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Abstract. An extension of a strictly conservative Cartesian cut-cell method to meet the
requirements for the simulation of internal flows in complex geometries including moving
boundaries is presented. In the current method, the representation of boundaries which do
not coincide with grid lines is done by assigning one ghost cell freely positioned in space to
each cell cut by the geometry. A generalization of this approach providing multiple ghost
cells for each cell is introduced such that the method is applicable to problems includ-
ing technical objects with sharp concave features where cells multiply cut by the geometry
can occur. The ability of this generalization to greatly simplify the application of robust
boundary conditions to internal flows including cells with non-unique boundary conditions
is demonstrated. An extension of this method to problems with moving boundaries repre-
sented by the zero-contour of an advected level-set function is outlined. Numerical results
for the flow past a cube and in a pipe elbow show the correct modification of the flow
field in the presence of sharp edges and the effective application to internal flows featuring
interfaces with different boundary conditions.
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1 INTRODUCTION

To improve the performance of internal combustion engines, a detailed understanding
of the in-cylinder flow field and mixing processes is crucial. Therefore, three-dimensional
simulations of reciprocating engines are an important tool in engine development both
in science and industry. This application puts certain special demands on a simulation
method due to the complexity of the geometry and the presence of moving components
such as piston and valves. A suitable method must allow simple and efficient mesh
generation and update with respect to the moving parts of the boundary while providing
a highly accurate representation of the geometrical details.

Conventional body-adapted grids usually require a considerable meshing effort and need
to be updated after each time step in the presence of moving boundaries. In contrast,
immersed boundary methods based on non-body-adapted grids allow automatic mesh
generation and moving boundaries can be treated without remeshing. Recently, several
methods using such non-boundary-conforming grids have been developed and reported
in literature1-4. However, there exist only few examples for immersed boundary methods
applied to compressible flow. A novel approach which allows the computation of three-
dimensional viscous compressible flows in a strictly conservative way has been reported
by Hartmann et al.5-7

Motivated by the application to the flow in an internal combustion engine, this work
describes an extension of this method for flows bounded by highly complex geometries.
Concave, especially acute-angled features of technical objects can lead to cells multiply
cut by the geometry while internal flows exhibit interfaces with different adjacent physical
boundary conditions. A method which is not able to resolve these specifics consistently
is thus restricted to rather smooth geometries and will possess difficulties for cells with
non-unique boundary conditions. The application of boundary conditions in the method
of Hartmann et al. in the framework of Cartesian cut cells is done using ghost cells freely
positioned in space. Exactly one ghost cell is assigned to each cell intersected by the
geometry, representing one boundary surface per cut cell. The method is thus limited as
stated above. To overcome these limitations multiple ghost cells for each cut cell, each
accounting for a separate intersection surface and the respective boundary condition, are
introduced. To enable the application to in-cylinder flow and other problems involving
moving boundaries, the method has been coupled to a multi-purpose level-set solver. The
moving surface is then represented by the zero-contour of a signed distance function.
This approach, recently adopted by several authors8-10, enables efficient parallelization
and allows quick recomputation of the Cartesian cut cells necessary after each time step.

The outline of this paper is as follows: Section 2 starts with the governing equations
while the developed numerical method is described in Section 3. Numerical Results are
presented in Section 4 and final conclusions are drawn in Section 5.
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2 GOVERNING EQUATIONS

The governing equations considered are the unsteady nondimensionalized Navier-Stokes
equations for compressible fluids given by

∂Q

∂t
+∇H = 0, (1)

with Q = [%, %v, %E]T being the vector of the conservative variables and H = [F1,F2,F3]T

being the flux vector containing an inviscid part H
i

and a viscous part H
v

H = H
i
+ H

v
=

 %v
%vv

%v(%E + p)

+
1

Re

 0
τ

τv + q

 . (2)

The Reynolds number based on the freestream velocity v∞ and the characteristic length
l reads Re = %∞v∞l

µ∞
. Assuming a Newtonian fluid and zero bulk viscosity leads to the

following formulation for the second-rank stress tensor τ

τ = −2µS +
2

3
µ(∇ · v)I. (3)

Here, I is the unit tensor and S is the rate-of-strain tensor

S =
1

2

(
∇v + (∇v)T

)
. (4)

Using Fourier’s law and the Prandtl number Pr = µ∞cp
k∞

containing the specific heat at
constant pressure cp, the vector of heat conduction q can be written

q = − k

Pr(γ − 1)
∇T, (5)

where γ is the ratio of specific heats. The thermal conductivity is evaluated from k(T ) =
µ(T ), which holds for a constant Prandtl number.

