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Abstract. Accurate forecasting of the storm surges is very important in the Netherlands
since large areas of the land lie below sea level. Timely water level forecasts are necessary
to support the decision of the proper closure of the movable storm surge barriers. Dutch
continental shelf model (DCSM), is a shallow sea model of the entire European continen-
tal shelf, which is used in the Netherlands to forecast the storm surges in the North Sea.
Performance of the DCSM regarding the storm surges is influenced by its performance in
forecasting the astronomical tides. The Adjoint method has often been used for the calibra-
tion of the large scale numerical flow models. The drawback of the adjoint method is the
programming effort required for the implementation of the adjoint model code. The pre-
sented work is based on model reduction using Proper Orthogonal Decomposition (POD),
which shifts the minimization into lower dimensional space and avoids the implementation
of the adjoint of the tangent linear approximation of the original nonlinear model. The
DCSM domain consists of 201 × 173 grid blocks with 19809 computational grid points.
The POD-based model-reduced approach has been applied successfully to the DCSM for
the estimation of the 13 uncertain parameters of water depth and space varying bottom
friction coefficient. The main findings are: (1) A low dimensional model of order 37 can
be constructed that captures 95% relative energy. (2) An overall improvement of 10% is
obtained as compared to the operational DCSM. (3) The approach with relatively little
computational cost and without the burden of implementation of the adjoint model can be
used in variational data assimilation.
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1 INTRODUCTION

Accurate sea water level forecasting is crucial in the Netherlands. This is mainly
because large areas of the land lie below sea level. Forecasts are made to support the
storm surge flood warning system. Timely water level forecasts are necessary to support
the decision for closure of the movable storm surge barriers in the Eastern Scheldt and
the New Waterway. The surge is predicted by using a numerical hydrodynamic model,
the Dutch continental shelf model (DCSM) (see [1, 2]). The performance of the DCSM
regarding the storm surges is influenced by its performance in forecasting the astronomical
tides. Using inverse modeling techniques, these tidal data can be used to improve the
model results.

The adjoint method is a well-known approach to inverse modeling. The method aims at
adjusting a number of unknown control parameters on the basis of given data. The adjoint
approach is computationally very efficient because one gradient calculation requires just
a single simulation of the forward model and a single simulation of the adjoint model
backward in time, irrespective of the number of parameters. The adjoint method has
been used and applied successfully to many types of inverse problems in ground water
flow studies (e.g., [3]), in meteorology (e.g., [4]), in oceanography (e.g., [5]) and in shallow
water flow models (e.g., [6, 7, 8, 9]).

One of the drawbacks of the adjoint method is the programming effort required for
the implementation of the adjoint model. Research has recently been carried out on
automatic generation of computer codes for the adjoint, and adjoint compilers have now
become available (see [10]). Even with the use of these adjoint compilers, developing an
adjoint model is often a significant programming effort, that hampers new applications of
the method.

Proper orthogonal decomposition (POD) is a model reduction method considered as
an application of the singular value decomposition (SVD) to the approximation of general
dynamical systems ([11]). It is a data driven projection based method originally developed
by Karl Pearson ([12]). The POD method has been applied in many fields like image
processing, signal processing, data compression, oceanography, chemical engineering and
fluid mechanics (see [13]). In the POD method the projection subspace is determined
by processing data obtained from numerical simulations of the high dimensional model,
which is expected to provide information about the dynamical behavior of the system. The
high dimensional equations are projected on to the low dimensional subspace resulting
in a low dimensional model. In this way, the POD method reduces the CPU time of
model simulation. The method has recently been investigated for state and parameter
estimation by (e.g., [14, 15, 16, 17]).

