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Abstract. An unsteady high order Discontinuous Galerkin (DG) code has been devel-
oped, verified and validated for the solution of the two-dimensional incompressible Navier-
Stokes equations. A second order stiffly stable method has been used to discretise the
equations in time. Spatial discretisation is accomplished using a modal DG approach, in
which the inter-element fluxes are approximated using the Interior Penalty formulation.
Three variants, Symmetric Interior Penalty Galerkin (SIPG), Incomplete Interior Penalty
Galerkin (IIPG) and Nonsymmetric Interior Penalty Galerkin (NIPG), have been imple-
mented and compared. The non-linear terms in the Navier-Stokes equations are expressed
in the convective form and approximated through the Lesaint-Raviart fluxes modified for
DG methods.
The resulting method leads to a stable scheme for the unsteady Stokes and Navier-Stokes
problems when equal order approximation is used for velocity and pressure and for all
fluxes tested. For the full Navier-Stokes equations, two laminar test cases are consid-
ered for the square cylinder problem at Reynolds numbers of 10 (steady wake) and 100
(unsteady wake). The results are compared to the h/p Spectral code Nektar and the com-
mercial Finite Volume code Fluent. The developed DG code shows similar convergence
trends to Nektar for the test problems considered. For the unsteady wake case, the number
of degrees of freedom necessary for Fluent to reach comparable accuracy is three times
larger than for the two high order methods considered.

1 INTRODUCTION

The development of a numerical method requires verification and validation. Verifica-
tion is performed with simplified problems where the exact solution is know and hence the
error between the exact solution and the numerical solution can be quantified. Validation
identifies the ability for the method to provide valuable results for real flows found in re-
alistic engineering problems. This paper reports the verification and validation of a high
order Discontinuous Galerkin (DG) method for solving the incompressible Navier-Stokes
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(NS) equations in two dimensions.
The numerical solution of the incompressible NS equations requires discretisation in time
(temporal derivatives) and space (spatial derivatives). Spatial and temporal derivatives
can generally be decoupled leading to the method of lines. We select to discretise tempo-
rally using finite differences (here a dual splitting method), and a high order DG method
for spatial discretisation.
In the context of spatial discretisation, high order methods (k > 3, where k is the polyno-
mial order) are becoming of interest for problems where low spatial numerical dissipation
and diffusion are required[14][15]. Through the use of high polynomial order basis functions,
these methods can achieve high accuracy on a coarse mesh providing that the solution is
smooth. On the other hand, low order methods (k ≤ 3) generally require a very large
number of elements to reduce spatial discretisation errors to the same levels. Hence, the
required overall number of degrees of freedom (DOF) for a given problem can be signifi-
cantly reduced by the use of a high order method (see section 4.2).
DG methods are a family of high order methods where the continuity constraint, generally
imposed in finite element and high order conformal methods (e.g. Spectral methods), is
relaxed, allowing for discontinuities in the numerical solution between neighbouring ele-
ments. This flexibility is an attractive feature because h-refinement (i.e. mesh refinement)
or p-refinement (i.e. polynomial order enrichment) can be performed independently and
locally without the necessity of ensuring continuity across elements. Various DG type
methods for elliptic type problems exist[3],[9],[16], which differ in their treatment of the
numerical fluxes used to communicate the information through discontinuous element in-
terfaces. The Interior Penalty (IP) method is a subfamily of the DG methods that uses
a penalisation technique to enforce a degree of smoothness in the numerical solution. IP
methods are characterised by the necessity of tuning a penalty parameter. The solution
accuracy is found to be influenced by this parameter[5] and it therefore becomes necessary
to study its influence on the verification stage of the code development (see section 3).
To perform the temporal discretisation of the incompressible NS equations, we chose
a fractional-step method (i.e. dual splitting technique) which relies on the Helmholtz
decomposition[10]. This sates that any vector field can be decomposed into an irrota-
tional and a solenoidal component. A review of methods of this type can be found in
Deville et al.[7], Guermond et al.[10] or Karniadakis and Sherwin[14]. In particular, the
code developed here uses the splitting projection scheme detailed in Karniadakis et al.[13].
This temporal scheme has been previously used in conjunction with high order continuous
modal Spectral[13] and high order nodal DG[11] spatial discretisations, but to the authors
knowledge, not with the DG-IP formulation in combination with modal basis functions.
As in this work, the spectral continuous and nodal discontinuous formulations yielded
stable solutions when the polynomial order for the velocity and pressure approximations
were the same.We first describe in section 2 the methodology used which requires tempo-
ral (section 2.1) and spatial discretisation (section 2.2). The temporal discretisation leads
to a decoupled system for the velocity and pressure and requires the solution of elliptic
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problems that encompass the Poisson and Helmholtz equations. The solution of these
equations using the DG-IP formulation is described in section 2.2.3. Section 3 is devoted
to the verification of the method. We verify the method for the Poisson and Helmholtz
equations, followed by the unsteady Stokes problem (without non-linear terms) where we
analyse the influence of the penalty parameter on the solution accuracy. The final verifi-
cation case tests the code for the full NS equations for a simple problem (Taylor Vortex),
where the non-linear terms are included. Finally in Section 4, we validate the method
with the square cylinder problem for two laminar cases: Reynolds number (Re) of 10, that
leads to a steady wake and Re = 100 that results in unsteady periodic vortex shedding.
We compare the results to the continuous Spectral code Nektar[14] and the Finite Volume
code Fluent[2].