Using the Gauss divergence theorem, the integral form of the Navier-Stokes equations
is obtained as ∫

V

∂Q

∂t
dV +

∫
A

H n dA = 0, (6)

where n is the outward unit normal vector on the surface dA.

3 NUMERICAL METHOD

3.1 Discretization

The time-integration of the Navier-Stokes equations (6) is done using a 5-stage second-
order accurate Runge-Kutta scheme optimized for stability,

Q(0) = Qw

Q(k) = Q(0) − αk∆tL(Q(k−1)) (7)

Qw+1 = Q(5),
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with the coefficients α =
(

1
4
, 1

6
, 3

8
, 1

2
, 1
)
. The quantity L(Q) denotes the numerical approx-

imation of the term ∇H in equation (1). The superscript k indicates the Runge-Kutta

stage, while the superscript w represents the time step ∆t. With an =
√
γ p

n

%n being the

local speed of sound and C being the CFL number, the time step is computed globally
by

∆t = min
n∈D

min
j∈{1,2,3}

{(
Chn

|vnj |+ an

)}
. (8)

For the evaluation of the inviscid flux H
i
(xms ), the left and right interpolated states L

and R in the surface centroid are computed at second-order accuracy using a monotone
upstream centered schemes for conservation laws (MUSCL) approach for the primitive
variables11

P (xms )L/R = P
(
xL/R

)
+∇P|L/R

(
xms − xL/R

)
. (9)

The inviscid flux is computed using a modified version12 of the advection upstream split-
ting method (AUSM)13. The cell center gradients ∇P are computed using an unweighted
linear least-squares reconstruction scheme as described in Hartmann et al.7 These gradi-
ents are also used for the computation of the viscous fluxes H

v
.

3.2 Embedded Boundary treatment

In Cartesian cut-cell methods, cells are usually classified in three categories. These are
internal cells which are located completely inside the computational domain Ω, external
or solid cells which are located completely outside the computational domain Ω, and
boundary or cut cells which are cut by the boundary ∂Ω. While external cells are discarded
in the current approach, boundary cells need a special treatment. As proposed in5,7, they
are reshaped such that the entire control volume V n of the reshaped cell lies inside the
computational domain Ω. The reshaping process is done by first identifying the cut points
of a boundary cell where the embedded geometry cuts through the edges of the respective
cell. The faces of the reshaped cut cell are then obtained by linearly connecting the cut
points on the cell edges of each face cut by the geometry while external faces, situated
completely outside the computational domain Ω, are omitted as illustrated in Fig. 1.

The discretization of the integral form (6) of the Navier-Stokes equations in finite-
volume methods is based on the evaluation of flux integrals over the cell faces. Therefore,
besides the new surface area Am the shifted centroid xms of each cut face m has to be
computed by

xms =
1

Am

∫
Am

x dA, (10)

and the shifted volumetric cell center x̂n of each boundary cell n has to be computed by

x̂n =
1

V n

∫
V n

x dV. (11)
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For a complete description of the boundary cells, the computation of the face area AΓ,
the normal vector nΓ, and the centroid xΓ

s of the resulting boundary surface Γ which
approximates the curved surface is necessary.

z
x

y

Γ

solid domain

cut faces

fluid face

cut faces

Figure 1: Reshaping of a Cartesian cut cell. The dark shaded surface Γ is the resulting boundary surface,
the light shaded solid part of the cell is omitted.

