lift coefficient, whereas dragines more mesh points. Most of the gain
is obtained with third order elements. On the average, CR tb convergence is reduced by 80%.
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Figure 7: MTC 2: NACA0012M = 0.80, o = 1.25°, inviscid. Convergence of force coefficients for
P1, P2, and P3 elements.

3.3 MTC 3: NACA0012, M = 0.50, o = 2°, Re = 5,000

We now come to MTC 3, one of the most interesting test casdwisdlection. It concerns the laminar
computation of an airfoil. Although a Navier-Stokes tessegait is still far from concrete industrial
applications. We will see however that it exemplifies théiclifty of getting converged Navier-Stokes
solutions. One can anticipate an even greater challendpecaitiplex 3-D RANS computations. ..

Navier-Stokes meshes with their stretched elements alenlgdundary bring a specific difficulty: extra
nodes added along the boundary may produce negative elerdeninitial coarse 1533-node mesh is
the starting point of all grids generated for MTC 3. The fir&tdhd P3 grids contain respectively 6034
and 13,503 nodes. Four finer quadratic grids (up to 1,521nb8kes) and two finer cubic grids (up to
1,083,159 nodes) were generated.

A mesh deformation technique based on linear elasticity wgasl to generate stretched and curved
higher-order elements close to the airfoil boundary forNlagier-Stokes cases. Unlike the meshes built
for the inviscid test cases, these meshes contains elemihtsurved faces in the volume away from
the airfoil surface.

Figure 8 presents pressure contours obtained on the cbarsadratic and cubic meshes. They are
compared with results computed on corresponding lineahesesontaining the very same numbers of
grid points. P1 results show the difficulty of preserving astant pressure through an underresolved
boundary layer and highly stretched elements. This diffycisl alleviated with the increasing order of
the elements.
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Figure 8: MTC 3: NACA0012M = 0.50, a = 2°, Re = 5,000. Pressure contours on matching P1
iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

Figure 9 presents the convergence of force coefficientsspre drag and lift, friction drag, and heat
flux. The advantage of higher-order elements is even motartil¢han for the inviscid test cases de-
scribed previously. Pressure drag and lift converge fasgithrquadratic elements; cubic elements yield
values close to the asymptotic limit for every computed ,ggigen the coarser ones.

Unexpectedly viscous fluxes appear as a real challengeifdathinar test case. Second order viscous
drag is still not converged for the finest mesh which contawes 1.5 million nodes: the asymptotic
value is provided by the quadratic results. The magnified igl@ven more striking: linear elements
have a hard time getting within one drag count of the asyrgtaiue of the friction drag, whereas as
all higher-order results are within half of the same margieat flux convergence plotted in log scale
shows the substantial advantage of higher-order elemEmserror in heat flux (which should be zero
for an adiabatic wall condition) can be reduced by sevedgiar of magnitude.

The number of nodes and the CPU time for convergence are sghined with the order of the scheme
used. Quadratic elements bring most of the reduction, éXoegift which seems to converge at a
slower rate and may benefit from an element order beyond 3.

Regarding CPU cost and memory requirements, we can be mecdisgdor this particular test case.
For the same number of degrees of freedom, the extra cost efdrents over P1 is only 30%; P3
elements are 2 to 2.5 times as expensive as P1 elements. &heat due to thé, projection can
however be reduced. The rise in CPU cost is overtaken by #istidreduction in the number of nodes
required for convergence. Consequently the CPU time forergence decreases with the degree of the
scheme. Memory requirements are mostly consumed by théciljadcobian matrix. Compared with
linear elements, they increase by 30% and 70% respectigetyuiadratic and cubic elements
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Figure 9: MTC 3: NACA0012M = 0.50, a = 2°, Re = 5,000. Convergence of force and heat flux
coefficients for P1, P2, and P3 elements.



3.4 MTC5: RAE2822,M = 0.734, a = 2.79°, Re = 6, 500, 000

The final test case deals with a transonic high Reynolds nuRRASIS problem.