2 METHODOLOGY

The two dimensional incompressible NS equations can be written using the convective
formulation for the non-linear terms (in the absence of body forces):

∂u

∂t
+ (u.∇)u = −∇p+ ν∇2u,

∇.u = 0, (1)

where u = (u, v)T is the vector of the velocity components in two dimensions, p represents
the static pressure and ν the kinematic viscosity.

2.1 Temporal discretisation of the incompressible NS equations

A second order dual stiffly stable method[13] has been used to discretise the equations
in time. Within this scheme the non-linear terms are treated explicitly whilst viscous and
pressure terms are handled implicitly. The resulting temporally discretised momentum
equation is given by:

γ0u
n+1 − α0u

n − α1u
n−1

∆t
= −∇pn+1 − β0[(un.∇)un]− β1

[
(un−1.∇)un−1

]
+ ν∇2un+1, (2)

where γ0, α0, α1, β0 and β1 are constants chosen to achieve the required level of temporal
accuracy (see the next section) and the indices n − 1, n and n + 1 refer to subsequent
steps separated in time by an increment ∆t. The present method allows, by the use of
intermediate variables, the incompressible NS equations to be split into three distinct
equations that can be solved successively at each time-step; an explicit non-linear convec-
tion equation, a Poisson equation for pressure and a Helmholtz equation to account for
the viscous terms.

2.1.1 STEP 1 - Non-linear term

The first step consists of the explicit integration of the non-linear convective term using
the Adams-Bashforth second order scheme. Introducing the intermediate velocity ũ, the
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first step can be written as:

γ0ũ− α0u
n − α1u

n−1

∆t
= −β0[(un.∇)un]− β1

[
(un−1.∇)un−1

]
. (3)

By choosing γ0 = 3/2, α0 = 2, β0 = 2, α1 = −1/2 and β1 = −1, the method is second
order in time for the velocity. However, this second order method is not self-starting. To
start the scheme one can use: γ0 = α0 = β0 = 1 and α1 = β1 = 0 which reduces to the
first order explicit forward Euler method.

2.1.2 STEP 2 - Pressure term

The second step treats the pressure term implicitly whilst imposing the divergence-free
constraint on the intermediate velocity, resulting in a Poisson equation for the pressure.
We introduce a secondary intermediate solenoidal velocity ˜̃u and write:

γ0

˜̃u− ũ

∆t
= −∇pn+1. (4)

Taking the divergence of Eq. 4, and imposing the divergence-free constraint on ˜̃u (i.e.
∇.˜̃u = 0) we obtain:

−γ0
1

∆t
∇.ũ = −∇2pn+1. (5)

This is a Poisson problem that can be closed using a Neumann boundary condition at
inflow and wall boundaries derived from taking the dot product of the outward normal
vector at the boundaries n with the momentum equation;

∂pn+1

∂n
= − β0n.

(
∂un

∂t
+ (un.∇)un + ν∇× ωn

)
− β1n.

(
∂un−1

∂t
+ (un−1.∇)un−1 + ν∇× ωn−1

)
, (6)

where we have used the vorticity definition (ω = ∇×u) and the identity∇2u = ∇(∇.u)−
∇×∇× u which for an incompressible flow reduces to ∇2u = −∇×∇× u = −∇× ω.
This expression indirectly enforces the incompressibility constraint and gives a consistent
method[14]. We note that this definition of the boundary condition requires that the
velocity is twice differentiable, and is one of reasons why this method is generally used
with high order methods and not with low order finite elements[10]. Once the Poisson
equation is solved, we can use pn+1 to update the intermediate velocity field by rearranging
Eq. 4.

2.1.3 STEP 3 - Viscous Term

Finally, this step accounts for the implicit treatment of the viscous term, leading to a
Helmholtz equation for the velocity. The final step reads:
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γ0

(
un+1 − ˜̃u

∆t

)
= ν∇2un+1, (7)

which can be written as a Helmholtz equation:

−∇2un+1 +
γ0

ν∆t
un+1 =

γ0
˜̃u

ν∆t
. (8)

We note that the final velocity is not enforced to be explicitly divergence free, since the
explicit imposition of the divergence free constraint has been imposed in step 2 on ˜̃u.

To summarise, the temporal discretisation requires the solution of the three steps
defined to advance the solution in time. It can be easily seen that when adding Eq.
3, Eq. 4 and Eq. 7 we recover the original momentum equation discretised in time Eq. 2.

2.2 Spatial discretisation

The previous temporal scheme requires the spatial solution of non-linear terms (step
1) and of elliptic equations (steps 2 and 3) at each time step. This section summarises
the DG spatial discretisation of these terms.