Finally, following Hartmann et al.6,7, the application of boundary conditions on the
boundary surfaces Γn is done by prescribing the primitive variables on ghost cells one
of which is created for each boundary cell. The ghost cells are connected to their cor-
responding boundary cell via the boundary surface Γ. The location of the ghost cells
is computed on the straight line connecting the boundary cell center and the boundary
surface centroid by

x̃n = x̂n + 2
(
xΓn

s − x̂n
)
. (12)

Thus, it is not restricted by the Cartesian grid lines. Dirichlet boundary conditions
φ(x, t) = Φ(x, t) for a generic quantity φ can be imposed by setting the ghost cell value
φ̃n

φ̃n = 2ΦΓn − φn. (13)

This approach ensures that linear interpolation between the ghost cell and the boundary
cell n recovers the prescribed value in the boundary surface centroid. A detailed discussion
of the application of suitable Neumann boundary conditions and the computation of the
wall shear stress on the embedded boundary can be found in Hartmann et al.6,7 The
ghost cells are used for the calculation of the surface flux through the boundary surfaces
Γ as well as the gradient computation on the corresponding boundary cells using a least
squares reconstruction.

3.2.1 Problem statement

Cells multiply cut by the geometry The treatment of the cut cells in the original
method6,7 as stated above requires that the geometric intersection of a boundary cell can
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be described by exactly one surface. Therefore, only one ghost cell is assigned to each
boundary cell. For relatively smooth geometries, this is sufficient and can still be ensured
for rather coarse grid resolutions in the vicinity of the embedded boundary. However,
if technical applications are considered, the embedded boundaries usually contain sharp
edges. Their presence, especially in conjunction with convex features and acute angles,
can lead to cells multiply cut by the geometry, where two or more cut surfaces are needed
to describe the boundary cell resulting from the geometric intersection. Fig. 2 gives an ex-
ample for such a cell occurring in the Cartesian grid generated for an internal combustion
engine simulation.

Figure 2: Cell multiply cut by the geometry due to a sharp edged indentation in the intake port of an
internal combustion engine.

A possible remedy to this problem is the further refinement of problematic cells which
can not be described by a single cut surface. However, there exist certain bizarre cases
where further refinement does not eliminate the problematic cells or many refinement
steps would be needed to resolve the problem as illustrated in Fig. 3. Thus, a general
success of this approach can not be guaranteed. Furthermore, the extra refinement of cells
which already have an adequate size from a physical point of view leads to an increased
problem size and a reduced time step. Both effects increase computational costs without
increasing the overall solution quality. As any user intervention should be avoided by
all means to keep the benefits of automated mesh generation, especially regarding the
treatment of moving boundaries, a more general representation of geometric intersections
which allows to handle multiple boundary surfaces per boundary cell is required.

Internal flows When applied to internal flows, the method of Hartmann et al.6,7 ex-
hibits another difficulty which underlines the need for a more powerful boundary cell
description. Internal flows usually contain interfaces with different adjacent physical
boundary conditions where the wall of the bounding geometry and the inflow/outflow
planes meet. Applying the original approach of Hartmann et al.5,7 to a cell cut by such
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Figure 3: Configuration where many refinement steps are necessary to eliminate all cells multiply cut by
the geometry. Each refinement step leads to a new problematic cell on the higher refinement level.

an interface, usually generates a single boundary surface which is not necessary planar, as
it can be defined by four or more cut points (see Fig. 4). The boundary condition which
should be applied to this surface is thus not well-defined and both possible choices lead
to severe problems as will be discussed in the following.

z
x

y

Γ

Γ
in

wall Γ
approx

Figure 4: Cell with non-unique boundary conditions due to the approximate boundary surface generation.
Left: original configuration; right: approximated boundary surface

If the resulting boundary surface is chosen to represent a wall, this conflicts with the
usual assumption of a parallel inflow flow field. Moreover, depending on the geometry
and the characteristics of the problem, the flow field can be disturbed significantly by
this change of geometry. The assignment of an inflow/outflow boundary condition to the
respective boundary surface can lead to even more severe numerical problems, which will
be derived in the following.