A series of P1, P2, and P3 meshes was also generated for MTH@ Same mesh deformation technique
used for MTC 3 grids was applied to obtain stretched and cuhigher-order elements close to the
airfoil boundary. Highly stretched elements are presesgecto the airfoil surface and in the wake with
aspect ratios up t® x 106!

In the numerical method described in Section 2.1, the terimg equations are solved in a staggered
manner, with a second-order residual distribution scheme are weakly coupled to the Navier-Stokes
field through the turbulent viscosity;.

As a first step, for higher-order calculations, RANS turbtilequations are solved on an underlying
P1 mesh, and thus remain second-order accurate. Thesedutisrshow the robustness of the SUPG
finite element method. As for the more elementary MTC's (larf] 3), the convergence of quadratic

and cubic elements is similar to that obtained for lineamelets with the same CFL settings. High

aspect ratios do not seem to be an issue.

Figure 10 presents Mach number contours obtained with PlamPP3 elements on matching grids.
On these fairly coarse meshes, it’s hard to see any differbatwveen the solutions.

Figure 10: MTC 5: RAE2822M = 0.734, a = 2.79°, Re = 6,500, 000. Mach number contours on
matching P1 iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

The force coefficient convergence plots are gathered inr€i@ei. The open symbol curves represent
the second-, third-, and fourth-order methods describedeafwith a second order turbulence model).
There is no real distinction between the three schemes. ddreserge at the same rate toward the same
asymptotic values. Nevertheless heat flux shows once mareleputable advantage of higher-order



elements over linear ones. The error is smaller by as muchres brders of magnitude. There is no
additional benefit brought by cubic elements though.

In an attempt to simulate a “higher-order” turbulence mpde used the interpolation of the field
computed on the finest P1 mesh (2,669,536 nodes). The outfdimie test is indicated in the different
convergence plots of Fig. 11 with filled symbols. We have dehlted linear and quadratic elements.
Results show that the turbulence model has a huge impacteoaottivergence of force coefficients.
Quadratic elements have a slight edge over linear elemesypecially for the coarsest meshes. Heat
flux convergence is unaffected. This demonstrates the meedHigher-order turbulence model to fully
exploit in RANS computations the benefit of higher-ordemwats observed in inviscid and laminar
test cases.
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Figure 11: MTC 5: RAE2822M = 0.734, a = 2.79°, Re = 6,500, 000. Convergence of force and
heat flux coefficients for P1, P2, and P3 elements.

4 Towards industrial applications:
a first higher-order full aircraft computation

After the gradual and careful 2-D testing of quadratic anictriangular elements for different flow
conditions, the higher-order three-dimensional capghili the code was checked on simple test cases
such as an inviscid subsonic sphere (which showed draghvaitis the increased order of the elements)
and the ONERA M6 wing (both inviscid and laminar). Higheder quadratic and cubic tetrahedral
meshes were obtained by enriching a reference P1 mesh ihiarfasmilar to what was done in two
dimensions.

Unfortunately the systematic asymptotic convergenceyaigperformed for 2-D test cases is just not
feasible even for these simple 3-D geometries: meshes vexekekd very quickly hundreds of millions
nodes. A dedicated way to generate higher-order meshesstrmatch is really needed.

In the mean time, since all the ingredients are here, it fe@hetheless very tempting to test a real 3-D
industrial geometry. What is missing is a higher-order 3-8sm We looked for the coarsest full aircraft
mesh available. We found a Falcon 900EX design mesh from adéans back, complete with vertical
tail and empennage, pylons, nacelles and S-duct. It cantaimly” 2,512,073 nodes. A cut through this
mesh downstream of the wings, at the level of the enginesisepited in Figure 12 in blue. One must
note that this mesh is not adjusted for drag prediction wétaMy refinement in the wake regions.

We built two grids based on this reference mesh: one lineas®P2 grid, and one quadratic P2 grid
both containing 19,905,887 nodes. A cut through the linefined tetrahedral mesh can be see in red
in Figure 12.