2.2.1 Preliminaries: Spaces and traces

Let Ω be a polygonal domain in R2 with boundaries ∂Ω that can be of Dirichlet type
(ΓD) or Neumann type (ΓN). We introduce a triangular tessellation Ωh = {el} of Ω
with external boundaries ∂Ωh and Γh interior boundaries of Ωh. We further define for
each el ∈ Ωh, Γ as the positively oriented, i.e. anticlockwise, single edge of the element
boundaries ∂el and the normal vector nΓ as the unit outward pointing normal.
We consider the discontinuous approximate space Dk(Ωh) as:

Dk(Ωh) = {υh ∈ L2(Ω) : ∀el ∈ Ωh, υh|el ∈ Pk(Ω)}, (9)

and its vector version D2
k(Ωh) where Pk(Ω) denotes the space of polynomials of order less

than or equal to k.
We also define the jump [[•]] and average {{•}} across the interface between neighboring
elements el1 and el2, arising from the discontinuous discretisation:

[[•]] = (•|el1)− (•|el2), {{•}} =
1

2
(•|el1) +

1

2
(•|el2), ∀Γ = ∂el1 ∩ ∂el2, (10)

and at boundary edges as:

[[•]] = {{•}} = (•|el1), ∀Γ = ∂el1 ∩ ∂Ω, (11)

5



E. Ferrer and R. H. J. Willden

2.2.2 Spatial discretisation of the Non-linear terms

The non-linear term in the Navier-Stokes equations is expressed in the convective form
and approximated through the Lesaint-Raviart fluxes modified for DG methods[9],[16],
where upwinding is performed to account for convection dominated flows. If we consider
the discretised version of the non-linear terms integrated over Ωh, we find uh ∈ D2

k(Ωh)
such that:∫

Ωh

uh.∇uh.υhdx =
∑
el∈Ωh

∫
el

(uh.∇uh.υh)dx + 1/2
∑
el∈Ωh

∫
el

(∇.uh)uh.υhdx

+
∑

Γ∈Γh∪ΓD

∫
Γ−
|{{uh}}.nΓ|(uinth − uexth ).υinth ds (12)

− 1/2
∑

Γ∈Γh∪ΓD

∫
Γ

[[uh]].nΓ{{uh.υh}}ds, ∀υh ∈ D2
k(Ωh).

The third term on the right hand side is the upwinding term, required for convection
dominated flows. The quantity uinth − uexth is another way to write the jump as done by
Riviere[16]. Γ− defines the portion of the boundary where the flow enters the element (i.e.
{{uh}}.nel < 0). Since the treatment of the non-linear terms is explicit, the calculation is
performed in the physical space, at quadrature points as opposed to in modal space (see
section 2.2.5). The inclusion of the explicit treatment for the non-linear terms introduces
a Courant-Friedrichs-Lewy (CFL) type restriction on the time step. The CFL estimate
for high order spatial methods is h/Uk2 > 4t as shown in Karniadakis and Sherwin[14]

for and advection model problem, where h is the mesh element size, U the characteristic
velocity and k represents the polynomial order.

2.2.3 The DG-IP spatial discretisation for elliptic equations

The described temporal splitting method requires the solution of purely elliptic equa-
tions (Poisson and Helmholtz). We choose various forms of the IP method to spatially
discretise these equations: namely the Symmetric Interior Penalty Galerkin (SIPG) , In-
complete Interior Penalty Galerkin (IIPG) and Nonsymmetric Interior Penalty Galerkin
(NIPG) methods. The details of the development, derivation and implementation are
omitted here but can be found in various references[9],[16]. All three methods can be con-
veniently recast in a single form which is summarised hereafter. We introduce here the
continuous elliptic problem and its discretisation using DG-IP methods:

−4u+ αu = g in Ω,

u = LD on ΓD, (13)

∇u.n = LN on ΓN ,

where u ∈ C2(Ω) is a scalar solution (but extension to the vector formulation is direct),
α is real and represents the wave number for the Helmholtz equations, n is the outward
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pointing unit normal vector on ∂Ω, g ∈ L2(Ω) is the forcing term, and LD ∈ H1/2(ΓD)
and LN ∈ L2(ΓN) represent the boundary conditions. This form defines the Poisson and
Helmholtz equation as follows:
- Poisson: forcing term g 6= 0 and convective term α = 0
- Helmholtz: forcing term g 6= 0 and convective term α 6= 0
We note that the Laplace equation (i.e. g = 0;α = 0) can also be considered with this
formulation but is omitted in this text.