[18] proposed a method based on POD, which shifts the minimization into lower di-
mensional space and avoids the implementation of the adjoint of the tangent linear ap-
proximation of the original nonlinear model. In their approach, an ensemble of snapshot
vectors of forward model simulations is used to determine an approximation of the covari-
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ance matrix of the model variability and a small number of leading eigenvectors of this
matrix are used to define a model subspace. By projecting the original model onto this
subspace, an approximate linear reduced model is obtained. Due to the linear character
of the reduced model, its adjoint can be implemented easily and the minimizing problem
is solved completely in reduced space with very low computational cost. The method has
recently been tested successfully to estimate water depth in the tidal model DCSM with
a coarse grid ([19]). Several synthetic cases were used to show that the depth parameters
were correctly identified in the selected regions of the model domain. The generation of
an ensemble in the POD method involves running the forward model several times. The
computational cost of the method is dominated by the generation of this ensemble. It was
also found in the study that if the dynamics of the system does not change significantly
then a smaller simulation period can be chosen to generate an ensemble of forward model
simulations for an optimization problem over larger period ([19]).

DCSM is a spherical grid based water level model for the Northwest European Con-
tinental Shelf (with 19809 computational grid points). The first version of DCSM was
developed in the 1980ś and has been through numerous improvements since then. The
POD based model reduced approach described in this paper is used for the estimation of
the depth values and space varying bottom friction coefficient in this model DCSM. Here,
the POD method has been used to improve the operational model DCSM with real data.
The computational costs of the method is dominated by the generation of an ensemble
of forward model simulations. The simulation period of the ensemble is equivalent to the
timescale of the original model. Here an accurate reduced model is obtained from an
ensemble with a relatively short simulation period as compared to the calibration period.

The paper is organized as follows. Section 2 explains classical method for parameter
estimation, the methodology of POD projection based reduced method for the calibration
is explained in Section 3. Section 4 discussed the experiments with the model DCSM
to estimate the water depth and the bottom friction coefficient. Section 5 presents the
conclusions.

2 PARAMETER ESTIMATION USING ADJOINT METHOD

Consider the data assimilation problem as general nonlinear dynamical system. The
discrete system equation for the state vectors X(ti) ∈ <n is given by:

X(ti+1) = Mi[X(ti), γ] (1)

where Mi is a nonlinear and deterministic dynamics operator that includes inputs and
propagates the state from time ti to time ti+1, γ be vector of uncertain parameters which
needs to be determined . Suppose now that we have imperfect observations Y(ti) ∈ <q

of the dynamical system (1), that are related to model state at time ti through

Y(ti) = HX(ti) + η(ti) (2)
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with H : <n → <q is a linear observation operator that maps the model fields on observa-
tion space and η(ti) is an unbiased, random Gaussian error vector with covariance matrix
Ri.

The idea of parameter estimation is to identify the values of uncertain model parameters
γ. We assume that the difference between data and simulation results is only due to
measurement errors and incorrectly prescribed model parameters. A most commonly
used measure that determines this difference is the weighted sum of squared residuals.
The problem of estimation is then solved by directly minimizing the cost function J

J(γ) =
∑

i

[Y(ti)−H(X(ti))]
TR−1

i [Y(ti)−H(X(ti))] (3)

with respect to the parameters γ, satisfying the discrete nonlinear forecast model (1).
The minimization of the cost function (J) is often based on quasi-Newton methods.

These methods require the computation of the gradient of the cost function. The gradient
vector (∇J) gives information about the direction (positive or negative) and the size of
adjustments for each individual parameter. The adjoint method computes the exact
gradient efficiently. The principle of the adjoint method is based on the systematic use
of the chain rule of differentiation. Regardless of the number of parameters, the time
required to compute the gradient using adjoint technique is more or less identical and
is comparable with the computational time needed for a single simulation run of the
nonlinear model (1). It requires one forward simulation with original the nonlinear model
(1) and a second additional simulation backward in time with the adjoint model:

ν(ti) = (
∂Mi

∂X(ti)
)Tν(ti+1)− 2HR−1

i [Y(ti)−H(X(ti))] (4)

where ν(ti) represents the solution of the adjoint model. The gradient∇J of the cost func-
tion (J) with respect to each component γk; k = {1, . . . , np} of the uncertain parameters
vector γ is given by:

∇Jk =
∑

i

− [ν(ti+1)]
T [
∂Mi[X(ti), γ]

∂γk

], k = {1, . . . , np} (5)

The main hurdle in the use of adjoint method is its implementation. Even with the use
of adjoint compilers that have become available these days, this is a huge programming
effort, that hampers new applications of the method. Secondly the adjoint equation needs
to be integrated backward in time and therefore the states of the forward model have to
be stored at each grid point for all time steps. The memory access will therefore be huge
for large scale problems.