Hartmann et al.5,7 approximate the surface integral in Eq. (6) for a cell n by second-
order accuracy to obtain(∫

A

Hn dA

)n
=
∑
m∈σn

H(xms )nmAm +O(hn)2. (14)

Hence, the surface integral is replaced by the evaluation of the flux vector in the surface
centroid H(xms ). To demonstrate that the surface integral is indeed of second-order accu-
racy for a cell n bounded by piecewise planar surfaces m let us consider a strictly linear
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flux function g defined by

g(x) = k + Bx =

k1

k2

k3

+

 0 b12 b13

b21 0 b23

b31 b32 0

xy
z

 . (15)

Furthermore, let us assume a time-independent problem such that using the flux function
(15) Eq. (1) reduces to

∇ · g(x) = 0. (16)

It can be easily verified that this equation holds for the flux defined by (15). Eq. (6) now
reads

0 =

∫
A

g(x) · n dA =
∑
m∈σn

∫
Γm

g(x) · n dA

=
∑
m∈σn

∫
Γm

k1nx + k2ny + k3nz

+b12ynx + b13znx + b21xny + b23zny + b31xnz + b32ynz dA. (17)

For piecewise planar surfaces this is equivalent to

0 =
∑
m∈σn

[
(k1n

m
x + k2n

m
y + k3n

m
z )Am

+b12n
m
x

∫
Γm

y dA+ b13n
m
x

∫
Γm

z dA+ . . .+ b32n
m
z

∫
Γm

y dA

]
=

∑
m∈σn

[(k1nx + k2ny + k3nz)A
m

+(b12n
m
x y

m
s + b13n

m
x z

m
s + b21n

m
y x

m
s + b23n

m
y z

m
s + b31n

m
z x

m
s + b32n

m
z y

m
s )Am

]
=

∑
m∈σn

g(xm
s ) · nmAm. (18)

This means that the approximation in (14) holds exactly for linear flux functions in this
case. Let us now examine the situation displayed in Fig. 5 for a boundary cell. Here,
the boundary surface Γ is not planar but can be decomposed into two piecewise planar
surfaces Γ1 and Γ2. If we describe the cell using both piecewise planar surfaces in the
description of the boundary cell n, {Γ1,Γ2} ∈ σn, Eq. (14) still holds exactly for the
linear flux vector g. We now try to find expressions for the area, the (substitute) normal
vector and the surface centroid of a single surface Γ which can replace the piecewise planar
surfaces Γ1 and Γ2 such that the surface flux is not changed. Thus, we require that∫

Γ

g(x) · n dA =

∫
Γ1

g(x) · n dA+

∫
Γ1

g(x) · n dA (19)
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z
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Γ

Γ
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Figure 5: Boundary cell with nonplanar cut surface Γ (left) which can be decomposed into two piecewise
planar surfaces Γ1 and Γ2 (right).

can be reformulated using approximation (14) such that

g(xΓ
s ) · nΓAΓ = g(xΓ1

s ) · nΓ1

AΓ1

+ g(xΓ2

s ) · nΓ2

AΓ2

, (20)

using suitable values for xΓ
s , nΓ and AΓ. Inserting the definition for g into this equation

we get

k1n
Γ
xA

Γ + . . .+ k3n
Γ
zA

Γ + b12y
Γ
s n

Γ
xA

Γ + . . .+ b32y
Γ
s n

Γ
zA

Γ =

k1

(
nΓ1

x A
Γ1

+ nΓ2

x A
Γ2
)

+ . . .+ k3

(
nΓ1

z A
Γ1

+ nΓ2

z A
Γ2
)

+b12

(
yΓ1

s n
Γ1

x A
Γ1

+ yΓ2

s n
Γ2

x A
Γ2
)

+ . . .+ b32

(
yΓ1

s n
Γ1

z A
Γ1

+ yΓ2

s n
Γ2

z A
Γ2
)
.