To find a weak solution of the continuous problem Eq. 13 using the DG-IP method, we
introduce the bilinear aε(•, •) and linear `(•) forms associated with the discrete variational
formulation arising from the weak form of the continuous problem[9],[16].

aε(υh, uh) =
∑
el∈Ωh

∫
el

(∇υh.∇uh)dx +
∑
el∈Ωh

∫
el

(αυhuh)dx−
∑

Γ∈Γh∪ΓD

∫
Γ

[[υh]]{{∇uh}}.nΓds

+ ε
∑

Γ∈Γh∪ΓD

∫
Γ

[[uh]]{{∇υh}}.nΓds+
∑

Γ∈Γh∪ΓD

σ

|trace|β

∫
Γ

[[υh]][[uh]]ds, (14)

and the following linear form:

`(υh) =
∑
el∈Ωh

∫
el

(υhgh)dx +
∑

Γ∈ΓD

∫
Γ

(ε∇υh.nΓ +
σ

|trace|β
υh)LDds+

∑
Γ∈ΓN

∫
Γ

υhLNds, (15)

for all υh ∈ Dk(Ωh), where σ and β are positive real parameters and the |trace| is defined
as the length of the edge in 2D. Then, the DG-IP approximate solution reduces to finding
uh ∈ Dk(Ωh) provided by aε(υh, uh) = `(υh), ∀υh ∈ Dk(Ωh).
The choice of ε in Eq. 14 and Eq. 15 defines the method and has consequences on the
choice of the penalty parameters which is responsible of enforcing coercivity of the bilinear
form[16]. In the following table 1 we summarise the penalty parameter requirement (σ,β)
and associated a priori theoretically derived convergence rates in the L2 norm when h-
refinement is performed with fixed polynomial order k [16]. We note that the penalty β is
local in the sense that it is related to the local edge length (trace) and that the parameter
σ is of global nature. The relative importance of each penalty is of little importance when
regular meshes are used as in the verification section.

If desired, the explicit expression for the penalty parameter derived for the SIPG
method by Shahbazi[17], may be substituted in 14 and 15:

σ

|trace|β
=

(k + 1)(k + d)

d

[
max

(
Sel1
Vel1

,
Sel2
Vel2

)]
, (16)

where k is the polynomial order, d = 2 corresponds to the dimension of the problem, Sel
and Vel are the perimeter and area (in two dimensions) of each of the elements 1 and 2
sharing the edge. This expression does not require any arbitrary penalisation term (σ, β
combination), but automatically adjusts the penalisation term according to the underlying
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IP Method ε σ L2 Convergence L2 Convergence
β = 1 β = 3

SIPG -1 large O(hk+1) O(hk+1)
SIPG shahbazi -1 - O(hk+1) O(hk+1)
IIPG 0 large O(hk+1), k odd O(hk+1)

O(hk) , k even
NIPG 0 +1 = 0 O(hk+1), k odd –

O(hk) , k even
NIPG 1 +1 = 1 O(hk+1), k odd O(hk+1)

O(hk) , k even

Table 1: Penalty parameter requirements and theoretical convergence rates for various IP methods.

mesh geometry.
The table shows that the SIPG method provides optimal convergence, i.e. O(hk+1),

in the L2 norm independently of the penalisation used as long as this is large enough.
The IIPG and NIPG methods provide optimal convergence only for odd polynomials if
no super-penalisation is used, i.e. β = 1, but for all polynomials when using super-
penalisation, i.e. β = 3. We note that the bilinear form associated with the SIPG method
is symmetric leading to positive definite matrix but that the other fluxes lead to non
symmetric systems which has consequences in the choice of the iterative solver that can
be used.

2.2.4 Mapping from physical space to computational space

Up to this point, the discretisation has been defined in the physical space and general
vector notation has been used. This section deals with the mapping between the physical
space which will be defined in cartesian coordinates (x,y) and the computational space
(ξ1, ξ2), where the described method is actually computed. The transformation and details
for the collapsed coordinate system[14] are summarised in Fig. 1. The transformation is
constituted by two steps. The first step (step 1) maps the the standard square (ξ1, ξ2)
to the standard triangle (η1, η2) where one vertex in the square is collapsed. The second
(step 2), transforms the standard triangle (η1, η2) to the general straight sided triangle
(x,y).

2.2.5 Modal basis functions

Within each element el, the approximate solution, uh, of the defined scheme is expressed
as a modal expansion of hierarchical basis functions φi(x, y)as:

uh(x, y) =
TotModes∑

i=1

uiφi(x, y), (17)
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Figure 1: Mapping from computational space to physical space.

where x, y ∈ el and TotModes is the number of modes in each element (i.e. local number
of degrees of freedom). The necessary number of modes to completely define the expansion
on triangular elements is TotModes = (k+1)(k+2)/2[14]. We select a tensorial expansion
basis[14] defined in the standard triangle (η1,η2) as follow:

φi(x, y) = φpq(x, y) = φpq(η1, η2) = ϕap(ξ1)ϕbpq(ξ2), (18)

where p, q denote the different components of the tensorial expansion with 0 ≤ p and
p+q ≤ k, with k the polynomial order, i.e Pk(Ω). The bases ϕap and ϕbpq are called principal

functions[14] and allow us to express the basis function φpq defined in the standard triangle
(η1, η2) in terms of basis functions defined in the standard square (ξ1,ξ2). In this work, the

principal basis functions are defined in terms of Jacobi polynomials, where P
(α,β)
p (z) is the

pth order Jacobi polynomial (and α = β = 0 corresponds to the Legendre polynomials).
The bases have been normalised so the resulting mass matrix is the identity matrix:

ϕap(ξ1) =

√
2p+ 1

2
P (0,0)
p (ξ1),

ϕbpq(ξ2) =
√
p+ q + 1

(
1− ξ2

2

)p
P (2p+1,0)
q (ξ2). (19)

We note that this family of bases in combination with the described mapping, allow for
the use of the efficient sum-factorisation technique[14]. These expansions do not ensure
continuity across element boundaries but this is not necessary within the DG context as
it is for continuous Spectral methods.

