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Abstract. Within this contribution, a global method which regularizes a finite volume
or a finite element mesh towards a desired condition is presented. In this method, an
artificial stress state is applied on the surface or on the volume mesh which is going to be
regularized and a global linear system of equations is solved. The applied fictitious stress
adapts each element towards a desired predefined template geometry and at the end a
globally smooth mesh is achieved. In this way, both the shape and the size of each element
is controlled. The generality of the method with respect to the field of applications is
discussed and examples from shape optimization, large structural deformation simulations
and mesh quality improvement are shown as well.
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1 INTRODUCTION

The quality of the solution in finite element and finite volume methods strongly depends
on the domain discretization. Hence, a good mesh is certainly desired as it is a prerequisite
for meaningful results. However, many of the mesh generation techniques are not able to
provide a discretization with good element shapes in the entire domain, especially in the
case of complex geometries.

Moreover, even if the quality of the generated mesh is acceptable, in applications which
deal with varying geometries or involve moving boundaries, during the evolution of the
computation, the quality of elements could deteriorate and severely distorted elements
might occur. In extreme cases, the elements become degenerate and further progress of
analysis is restricted. For instance, in shape optimization problems and large deformation
fluid-structure interaction simulations, the retaining of the initial discretization proper-
ties is not guaranteed. Within these iterative processes, large deformations, rigid body
motions, big rotations and high changes in the curvature of the involved surfaces usually
occur which leads to distortion of the mesh.

A significant amount of work has been done in the areas of mesh smoothing (mesh
relaxation) and mesh deformation. Among the most common mesh smoothing techniques
is the Laplacian smoothing,5,7, 9 an iterative method, which repairs the mesh by adapt-
ing the position of the single nodes. This method can result in distorted or degenerated
elements in concave domains. Another class of smoothing algorithms which performs
usually better but is more expensive is the optimization-based smoothing.8,10 Here, the
nodes are moved to satisfy the optimum of a cost function which describes a distortion
metric. Furthermore, there are techniques which are based on physical observations and
for instance, analogies with springs, materials and bubbles were introduced.13 On the
other hand, methods for deforming structured and unstructured meshes are of great in-
terest due to the increasing demands of CFD simulations with moving boundaries. These
methods, usually, add some physical properties on the mesh and the connectivity between
the points is represented by springs or solid body elasticity.2,6

In this work, a regularization scheme is developed, which is generally applicable to
all the aforementioned cases and offers an automatic control of the quality of the mesh,
being parallely efficient for large scale computations. This global regularization method
smoothens the mesh towards a desired target mesh by only solving a linear system of
equations with number of unknowns as much as the degrees of freedom preserving the
boundary of the mesh (two and three degrees of freedom for surface and volume meshes,
respectively).

This method is closely related to form-finding,3,14 which is used to determine numer-
ically the shape of membrane structures. In regularization there are some additional
aspects which should be considered. Firstly, a target mesh has to be defined such that
the applied artificial prestress brings the faces to their desired shape. Secondly, the ap-
plied prestress has to control both, the shape and the size of each individual element and
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Figure 1: Deformation in the context of geometrical nonlinear analysis.

the resulting mesh has to preserve the geometry of the domain.
In section 2, the method is introduced. First, an introduction to form-finding is given

and the governing equations of this procedure initiate the description of the method.
In section 3, some test cases which may arise in various applications are examined and
discussed. The strength of this method in the case of CFD simulations with moving
boundaries as well as of shape optimization is presented.

2 THE REGULARIZATION METHOD

The mesh regularization method presented here is inspired by form-finding which is a
method to determine the free-form shape of membrane and shell structures.3,14

Form-finding determines the structural shape from an inverse formulation of equilib-
rium in space due to a given pre-stress distribution acting on the deformed structure. In
other words, assuming a stress field applied on the resulting structure, the displacement
field which brings the system to equilibrium is found based on the principle of virtual
work, as stated in the following:

δw =

∫
a

σ : δεda =

∫
A

S : δEdA = 0, (1)

where σ is the prescribed Cauchy stress tensor acting on the resulting geometry with area
α and S the 2nd Piola-Kirchhoff stress tensor acting on the reference geometry with area
A. E and ε are the Green-Lagrange and Euler-Almansi strain tensor, respectively.1,11