Since we require that this equation should hold for all choices of ki ∈ R and bij ∈ R, for i 6=
j, we see that the resulting expression has to be fulfilled componentwise. First, we use
the equations to be fulfilled for the components of the vector k to get expressions for nΓ

and AΓ:

nΓ
xA

Γ = nΓ1

x A
Γ1

+ nΓ2

x A
Γ2

(21)

nΓ
yA

Γ = nΓ1

y A
Γ1

+ nΓ2

y A
Γ2

(22)

nΓ
zA

Γ = nΓ1

z A
Γ1

+ nΓ2

z A
Γ2

. (23)

Together with the normalization requirement ‖n‖2 = 1, these equations fully describe the
normal vector and the area of the resulting non-planar surface Γ. Let us now turn to the
equations for b21 and b31 as they both give conditional equations for xΓ

s :

xΓ
sn

Γ
yA

Γ = xΓ1

s n
Γ1

y A
Γ1

+ xΓ2

s n
Γ2

y A
Γ2

(24)

xΓ
sn

Γ
zA

Γ = xΓ1

s n
Γ1

z A
Γ1

+ xΓ2

s n
Γ2

z A
Γ2

. (25)

Equations (24) and (25) have to be fulfilled at the same time to ensure that Eq. (20)
holds, so the system of conditional equations is overdetermined. Solving both equations
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for xΓ
s and inserting Eq. (22) and (23)

xΓ1

s n
Γ1

y A
Γ1

+ xΓ2

s n
Γ2

y A
Γ2

nΓ1

y A
Γ1 + nΓ2

y A
Γ2 =

xΓ1

s n
Γ1

z A
Γ1

+ xΓ2

s n
Γ2

z A
Γ2

nΓ1

z A
Γ1 + nΓ2

z A
Γ2 (26)

has to be satisfied for the centroids, normal vectors, and areas of the two planar surfaces.
By multiplying with the product of the denominators, Eq. (26) can be transformed to

xΓ2

s A
Γ1

AΓ2

nΓ2

y n
Γ1

z + xΓ1

s A
Γ1

AΓ2

nΓ1

y n
Γ2

z = xΓ2

s A
Γ1

AΓ2

nΓ1

y n
Γ2

z + xΓ1

s A
Γ1

AΓ2

nΓ2

y n
Γ1

z (27)

which finally leads to (
xΓ1

s − xΓ2

s

)(
nΓ1

y n
Γ2

z − nΓ2

y n
Γ1

z

)
= 0. (28)

When we repeat this process for the other two components of the surface centroid, yΓ
s

and zΓ
s , we get the result that, apart from the meaningless solution xΓ1

s = xΓ2

s , the only
possible constellation that allows to fulfill (20) requires

nΓ1 × nΓ2

= 0. (29)

This means, the normal vectors of the two planar surfaces are necessarily collinear which
can be precised to identical. Consequently, for a nonplanar surface Γ which can be
decomposed into two surfaces with non-identical normal vectors, Eq. (20) can not be
fulfilled and thus approximation (14) is reduced to first-order accuracy.

This order reduction negatively influences the stability of the solution method. While it
appears that the impact is quite small when such a nonplanar boundary surface represents
a solid wall, the application of inflow or outflow boundary conditions to such a boundary
surface leads to severe stability issues. In fact, for most configurations, divergence of the
solution algorithm could be observed after only few iterations. This is due to the fact that
a certain mass flux over an inflow/outflow boundary surface exists, while the mass flux
is forced to zero in the case of a solid wall. A first-order approximation error in the first
component of Eq. (6), the mass balance, has a much higher impact on solution stability
than an error in the other components.

When a more general representation of the boundary cells is applied which allows to
handle multiple boundary surfaces per boundary cell, the boundary surface on problematic
cells as described above can be represented by piecewise planar surfaces. Each surface can
represent the correct physical boundary condition of the respective part of the geometry
and consequently, the difficulties explained in this section can be resolved.