2.2.6 Numerical evaluation of the integrals: Quadrature

In this work we use Gaussian quadrature for both surface and line integrals. An
important detail in the DG-IP method is that it is necessary to evaluate the basis at the
edges of the elements when performing line integrals. This evaluation is performed in a
preprocessing step. All required matrices are also computed prior to any time stepping.
Care has been taken to ensure that sufficient quadrature points have been used for exact
integration of each term, including non-linear terms.

9



E. Ferrer and R. H. J. Willden

2.3 Implementation and solution of the linear system

In all of the verification problems addressed below, direct solvers (e.g LU decompo-
sition or Cholesky factorisation for positive definite systems) have been used to avoid
inaccuracies introduced in the solution through the use of iterative solvers. In the last
section, relating to the square cylinder, the MKL-Pardiso solver[12] has been used to solve
the linear system. The method described has been implemented using the object ori-
ented language C++. The grid generator used to construct the computational meshes is
Gambit[2] using the Neutral format and post-processing is performed using Tecplot.

3 VERIFICATION OF THE METHOD

We use the verification problems to investigate the method’s convergence properties
and the influence of the penalty parameter in the solution accuracy. We will first consider
purely elliptic problems, followed by the Stokes problem and then the full NS equations.

3.1 Elliptic equations

3.1.1 Poisson equation

We select the Poisson problem, i.e. −4u = g, solved in Ω = [−1, 1]2. The problem is
defined with the forcing term g(x, y) = 2π2sin(πx)sin(πy) and with Dirichlet boundary
conditions LD = 0. The analytical solution is uexact(x, y) = sin(πx)sin(πy). We do not
use super-penalisation and set the penalty parameter β = 1 for all IP formulation. For the
IIPG and SIPG methods we use σ = k(3k+ 3) [16]. We show the exponential convergence
obtained using p refinement on a grid with 200 triangular elements in Fig. 2.a. We also
tabulate the convergence rates for h-refinement using four meshes constituted of 50, 200,
450 and 800 triangular elements in table 2. The slopes agree well with the a priori error
estimates (see table 1). However, we note that the convergence rates for the IIPG method
are better than predicted by the theory for even k.
We explore the influence of the penalty parameter, σ, on the solution accuracy for this

particular problem and all fluxes. We fix the polynomial order to k = 2, since the effect
of the penalty parameter is more apparent for low polynomial orders, and we increase the
penalty parameter in Fig. 2.b. We observe that, for this particular test case, the IIPG
and NIPG methods show decay of the error as σ is increased, but for the SIPG method

IP Method k=2 k=3 k=4 k=5 k=6

IIPG 2.505 4.038 4.807 5.966 6.898
NIPG 0 1.853 3.847 4.021 5.914 6.276
NIPG 1 1.880 3.899 4.019 5.923 6.283
SIPG 3.054 4.016 4.957 5.958 6.966
SIPG Shahbazi 2.993 4.043 4.942 5.976 6.960

Table 2: Convergence rates for the Poisson equation when performing h-refinement
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Figure 2: (a) L2 relative error norm for the Poisson equation and p-refinement; (b) Penalty parameter
(σ) influence on the L2 error norm for the Poisson equation, k=2.

the error increases. It is also observed that as the penalty increases all the methods
converge to the same result. This fact was noted by Castillo[5] when comparing the NIPG
and the SIPG methods. Finally, we note that the Shahbazi expression provides enough
penalisation when compared to the SIPG method.

3.1.2 Helmholtz equation

The inhomogeneous Helmholtz equation, i.e. −4u + αu = g, is solved in Ω = [0, 1]2.
The wave number α can be chosen arbitrarily provided that the forcing term is of the
form g(x, y) = (α+ 2π2)cos(πx)cos(πy). The problem is closed using Dirichlet boundary
conditions derived from the exact solution uexact(x, y) = cos(πx)cos(πy). We fix the wave
number α = 10, the penalty parameter β = 1 for all IP formulation and σ = k(3k + 3)
for the IIPG and SIPG, and as previously, we tabulate the convergence rates for h-
refinement using three meshes with 50, 200 and 338 elements in table 3. As before we
see that the IIPG method provides better results than predicted by the theory showing
optimal convergence for all polynomial orders. The meshes used, which are similar those
used to solve the previous Poisson problem is of the type shown in Fig. 3.a.
We again investigate the effect of the penalty parameter on the L2 error accuracy for the
SIPG method and a fixed polynomial order k = 2 and β = 1. This time we vary the

IP Method k=2 k=3 k=4 k=5 k=6

IIPG 2.858 4.035 4.937 5.989 6.953
NIPG 0 2.452 3.925 4.275 5.994 6.469
NIPG 1 2.211 3.960 4.274 5.996 6.475
SIPG 3.000 4.019 4.981 5.978 6.984
SIPG Shahbazi 2.957 4.038 4.975 5.993 6.982