3 MODEL REDUCED VARIATIONAL DATA ASSIMILATION

The classical adjoint problem for a general model is a nonlinear constrained optimiza-
tion problem which is difficult to solve. The problem can be simplified with the hypothesis
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that the objective function J can be made quadratic by assuming that the nonlinear dy-
namics operator Mi can be linearized. The linearization of nonlinear high-order model
(1) using the first order Taylor’s formula around the background parameter γb

k gives

4X(ti+1) =
∂Mi[X

b(ti), γ
b]

∂Xb(ti)
4X(ti) +

∑
k

∂Mi[X
b(ti), γ

b]

∂γk

∆γk (6)

where X is linearized state vector, Xb is the background state vector with the prior
estimated parameters vector γb and 4X is a deviation of the model from background
trajectory.

A model can be reduced if the incremental state 4X(ti+1) can be written as linear
combination:

4X(ti) = Pξ(ti+1) (7)

where P = {p1, p2, · · · , pr} is a projection matrix such that P TP = I and ξ is a reduced
state vector given by:

ξ(ti+1) = M̃iξ(ti) +
∑
k

∂M̃i

∂γk

∆γk (8)

or in matrix form (
ξ(ti+1)

∆γ

)
=

(
M̃i M̃γ

i

0 I

) (
ξ(ti)
∆γ

)
(9)

Here ∆γ is the control parameter vector, M̃i and M̃γ
i are simplified dynamics operators

which approximate the full Jacobians ∂Mi

∂Xb and ∂Mi

∂γk
respectively:

M̃i = P T ∂Mi

∂Xb(ti)
P (10)

M̃γ
i = P T (

∂Mi

∂γ1

, · · · , ∂Mi

∂γu

) (11)

The Jacobian ∂Mi

∂Xb , is obtained by approximating the nonlinear dynamics operator Mi

by linearizing it with respect to background state Xb. Instead of computing this huge
Jacobian by approximating the partial differential with finite difference by perturbing the
nonlinear operator Mi in the direction of each node, we perturb along the direction of ph

only:
∂Mi

∂Xb(ti)
ph =

Mi[X
b(ti) + εph, γ

b]−Mi[X
b(ti), γ

b]

ε
, h = {1, . . . , r} (12)
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with ε being the size of the perturbation. The reduced dynamics operator M̃i can now be
computed by pre multiplying the above formula by P T :

M̃i = P T (
∂Mi

∂Xb(ti)
p1, · · · ,

∂Mi

∂Xb(ti)
pr) (13)

Notice also that only the original model simulations are needed here.The reduced model
requires less computational time as it simulates a reduced state within the dimension r
instead of the original dimension n where r < n. The dimension on which the reduced
model operates is (r+ np)× (r+ np) with np being the number of estimated parameters.

3.1 Collection of the snapshots and POD basis

The POD method is used here to obtain an approximate low-order formulation of the
original tangent linear model. POD is an optimal technique of finding a basis which spans
an ensemble of data (snapshots) collected from an experiment or a numerical simulation
of a dynamical system. The POD modes are optimal at approximating a given dataset.
Since the reduced model is used here to estimate uncertain parameters (depth D and
manning coefficient cm), the snapshots should be able to represent the behavior of the
system for these parameters. Therefore the snapshot vectors ei ∈ <s are obtained from
the perturbations ∂Mi

∂γk
along each estimated parameter γk to get a matrix:

E = {e1, · · · , es}; i = {1, 2, · · · , s} (14)

The dimension of this ensemble matrix E is s = u×ns, where ns is the number of snapshot
collected for each individual parameter γk. The covariance matrix Q can be constructed
from the ensemble E of the snapshots by taking the outer product:

Q = EEt (15)

The projection matrix P used in the previous section is based on the dominant eigenvectors
(POD modes) of this covariance matrix. This covariance matrix is usually huge as in
the current application with state vector of dimension ∼ 3 × 106, so direct solution of
eigenvalue problem is not feasible. To shorten the calculation time necessary for solving
the eigenvalue problem for this high dimensional covariance matrix, we define a covariance
matrix G as an inner product