The exercise has a few limitations. First the additionalyboddes were not projected on the actual
surface of the aircraft: all the elements have straight e@dgel sub-parametric coordinate transforma-
tions are used (although everything is coded with isopat@erteansformations). As described in sec-
tion 3.4, all computations were performed using a secodd+oscheme for the turbulence equations.



Only quadratic elements were tested and on a single mesh size

We used respectively a 1-point integration rule for linedrahedra and an 8-point rule for quadratic
ones. The ratio between the number of elements of a P1 and eti@dBedron mesh with the same
number of nodes is 8. Consequently in principle the cost afsidual evaluation should be similar
on the P1 and P2 meshes. Due to the higher-order couplingebatdegrees of freedom, the implicit
Jacobian is roughly twice as big for P2 elements. This yiafdextra cost when generating the operator
and during the actual linear solve. Globally, the thirdesrdomputation is 68% more expensive than
the second-order one, using the same CFL setting. This dmulgduced for instance if the implicit
operator is not updated at each time step or if the originat@frix is used (possibly at the cost of
reduced robustness). The memory requirement is increas@d%. Convergence is similar between
P1 and P2 calculations with the same CFL settings. Computativere done in parallel on an IBM
Blue Gene/P using 1024 tasks.

Figure 12: Falcon 900EXM = 0.80, a = 2.0°, Re = 14,500,000. Clockwise from top left: cut
through original 2,512,073-node P1 mesh (right) and cpmeding uniformly refined 19,905,887-node
P1 iso-P2 mesh (left); entropy contours for the original Ridsim(right) and the uniformly refined P1
iso-P2 mesh (left); entropy contours for the P2 mesh (right) the uniformly refined P1 iso-P2 mesh
(left).

Figure 12 presents entropy contours in vertical cuts thiaihg aft part of the aircraft, in the engine
region, downstream of the wing. The wake of the wing is slightore defined in the 20-million-node
P1 mesh in comparison with the original 2.5-million-nodestmeT he third order result displays a much
more detailed wake and a stronger tip vortex. This is alsmgkéied in Figure 1 which shows a more
persistent and stronger wake in the quadratic elementtresul

It is common to see discrepancies between near-field arfiefdrdrag analyses (see [14, 19]). The
difference between these two drag evaluations is knownmsitaus drag.” In the reference 2.5-million-



node P1 computation, the spurious drag amounts to 33 dragsc(0—4). With the uniformly refined
20-million-node P1 mesh, it drops to 8 counts which is prettpd. Drag analysis performed on the
third-order solution (with standard linear tools) indiesithat the spurious drag is further reduced to just
1 count! This preliminary drag analysis suggests that spsrdrag virtually disappears with increased
order of accuracy.

5 Concluding remarks

In this study, we have achieved:

¢ the implementation of higher-order (quadratic and culi@itized finite elements for compress-
ible flows in an industrial code;

¢ the systematic convergence study of increasingly diffi@dt cases: inviscid, transonic, laminar,
and turbulent flows;

e the proof that higher-order convergence can be achievedeagisanable cost;

e the demonstration that higher-order elements are robaste SCFL rules where applied in our
simulations with convergences similar to linear elementssbmetimes significantly better; high
aspect ratios can be handled without difficulty;

e the verification that higher-order elements bring no palticcomplications in terms of implici-
tation nor parallel efficiency, which is mandatory for inthied applications.

Difficulties were encountered with the RANS test cases. We\methey can be palliated with a stronger

higher-order coupling between the Navier-Stokes solvdrtha turbulence model, or the use of a gen-
uine higher-order scheme for solving the turbulence egnatiThis is the subject of the PhD thesis of
the second co-author. In the mean time, higher-order elenmeight show a unique potential for Large

Eddy Simulations.

As a conclusion we’ll comment on the transition towards stdal applications. The extension to 3-
D is readily available and has been successfully tested amglete aircraft configuration. To make
it industrially viable, one needs a dedicated way to geeehigher-order meshes. Preliminary drag
analysis shows that spurious drag is considerably redugdaeluse of higher-order elements.
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