When σ = σ · G, with G being the unity tensor, the resulting surface is a minimal
surface, which is the surface of minimal area content connecting given boundaries.
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For the formulation of eq. (1), there is no material description needed, since the applied
stress field is known and as a result, the problem is reduced to a geometrical one even-
though the formulation is initiated by a mechanical equilibrium. Eq. (1) is discretized by
the finite element method considering large deformations, since the geometrical nonlin-
earity is not negligible.4

The resulting stiffness matrix is singular with respect to tangential shape variation.
For this reason the updated reference strategy is applied,3 in which eq. (1) is modified to
the following:

δw = λt

∫
A

detF (σ · F T ) : δF dA+ (1− λ)t

∫
A

(F · S) : δF dA = 0 (2)

where F is the deformation gradient. The first term is equivalent to eq. (1). In the second
term we assume the 2nd Piola-Kirchhoff stresses to be given instead of the Cauchy stresses
σ. The solution of eq. (2) approaches the solution of the original problem by setting λ to
a constant value small enough to stabilize eq. (1) and repeating the procedure, where S is
adapted with respect to the actual geometry, assumed as the updated reference geometry.
Taking λ = 0, the intermediate problem is linear. The procedure is robust and converges
to the solution of eq. (1) rather quickly.

The same principle applies to the mesh regularization method including additional
constraints to the initial problem. The point of departure is again eq. (1). Now, the
movement is restricted to the surface directions since the surface geometry should remain
unchanged. Applying this constraint and λ = 0 to eq. (2) leads to a non-singular
system of equations which is linear in the surface tangent space. As a consequence,
the proposed method will generate proper meshes even for large distortions of plane or
volumetric meshes after solving one linear system of equations. The kernel of the method
is the proper choice of adequate element reference geometries or element templates. The
can freely be chosen independently for each element representing the ideal element shape
and/or size. Obviously, there will not be any modification if the actual element geometries
are taken as templates.

Figure 2: Regularization of a 4-element grid using a square template in the reference
configuration with a schematic stress distribution before (left) and after (right) regular-
ization.

4



E. Stavropoulou, M. Hojjat, R. Wüchner and K.-U.Bletzinger

For example, starting with the simple 4-element mesh of fig. 2 and applying the
principle of virtual work with an isotropic stress field in the reference configuration, and
without taking any caution for the reference geometry, the resulting displacemet field
is going to be 0. Applying a square template in reference configuration, the strains and
consequently the internal forces which are produced between the two configurations create
a displacement field which is globally as close as possible to the defined template for every
element since no external loading is applied.

The target (reference) element shape is chosen on element level without considering
continuity with the neighbour elements and only depending on the needs of the mesh as
it is going to be discussed in section 3. The standard notation of continuum mechanics
is used to describe the displacement u as the difference between the actual position x,
and the reference position X, with the reference configuration being derived based on an
ideal target mesh (fig. 1).

3 RESULTS

The method presented in this work can have various applications due to its general
formulation. It is not depending on the geometrical description of the elements of the
mesh nor on the amount of distortion of the mesh.

Additionally, there is a variety of choices for the element template which makes the
method easily adjustable depending on the type of application. The template can preserve
properties of the initial mesh, like size or shape, or it can be predefined with an ideal
element shape.

A first example for a template could be the prototype of an ideal element shape for all
elements, for instance, a square or an equilateral triangle. For complicated domains,
where mesh generators produce a mesh with specific properties, this template might
be adapted to the special situation. For example, the local refinement around points,
lines and surfaces have to be retained. In such cases, a template which preserves the
properties of the generated mesh has to be used. For instance, the template can preserve
the area, or the length of the edges of each element. Furthermore, in applications where an
evolutionary process distorts the mesh, like in optimization or fluid structure interaction
simulations, the ideal mesh can be assumed to be the mesh which was initially defined.

In the following, examples from all the aforementioned cases will be presented. In
section 3.1, a noise, which was added as a distortion to a mesh, will be removed and
local refinements will be produced by the use of an ideal square template. Furthermore,
a structured mesh produced with a mesh generator is improved with respect to element
distortion. In section 3.2, some cases of evolving element distortions due to deformation
processes are presented.
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3.1 MESH QUALITY IMPROVEMENT

In this section, the regularization method is applied to different meshes in order to
improve their quality. Firstly, a square template is applied as reference geometry to
remove the distortion (noise) from a 2 dimensional plane mesh consisting of quad elements.
Figs. 3a and 3b show the distorted mesh and the mesh after regularization, respectively.
The same square template was used for every element and the resulting mesh consists of
elements which match perfectly with the predefined template.