G = EtE (16)

In the method of snapshots ([20]), one then solves the s× s eigenvalue problem

Gzi = EtEzi = λizi, i ∈ {1, 2, · · · , s} (17)

where λi are the eigenvalues of the above eigenvalue problem. The eigenvectors zi may
be chosen to be orthonormal and the POD modes P are then given by:

pi = Ezi/
√
λi (18)
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A physical explanation of POD modes is that they maximize the average energy in the
projection of data onto subspace spanned by the modes. We define a measure ψi for the
relative information to choose a low dimensional basis by neglecting modes corresponding
to the small eigenvalues:

ψi =
λi∑s
l=1 λl

100%, i = {1, 2, · · · , s} (19)

We collect pr (r < s) modes such that ψ1 > ψ2 > . . . > ψr and they totally explain at
least the required variance ψe,

ψe =
r∑

l=1

ψl (20)

The total number of eigenmodes r in the POD basis P depends on the required accuracy
of the reduced model.

3.2 Approximate objective function and its adjoint

In reduced model approach, we look for an optimal solution of the (1) to minimize the
approximate objective function (Ĵ) in an incremental way:

Ĵ(∆γ) =
∑

i

[{Y (ti)−H(Xb(ti))} − Ĥξ(ti,∆γ)]
TR−1

i [{Y (ti)−H(Xb(ti))} − Ĥξ(ti,∆γ)]

(21)
The value of the approximate objective function Ĵ is obtained by correcting the ob-

servations Y (ti) for background state Xb(ti) which is mapped on the observational space
through a mapping H and to the reduced model state ξ(ti,∆γ) which is mapped to the
observational space through mapping Ĥ, with Ĥ = HP .

Since the reduced model has linear characteristics, it is easy to build an approximate
adjoint model for the computation of gradient of the approximate objective function (21).
The gradient of Ĵ with respect to ∆γ is given by:

∂Ĵ

∂(∆γ)
=
∑

i

−[ν̂(ti+1)]
T ∂ξ(ti+1)

∂(∆γ)
(22)

where ν̂(ti+1) is the reduced adjoint state variable. Once the gradient has been computed,
the process of minimizing the approximate objective function Ĵ is done along the direction
of the gradient vector in the reduced space.

After the minimization process the initial parameters γ are updated and new set of
updated parameters γup is obtained:

γup = γ + ∆γ (23)

This process of minimization is repeated several times by constructing new POD model
with new set of updated parameters γup to get optimal parameters.
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3.3 Convergence Criterion for Inner and Outer Iterations

We have defined two criterions, both for the inner and outer iterations of the optimiza-
tion process. We stop the present inner iteration and switch to a new outer iteration with
new set of parameters following the criterion µ, which is defined as:

µ =
∑
k=1

‖ 5Ĵη
k‖/‖ 5 Ĵ b

k ‖≤ δ (24)

with 5Ĵ b
k is value of gradient for ∆γk at start of inner iteration, 5Ĵη

k is value of gradient
for ∆γk after each inner iteration. The value of δ is chosen considering that the gradient
should decrease by at least three order of magnitude from the initial gradient ([14]) or the
number of inner iterations are (np + 1), where np is the number of uncertain parameters.
The outer iteration cycle converges when the optimal value α of the objective function J
is achieved.

α =‖ [J ]β − [J ]β−1 ‖≤ κ (25)

where β is the number of outer iterations. We have chosen κ = 25 for the numerical
experiment.

3.4 Computational Cost

The computational costs of the reduced model approach are dominated by the genera-
tion of the ensemble of forward model simulations. If the dynamics of the system does not
change significantly during the coarse of simulation then a smaller simulation period can
be chosen for the generation of ensemble. Using this ensemble the optimization problem
can then be solved over whole period of model simulation. The efficiency of optimization
process is also influenced by the ensemble size. A large ensemble size leads to a huge
eigenvalue problem. It is possible to include only those snapshots in the ensemble where
data is available.