3.2.2 Multiple ghost cell formulation

An extension of the method of Hartmann et al.5-7 which accounts for the specifics of flow
bounded by complex geometries as discussed in the previous section is straightforward.
We omit the rule that each boundary cell contains exactly one boundary surface with one
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ghost cell attached to it. Instead, multiple separate boundary surfaces, each equipped with
a particular ghost cell, are allowed to be attached to a cell, see Fig. 6. For practical and
memory reasons, the maximum number of separate surfaces allowed should be restricted.
As the boundary conditions are implemented purely by computing appropriate values for
the variable vector and gradients on the ghost cell related to a boundary surface, the
general procedure to apply boundary conditions is not altered by this generalization. If
different types of boundary conditions are assigned to two boundary surfaces belonging to
one cell, the respective ghost cell values are calculated each by using the proper boundary
condition.

x

x

Γ
2

Γ
1

G
2

G
1

Figure 6: Representation of a boundary cell multiply cut by the geometry in the extended method. One
ghost cell Gi is associated to each boundary surface Γi.

However, some care must be taken considering the implementation of Neumann bound-
ary conditions. As explained in Hartmann et al.6,7, Neumann boundary conditions on a
cell n are applied using the gradient ∇φ|n in the cell center which is calculated with
a least-squares reconstruction including a virtual ghost-point obtained by mirroring the
boundary cell center at the boundary surface. The real ghost cell itself is not included
in the reconstruction stencil. In the extended method, the reconstruction stencil and
thus the reconstruction constants are not unique for one cell but differ depending on the
boundary surface, respectively ghost cell, currently processed. For an improved efficiency,
the reconstruction constants should therefore be calculated and stored dedicated to each
ghost cell prior to the overall solution. Regarding the least-squares reconstruction of the
cell-center gradients used for the evaluation of the surface fluxes, no further modifica-
tions are necessary apart from the inclusion of all ghost-cells of a boundary cell into its
reconstruction stencil.

To avoid problems with numerical instabilities generated by cells of very small vol-
ume emerging at the embedded boundaries, Hartmann et al.5,7 adopt a combined cell-
merging/cell-linking approach. This approach merges the volume of a small cell with a
neighboring cell of sufficient volume, called the master cell. The volumetric centers of
the master and the small cell are thus shifted to the volumetric center of the merged
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cell volume. As reported in 5, the surfaces between the original master and slave cells
are discarded while the boundary surfaces are merged using the area-weighted average of
the boundary surfaces originally created for master and slave cell. The ghost cell of the
master cell is shifted according to the new position of the boundary surface centroid while
the ghost cell of the small cell is discarded. This approach has to be modified to preserve
the abilities of our extension also for boundary cells which get merged during this process.
While the volume merging does not conflict with our modifications, the surfaces of both
cells have to be retained together with the respective ghost cells. This is equivalent to
transferring the boundary surfaces and ghost cells of the small cell to the resulting merged
cell which now holds the combined set of boundary surfaces of both master and small cell
as illustrated in Fig. 7.

x

x

x

Γs

Γm

cell center

surface centroid
ghost cell center

Figure 7: Treatment of small cells in the extended method. The merged cell holds the boundary surfaces
of the master cell Γm and of the small cell Γs

3.2.3 Computation of the cut-cell information

The computation of the reshaped cells cut by the geometry is a nontrivial and rela-
tively expensive task. Therefore, in problems which do not involve moving boundaries,
it is usually implemented as a pre-processing step. The generalization of the boundary
cell description adds additional complexity. To retain a high efficiency and enable paral-
lelization, a suitable algorithm has to operate locally on a single cell and the result must
be consistent for neighboring cells. Therefore, we have implemented a modification of
the Marching Cubes algorithm which originates from the field of computer graphics. It
is used for the computation a polygonal mesh of an isosurface from a three-dimensional
scalar field. This algorithm has first been reported by Lorensen and Cline14 and several
improvements and extensions have been reported since15-18.