Table 3: Convergence rates for the Helmholtz equation with α = 10 when performing h-refinement
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wave number 0 ≤ α ≤ 105 and the penalty 18 ≤ σ ≤ 104 as shown in Fig. 3.b. It is
interesting to analyse the behaviour of the method for large wave numbers because when
considering the Helmholtz step in the splitting scheme, the wave number corresponds to
α = γ0/(ν 4t), which can become large for small time steps. As for the Poisson problem,

Figure 3: (a) 200 element mesh used to study the influence of the penalty parameter σ on the solution
of the Helmholtz equation; (b) Penalty parameter (σ) influence on the L2 error norm for the Helmholtz
equation of various wave numbers (α), SIPG flux and k = 2.

we observe an increase of the L2 error norm as σ increases. It can also be seen that for
large wave numbers, the penalty has greater effect.

3.2 Unsteady Stokes equations

We note that the time discretisation splitting scheme defined in section 2.1 can be
used when the non-linear term is not considered. In this case, the continuous momentum
equation reduces to ∂u/∂t = −∇p + ν∇2u. We consider the following solution of the
Stokes problem[18]:

(u, v) = (sin(x)(a sin(ay)− cos(a)sinh(y)), cos(x)(cos(ay)− cos(a)cosh(y))) e−λt,

p = λcos(a)cos(x)sinh(y)e−λt, (20)

with a = 2.883356 and λ = 9.313739. This unsteady problem can be solved in Ω =
[−1, 1]2 with Dirichlet boundary conditions and the initial condition provided by the
exact solution. The tests have been carried out using a mesh constituted of 72 triangular
elements (similar to the mesh depicted in Fig. 3.a) and the penalties β = 1 and σ =
k(3k + 3) when not stated otherwise. We only consider equal order polynomial spaces
Pk(Ω)-Pk(Ω) for velocity and pressure. The following Fig. 4.a and Fig. 4.b show the
L2 convergence obtained for time step refinement for the SIPG method for the pressure
and the velocity respectively. For spatially well resolved simulations (k ≥ 7), we obtain a
convergence rate for the L2 relative error norm for pressure of 1.82 and 2.21 for velocity.
These convergence rates are the same for all fluxes as long as the spatial discretisation is
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fine enough (reduced spatial error using either p or h refinement). The figures show that
for all polynomial orders the scheme provides convergent solutions as long as the time
step remains larger that a certain 4tmin which reduces as k increases. The overall error
seems to behave as O(4t2 + hk+1/4t) with h representing the element size, similarly to
the semi-Lagrangian method reported in Karniadakis and Sherwin[14].
In Fig. 4.c and Fig. 4.d, we depict the solution for k = 2 and 3 and two different values
for the penalty σ. We observe an increase on the L2 norm (negative effect) for moderate
time step reduction as expected from the effect of the penalisation in previous elliptic
problems. However, we also see a positive effect (i.e. smaller L2 error norm) for low time

Figure 4: Time step refinement study for the Stokes equations at final time=0.1, for various polynomial
orders. (a) SIPG flux: L2 relative error norm for pressure, (b) SIPG flux: L2 relative error norm for
velocity, (c) SIPG flux: L2 relative error norm for pressure with various penalisation (σ), (d) SIPG flux:
L2 relative error norm for pressure with various penalisation (σ).

steps as we increase σ. This last 4t region is however divergent in the sense that the
error becomes unbounded with time. In what follows we ensure that spatial discretisation
is fine enough for the selected time step (4t > 4tmin) thus avoiding the L2 error increase
described here.
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3.3 NS equations: Taylor Vortex

The selected problem to test the full incompressible NS equations including the non-
linear terms is the so called Taylor vortex[18],[14]. The time dependent solution that is used
to impose Dirichlet boundary conditions and the initial condition is given by:

(u, v) = (−cos(πx)sin(πy), sin(πx)cos(πy)) e−2νπ2t,

p = −1

4
(cos(2πx) + cos(2πy)) e−4νπ2t. (21)

The problem is solved in Ω = [−1, 1]2 discretised with 72 triangular elements with the
kinematic viscosity ν = 0.02. We again select the SIPG method (β = 1 and σ = k(3k+3))
and equal order elements for velocity and pressure. We perform p-refinement and plot the
L2 (Fig. 5.a) and maximum pointwise error (Fig. 5.b) showing exponential convergence.

Figure 5: (a) L2 relative error norm and (b) maximum pointwise error convergence rates for p-refinement
and the Taylor Vortex problem, 4t = 0.001 and final time=0.1.