The method needs to be updated in each outer iteration (β) by constructing a new
POD model by generating a new ensemble of forward model simulations. The number
of outer iterations β is influenced by the chosen abortion criterion κ. It should not be
chosen too small as this cause jumping of objective function (J), since it is possible that
reduced model overestimates γk due to the process of linearization.

4 DUTCH CONTINENTAL SHELF MODEL

The Dutch Continental Shelf Model (DCSM) is an operational storm surge model,
used in the Netherlands for real-time storm surge prediction in North sea. Accurate
predictions of the storm surges are of vital importance to the Netherlands since large
areas of the land lie below sea level. Accurate forecasts at least six hours ahead are
needed for proper closure of the movable storm surge barriers in Eastern Scheldt and the
New Waterway. The governing equations used in DCSM are the non-linear 2-D shallow
water equations. The shallow water equations, which describe large scale water motions,
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are used to calculate the movements of the water in the area under consideration. These
equations are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
− fv +

ρ0gu
√
u2 + v2

(D + h)C2
=

τx
D + h

− 1

ρw

∂pa

∂x
(26)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
+ fu+

ρ0gv
√
u2 + v2

(D + h)C2
=

τy
D + h

− 1

ρw

∂pa

∂y
(27)

∂h

∂t
+
∂[u(D + h)]

∂x
+
∂[v(D + h)]

∂y
= 0 (28)

with:
h = water-level
u, v = depth-averaged current in x and y direction respectively
D = water depth below the reference plane
f = Coriolis parameter
C = 2D Chezy coefficient
τx, τy = wind stress in x and y direction respectively
ρw = density of water
pa = atmospheric pressure
ρ0 = background density
g = acceleration of gravity

These equations are descretized using an Alternating Directions Implicit (ADI) method
and the staggered grid that is based on the method by ([21]) and improved by ([1]). In the
implementation, the spherical grid is used instead of rectangular (see e.g. [2]). Boundary
conditions are applied at both closed and open boundaries. At closed boundaries, the
velocity normal to the boundary is zero. So no inflow and outflow can occur through
these boundaries. At the open boundaries the water level is described in terms of ten
harmonic components (M2, S2, N2, K2, O1, K1, Q1, P1, U2, L2) as follows:

h(t) = h0 +
10∑

j=1

fjHj cos(ωjt− θj) (29)

where
h0 mean water-level
H total water depth
fjHj amplitude of harmonic constituent j
ωj angular velocity of j
θj phase of j

The DCSM covers an area in the north-east European continental shelf, i.e. 12oW to
13oE and 48oN to 62oN , as shown in Figure 1. The resolution of the spherical grid is
1/8o×1/12o, which is approximately 8×8 km. With this configuration there are 201×173
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grid with 19809 computational grid points. The time step is4t=10 minutes. All the open
boundaries of the model are located in deep water (more than 200m). This is done in
order to model explicitly the non-linearities of the surge tide interaction.

Figure 1: DCSM area with 50 m, 100 m and 200 m contour lines. The blue circles shows the locations of
the tide gauge stations used for calibration.

4.1 Estimation of Depth and Bottom Friction

The bathymetry for a model is usually derived from nautical maps. One of the purpose
of these maps is to guide large ships safely through shallow waters. Therefore, these maps
usually give details of shallow rather than deep-water areas. If we use these maps to pre-
scribe the water depth, it is reasonable to assume that this prescription of the bathymetry
is erroneous. So depth can be a parameter on which model can be calibrated. In the early
years of the developments of the DCSM, the changes to these parameters were made
manually. Later automated calibration procedures based on variational methods were
developed starting from the work by ([6]; [22]). The complete description on the devel-
opment of these calibrated procedures for DCSM can be found in ([23]). Both depth and
bottom friction have to be prescribed at each grid cell of the model. Thus, theoretically, it
is possible to consider depth and bottom friction at each grid cell as a parameter to adapt.
Practically it is not possible to take the adaptation values of every grid point as a param-
eter since far too many parameters would then have to be estimated in proportion to the
available amount of data. Including too many parameters, identifiability will become a
problem ([24]). Here, the rectangular areas are chosen, which are considered as adapta-
tion parameters. These rectangular areas are chosen based on the previous calibrations
of the DCSM ([25]) and the spatial correlations within the rectangular regions.