(a) (b) (c)

Figure 3: Noise removal and local refinement around a point.

Changing the relative size of the template of each element, local refinements can be
achieved. In fig. 3c, the size of the square template increases when the distance from the
refinement point increases. In the same way, proper refinement needed for boundary layer
resolution in fluid problems can be achieved.

In the next example, a mesh created by a mesh generator will be improved. Mesh
generators usually create a mesh inside bounding boxes made out of straight lines and
curves from of the boundary of the domain. But if the curvature of the domain boundaries
is relatively high, the quality of the resulting mesh is affected and distorted elements occur
in the region of the bounding boxes.

A mesh generated with such a technic is shown in fig. 4a. The elements are not
severely distorted as in the previous section but still there is a group of elements around
the boundary circle which are distorted. This type of non orthogonality is a remarkable
source of error in numerical methods, especially in finite volume method. By removing
the angle deformation from each element by assuming a quadrilateral template for each
element with edges the midsegments of each element the mesh of fig. 4b is obtained.
Now, the mesh is following the curved lines of the boundary and the mesh quality is
significantly improved, as it can be seen in fig. 5. In this figure, the distribution of
the angle of distortion is ploted and it can be observed that after regularization, more
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(a)

(b)

Figure 4: Regularization of a structured mesh with a hole.

elements have small distortion angles and the elements with bigger distortion angles are
less.
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Figure 5: Distribution of angle of distortion in initial and regularized mesh.

3.2 APPLICATIONS IN EVOLUTIONARY PROCESSES

In this paragraph, the mesh regularization method is discussed in the context of evo-
lutionary processes which begin with an initial mesh which gets distorted during the
computation. In this type of applications, large variations of the surface curvature during
the computation can affect the quality of the mesh or even restrict the whole process,
since the elements might get severely elongated or overlaped.

In fig. 6a, the resulting mesh of an initially plane surface, after applying a displace-
ment field normal to the surface for 100 iterations, is shown. The resulting elements are
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elongated, even though, the initial mesh had a good quality consisting of square elements
of the same size. Applying the regularization method, using the initial shape of each
element as the reference template, the elements retain their initial shape (fig. 6b). The
transmission from a flat or slightly curved surface to highly curved one is a common
incident in parameter-free optimization.

(a) (b)

Figure 6: The final mesh of applying an evolutionary process without and with regular-
ization, respectively.

The decrease of curvature in the surface mesh can have even more severe effects. The
curved geometry of fig. 7a might reduce its curvature during simulation and this will lead
some elements to overlap and become degenerate (fig. 7b). Applying the regularization
method on the overall process, the problem can be dissolved and the computation is not
restricted anymore because of failure of the mesh (fig. 7c).

(a) (b) (c)

Figure 7: Reduction of the curvature of a 2D mesh (a) to a plane mesh without (b) and
with (c) regularization.

In the last example, the bulk motion of the circular boundary of the mesh of fig. 4a
is tested. Both the shape and the position of the circular boundary is changed in three
steps. The resulting mesh after applying regularization with slip boundaries in the upper
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and lower part of the domain is shown in fig. 8. Moving boundaries appear frequently
in shape optimization problems and fluid structure interaction simulations12 on non-fixed
grids, as well as CFD calculations.

Figure 8: Adaptation of the mesh with a moving circular boundary.

4 CONCLUSION

In this contribution, a mesh regularization method for the smoothing of surface meshes
is introduced. The method emanates from form-finding used to determine the shape
of free-form membrane structures and because of its general formulation it is widely
applicable. The method requires the solution of a global linear system of equations. The
unknowns are the degrees of freedom preserving the boundary of the mesh. The method
adapts the mesh towards a predefined target mesh. Some examples arising in several
applications are presented and possible applications were addressed.

Further research includes an extension of the method for volume meshes and a com-
parison between the new method and existing methods with respect to accuracy and
efficiency.

5 ACKNOWLEDGMENTS

The authors acknowledge support by European Commission under THEME SST.2007-
RTD-1: Competitive product development from February 2009 to January 2012.

REFERENCES
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