4 VALIDATION OF THE METHOD

The square cylinder has been selected as a test case to validate the solver in a complex
flow. The selected Reynolds numbers are Re = 10 and Re = 100 which are low enough
for the flow to remain laminar. For low Reynolds numbers (Recrit . 50)[4], there is no
vortex shedding and thus the solution is steady in time, enabling validation of the code
in steady flow conditions. For the higher Reynolds number, vortex shedding develops
forming a Von Kármán vortex street with a characteristic vortex shedding frequency; the
Strouhal number (St). The square cylinder case has been previously studied by Darekar
and Sherwin[6] using the Spectral code Nektar[14] and by Shahbazi et al.[18] where they
compared their DG method to Darekar and Sherwin’s results. The domain boundaries and
effective blockage ratio (B = 2.3%) are identical to those used in the previous referenced
studies. We use equal order Pk(Ω)-Pk(Ω) elements for velocity and pressure and a mesh
constituted of 836 triangular elements. We concentrate on the SIPG flux with β = 1
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although the other fluxes have shown very similar results. Since in this case there is a
very significant variation of the element edge lengths (∼ 0.01−10), we require an increase
in the penalty parameter σ to ensure that the term σ

|trace|β is large enough everywhere.
A typical flowfield for Re = 100 is shown in Fig. 6.

Figure 6: DG solution: Vorticity contours −1 ≤ ωz ≤ 1 for the square cylinder at Re=100, k = 7, SIPG
flux. The unstructured triangular mesh is overlaid in the figure.

4.1 Post processing forces- LIFT-DRAG

Lift and drag forces can be calculated using various formulations. In particular com-
pressible or incompressible formulations (i.e. the velocity is assumed divergence free) can
lead to different results. The temporal discretisation used within this work leads to a
solution for the velocity that is not explicitly solenoidal at the end of the time step ad-
vancement, since the divergence free constraint is imposed on an intermediary velocity
field (i.e. ∇.˜̃u = 0). We consider three formulations for calculating lift and drag forces.
The pressure component of the forces is the same for all formulations and only the treat-
ment of the viscous terms differs.
- Compressible formulation[1]:

FC
x =

∮
−pnxds+

∮ [
λ(∇.u) + 2µ

∂u

∂x

]
nxds+

∮
µ

[
∂v

∂x
+
∂u

∂y

]
nyds,

FC
y =

∮
−pnyds+

∮ [
λ(∇.u) + 2µ

∂v

∂y

]
nyds+

∮
µ

[
∂v

∂x
+
∂u

∂y

]
nxds, (22)

where λ = −2/3µ is the second viscosity coefficient and the s parametrises the closed
contour around the body.
- Incompressible formulation: This definition, assumes that the velocity is diver-
gence free and sets the term ∇.u = 0:

F I
x =

∮
−pnxds+

∮ [
2µ
∂u

∂x

]
nxds+

∮
µ

[
∂v

∂x
+
∂u

∂y

]
nyds,

F I
y =

∮
−pnyds+

∮ [
2µ
∂v

∂y

]
nyds+

∮
µ

[
∂v

∂x
+
∂u

∂y

]
nxds, (23)
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This definition has been used by Hesthaven and Warburton[11] and is implemented in the
Spectral code Nektar[14] to compute lift and drag forces.
- Vorticity formulation: We can derive an expression for the lift and drag vis-
cous components using vorticity, which for 2D flows reduces to ω = (ωx, ωy, ωz) =(

0, 0, ∂v
∂x
− ∂u

∂y

)
in 2D flows and reads:

F V
x =

∮
−pnxds+

∮
µωznyds,

F V
y =

∮
−pnyds−

∮
µωznxds, (24)

To assess the influence of the formulation, we consider the steady state case of flow past
the square section cylinder at Re = 10 and compare the viscous forces using the three
formulations while performing p refinement. Note that this is a comparison of post-
processing techniques and the underlying flow-field is identical for each post-processing
formulation. We also compare the results obtained using the DG formulation to the high
order Spectral code Nektar. We note that the second order temporal splitting scheme
used by Nektar is the same as that used for the present DG implementation but that the
space discretisation is different (i.e. continuous vs discontinuous).
We show in Fig. 7.a and 7.b the viscous lift and viscous drag components respectively.
The viscous lift for this steady case should be identically zero, which follows from the

Figure 7: Square section cylinder at Re=10: (a) Viscous lift force and (b) viscous drag force as a function
of the polynomial order k for the compressible, incompressible and vorticity formulations of the DG code
with SIPG flux, and the continuous Spectral code Nektar.

symmetry of the mesh used. We note that the continuous Spectral code Nektar gives
exactly zero lift independently of the polynomial order. All of the tested formulations
provide a lift force which is smaller than 10−3 for k = 2 and tend to zero as we perform p-
refinement. The formulation that seems to provide the smallest viscous lift is the vorticity
formulation for all k. Indeed, if the quadrature points used to calculate the line integrals
for the lift force are increased, the compressible and incompressible formulations give
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a lift force that is closer to zero. However the vorticity formulation appears to be less
sensitive to the number of quadrature points and provides an accurate lift force when using
fewer quadrature points. When comparing the viscous drag in Fig. 7.b, we observe that
DG and Nektar results agree for the incompressible formulation. When comparing the
different post-processing formulations, we observe a consistent difference for all polynomial
orders tested (e.g. for k=4, the difference between the compressible formulation and the
incompressible is -4.40% and -13.24% for the vorticity formulation). This difference is not
influenced by the number of quadrature points but reduces if the time step is reduced
(not shown). The vorticity formulation seems to be less sensitive to the reduction in time
step.
We also summarise in table 4 the comparison between DG and Nektar for the pressure
drag component, where we see that both methods provide very similar results.