The numerical domain is divided into 10 and 3 subdomains for the depth and bottom
friction corrections respectively. (see Figure 2). For each subdomain Ωk, a correction
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(a)

(b)
Figure 2: The subdomains Ωk of the DCSM used for the estimation of a) Depth values b) bottom friction
coefficients

parameter γb
k is defined that is related to depth Dx,y by:

Dnew
x,y = Dold

x,y + γb
k, if(x, y) ∈ Ωk; k = {1, · · · , 10} (30)

and chezy coefficient C by:

Cnew
x,y = Cold

x,y + γb
k, if(x, y) ∈ Ωk; k = {11, · · · , 13} (31)

The model performance can be assessed by comparing it to the measured (observed)
dataset. The available data used in this research consists of water level measurements
of the tide gauge stations from Dutch DONAR database. In the operational system the
astronomical tide component of the observed data is replaced by the one predicted using
the DCSM, obtained by running the DCSM without any wind input forcing ([26]). The
target of the calibration of the parameters (i.e., depth and bottom friction coefficient)
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is to optimize the model for its reproduction of the astronomical tide. The tide gauge
data are therefore retrieved from the results of the harmonical analysis to exclude the
meteorological influences.

For the calibration 24 water level locations are selected (see Figure 1). Observations
obtained by the harmonic analysis from these 24 stations at every time step (10 minutes)
are used for the calibration experiments. The calibration runs are performed for the
period from 29 December 2006 to 30 January 2007 (33 days). The first 3 days are used to
properly initialize the simulation. The measurement data are used for the remaining 30
days. This period is selected such that 2 spring-neap tide cycles are simulated. We have
assumed that the observations Y of the computed water levels h have white noise process
with standard deviation σm =0.10 meter.

As explained in section 3, the generation of the ensemble involves perturbations ∂Mi

∂γk

with respect to each parameter for the whole simulation period. If the dynamics of the
system does not change significantly then a smaller simulation period can be chosen to
generate an ensemble of forward model simulations for an optimization problem over
larger period ([19]). The ensemble E is generated using forward model simulations for a
period from 29 December 2006 00:00 to 04 January 2007 24:00. The snapshot vectors in
the ensemble are collected for the period where data is available, i.e., from 01 January
2007 00:00 to 04 January 2007 24:00. 30 snapshots are chosen with an equal interval for
each γk.

Each snapshot vector consists of predicted water level h, velocities u and v. Before
solving the eigenvalue problem as explained in the section 3.1 to find dominant eigen-
modes, it is necessary to scale the snapshot vectors. The state vector should be scaled
such that all state variables become equally observable. One approach here is based on
the energy. The potential energy of a surface elevation h above the reference plane for
one grid cell is

Eh = 1/2gh2ρw∆x∆y (32)

and the kinetic energy of the grid cell is

Eu,v = 1/2(u2 + v2)Dρw∆x∆y (33)

where
g the gravitational acceleration
ρw the density of the air

Assume one measures surface elevations. Through propagation of the model, kinetic
energy may become potential energy and because the model is dissipative, the sum of the
two can only decrease or at most remain the same. This suggests that scaling the state
variables according to the energy they represent creates approximately equal observability
if the dissipation is small. In this case, the water levels should be scaled with

√
g and the

velocities u and v with
√
D (see [27]).

Using this ensemble E of 390 snapshot vectors, we are able to form a basis consisting
of only 24 dominant eigenmodes that captured 95% of the relative energy. Figure 3 shows
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POD modes captured energy for 390 snapshot vectors. So a reduced model is built using
these 24 POD modes and finally operates on dimension <24+13. The low dimensional
model is defined by assuming that the matrix M̃ remains stationary throughout the
experiment.

Figure 3: The POD modes capture energy for an ensemble of 390 snapshots of the water-level h(m),
velocities u and v.

With this reduced model, the approximate objective function Ĵ is minimized in reduced
space and the new values of the estimated variables γup are found. We have stopped the
inner minimization process and switched to a new outer iteration with the new set of
parameters following the criterion µ. The objective function J is reduced by more than
7% with the updated parameters γup after the inner minimization iteration (Figure 4).

Figure 4: The value of the objective function J at successive outer iterations.

A new POD model is constructed in the 2nd outer iteration. Again an improvement is
observed in the objective function J after the inner minimization (see Figure 4) with the
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new values of γup after the 2nd outer iteration. Compared to the operational model the
reduction of objective function J is more than 10%. It might seem that this improved
performance is very minor. However, we must take into account that the operational
DCSM is a well calibrated model of the tidal motion in the North Sea. Any improvement,
achieved by adjusting the depth values and the bottom friction in the 13 subdomains, is
therefore an encouraging result.

The validation runs were also carried out with 12 validation stations from the period
13 January 2007 to 14 February 2008 (33 days). The stations that were used for the
calibration were not included in the dataset that was used for the validation (see Figure
5). Three validation runs were performed, 1st with the initial values for the calibration
parameters γb and two with the updated parameters γup after the 1st and 2nd outer iter-
ations respectively. The validation experiments have to clarify whether these parameter
adaptations really improve the model.

Figure 5: DCSM area with stations included in the validation experiment.

Figure 6 summarizes the RMSE after each outer iteration β, separately for the all data
observation points used for calibration (assimilation) and the data observation points
used for the validation of results. The POD based calibration approach, reduces the RMS
values of the water levels (h) of the tide gauge stations used for the assimilation and
validations.

The computational cost of the calibration experiments is expressed in terms of the
number of simulations with the original model. Thirteen parameters are estimated during
1st and 2nd outer iterations β of the calibration experiment. In both the outer iterations
one forward model simulation is required for the calibration period, i.e., from 29 December
2006 to 30 January 2007, to obtain the value of the objective function J . As thirteen
parameters are estimated , thirteen forward model simulations are performed from 29
December 2006 to 04 January 2007 to obtain an ensemble of the perturbations ∂Mi

∂γk
along
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Figure 6: RMS errors with respect to water level observations at assimilation and validation stations.

γk. The snapshots are collected for last four days only, since observations are available for
this period. As the number of snapshots chosen is 390, the computational time to solve
eigenvalue problem and to construct the reduced model is negligible. Combined with
thirteen estimated parameters, the reduced model simulates a reduced state within the
dimension of a subspace <37 instead of the original state space ∼ 6×<104

. Similarly the
cost of optimization in the reduced space is negligible and eventually the time required
to estimate 10 depth values and 3 bottom friction coefficients is equal to approximately
10 forward model simulations.

5 CONCLUSIONS

- It is usually laborious to implement adjoint model for the computation of the gradient
for large scale systems. The POD model-reduced approach is used here to simplify this
problem, which shifts the minimization into lower dimensional space and avoids the im-
plementation of the adjoint of the tangent linear approximation of the original nonlinear
model. Compared to the classical adjoint method, the minimization in the reduced space
converges faster due to better condition number of the reduced hessian.
- In this paper, the POD based calibration approach has been used to calibrate the
two-dimensional shallow water flow model, the DCSM, defined over the entire European
continental shelf. The method has been used to calibrate the DCSM with respect to the
depth values and the space-varying bottom friction coefficient. The results show that
the calibration method performs very efficiently. A POD reduced model of size <37 is
constructed instead of original model with state space ∼ 6 × <104

. The RMS errors for
the tide gauge stations used for both calibration and validation periods have improved and
an overall improvement of more than 10% is observed after the calibration in comparison
with the operational model.
- The computational costs of the method is dominated by the generation of an ensemble
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of forward model simulations. The simulation period of the ensemble is equivalent to the
timescale of the original model. Here an accurate reduced model is obtained from an
ensemble with a relatively short simulation period of first four days that is used for
calibration over the whole calibration period of one month period.
- The results demonstrate that the time required to estimate 10 depth values and 3
bottom friction coefficients is equal to approximately 10 forward model simulations. Thus
the POD calibration method offers an efficient minimization technique compared to the
classical adjoint method without the burden of implementation of the adjoint.
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