4.2 Unsteady wake and comparison to other solvers

In this section we compare the results obtained using the DG formulation, the contin-
uous Spectral code Nektar and the low spatial order Finite Volume (FV) code Fluent. In
order to make meaningful comparisons between the different formulations, we estimate
the number of DOF for each method ignoring the domain boundaries which moderately
reduce the number of DOF.
Taking Nel as the number of triangular elements in the mesh, we approximate the total
number of DOF for the DG method as: DOFDG ≈ Nel

2
(k + 1)(k + 2). For the Spectral

method, since C0 continuity is enforced across elements, the required number of DOF
is reduced: DOFSpectral ≈ Nel

2
k2 [19]. For the FV method, which uses piecewise con-

stant functions within each element, a conservative estimate for the number of DOF is
DOFFV ≈ Nel.
The temporal scheme selected for Fluent is a second order implicit scheme where the
pressure-velocity coupling is performed with the PISO algorithm. Spatial discretisation
in Fluent is second order upwind for momentum and Presto for pressure.
For the unsteady case with Re = 100, we compare the Strouhal number, St = fb/U∞,
where f is the vortex shedding frequency computed from the lift force, b = 1 the length

k Nektar DG % difference
from Nektar

2 1.0523E+00 1.0520E+00 2.44E-02%
3 1.0673E+00 1.0673E+00 1.95E-03%
4 1.0728E+00 1.0728E+00 5.43E-03%
5 1.0785E+00 1.0785E+00 -1.95E-03%
7 1.0858E+00 1.0859E+00 -3.47E-03%
8 1.0880E+00 1.0881E+00 -2.06E-03%

Table 4: Results for DG and Nektar for the pressure component of the drag over the square section
cylinder at Re=10.
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of the cylinder and U∞ = 1 the freestream velocity. We note that for this unsteady case,
the viscous component is orders of magnitude smaller than the pressure component and
hence the formulation used to compute the viscous forces has little influence. Fig. 8.a
depicts the results obtained for the variation of St number against the number DOF, for
the three solvers together with published results from the Nektar code by Darekar and
Sherwin[6]. We observe that both Nektar and DG give very similar results, providing an
accurate solution even for low numbers of DOF. The number of DOF necessary for Fluent
to reach comparable accuracy is three times larger than for the two high order methods
considered. For completeness, we show the mean drag and RMS lift comparisons using
the three codes in Fig. 8.b and 8.c.

Figure 8: Square section cylinder at Re=100: (a) Strouhal number derived from lift coefficient, (b)
mean drag coefficient and (c) RMS lift force coefficient computed with the DG code with SIPG flux, the
continuous Spectral code Nektar and Finite Volume code Fluent. Published results[6] for Nektar are also
included.

5 CONCLUDING REMARKS

An incompressible Navier-Stokes (NS) code that uses a dual splitting scheme for time
discretisation and a modal Discontinuous Galerkin Interior Penalty (DG-IP) method for
spatial discretisation has been implemented, verified and validated. The DG-IP spatial
discretisation has been verified and the role of the penalty parameter in the solution accu-
racy assessed for the Poisson and Helmholtz equations. The computed convergence rates
have been found to agree well with previously published theoretical rates for the SIPG
and NIPG fluxes and better than predicted convergence rates were observed for the IIPG
flux. It has also been shown that all fluxes provide the same level of accuracy for large
values of the penalty parameter.
For the unsteady Stokes problem, it has been observed that the error is of the form
O(4t2 +hk+1/4t) such that both spatial and temporal refinement are required to reduce
the overall error. Hence, for a given spatial discretisation there is a minimum time step,
4tmin, below which no further reduction in error can be achieved.
The method for the full NS equations in conjunction with the DG-IP method and the
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modal approach selected requires the time step to be between certain bounds: an upper
bound provided by the CFL condition and a lower bound for accuracy as observed for the
unsteady Stokes problem.
For the unsteady Stokes and Navier-Stokes problems the method is stable with all fluxes
when equal order approximation is used for velocity and pressure.
The solver has been validated for flow past a square section cylinder. This showed that
the formulation used to compute the viscous forces can lead to noticeable differences and
although this is of minor importance for bluff body flows where pressure forces dominate,
this may be of more importance for flows around slender bodies, e.g. airfoils. We have
also shown that the developed code provides very similar results to the continuous Spec-
tral code Nektar and requires less degrees of freedom (DOF) than the low order FV code
Fluent to achieve comparable accuracy for the vortex shedding aft of a square section
cylinder. Indeed, the spatial high order DG solver provides low diffusion and dissipation
approximations that lead to a more accurate solution using fewer DOF that can be ac-
complished with a low order code.
The flexibility of the DG method in handling non conformal meshes and local h/p adap-
tion while providing as accurate results as continuous Spectral codes is to be exploited in
future work.
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