The basic approach of the algorithm is simple. Based on information about the location
(inside/outside the fluid region) of the corner vertices of a hexahedral cell, an index can
be calculated which identifies the correct configuration for the examined cell out of a list
of 256 possible polygon configurations within the cell and, using the cut points on the cell
edges, all necessary cut cell information can be generated. The polygon configurations
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can be grouped to the 15 base cases shown in Fig. 8(a). As discussed in 18, the set of
15 base cases for the different configurations presented in the original method has to be
completed by several variations to guarantee that the resulting isosurface is watertight.
Fig. 8(b) exemplifies this for case 6. The classification of a cell regarding a base case
and its variations is ambiguous as the same inside/outside index is generated. However,
the correct classification can be obtained using additional connectivity information from
the description of the embedded geometry. Cases and variations resulting in grid con-
figurations with degenerate least-squares stencils are omitted since for these cases mesh
refinement is mandatory. The treatment of so called split cells which are generated if the
geometry cuts the fluid volume of a cell into two independent pieces is not covered in the
present approach and will thus not be discussed here.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

(a)

6.1.1

6.1.2

6.2

(b)

Figure 8: Polygon configurations in the Marching Cubes algorithm depending on the inside/outside states
of the 8 corner vertices: (a) 15 base cases; (b) Case 6 and corresponding variations

As discussed in the previous section, cells which contain interfaces with different adja-
cent boundary conditions have to be treated more carefully as nonplanar boundary faces
with inflow conditions have to be avoided. To achieve this goal, we process these cells
separately to generate two different boundary surfaces for each of them. This allows to
reproduce the original configuration in such cells as displayed in Fig. 4 in the left picture.
However, a prerequisite for the success of this method is that the geometrical representa-
tion of the inflow boundary is completely planar. Based on the geometry given in our case
as a surface triangulation, we can identify the interface between inflow/outflow surface
and the solid wall, see Fig. 9. The cut points of this interface with the cell faces are used
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to compute the relevant information of both boundary surfaces, the remaining surfaces
of the boundary cell and its volume and volumetric center. Depending on the marching
cubes case of the boundary cell, this procedure can be handled consistently and efficiently.

z
x

y

Γ

Γ
in

wall

interface

added cut point

Figure 9: Reconstruction of the original geometrical configuration of boundary cells with non-unique
boundary conditions. Cut point are added where the interface between the wall boundary surface Γwall

and the inflow boundary surface Γin (thick light line) cuts through the cell faces.

3.3 Boundary motion

The present method is well suited for an extension to general three-dimensional mov-
ing boundary problems. According to the new boundary position after each time step,
the cut-cell approach reduces the problem of adjusting the computational grid to the re-
computation of the boundary cells cut by the moving parts of the geometry. A suitable
approach for the description of the moving boundary is the representation by a scalar level
set function φ(x, t), which is specified as a signed distance function with respect to the
moving boundary. This means the body outline is given by the zero contour of the level
set function φ = 0. Points inside the geometry are indicated by a negative value φ < 0
and cells inside the fluid domain are indicated by a positive value φ > 0. The evolution
of φ in time using a given spatially constant extension velocity vector f(t) is then defined
by

∂φ

∂t
+ f · ∇φ = 0. (30)

The computation of φ is carried out using a highly accurate level-set method developed
by Hartmann et al.19-21 coupled to the flow solver in a dual-mesh approach as reported in
22,23.

This methodology integrates well into the previously described modified marching
cubes approach used for the generation of the cut-cell information. The cut points on
the edges of a boundary cell can be obtained by interpolation of the scalar level set
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function φ while its sign directly carries the information if a point is located inside or
outside the fluid domain. Thus, the computation of the marching cubes index, which is
quite expensive for a geometry given by a surface triangulation, is reduced to a simple
sign evaluation. In addition, efficient parallelization is straightforward as non-localized
operations such as the inside/outside state determination for a surface triangulation are
completely avoided.

4 NUMERICAL RESULTS

4.1 Flow past a cube

To demonstrate the ability of the modified method to capture the flow field in the
vicinity of sharp edges accurately, we consider the flow past a cube. The extended method
preserves the sharp edges in their real position, while the original method bevels the edges
of the cube, thus altering the flow field. Therefore, this test case is suitable to demonstrate
the correct modification of the flow field when multiple ghost cells are attached to one
cell. With L being the edge length of the cube the Reynolds number is defined Re =
%∞v∞L
µ∞

based on the freestream values. A patchwise refined grid is used to discretize the

computational domain Ω : [−5L, 10L] × [−5L, 5L] × [−5L, 5L], where the midpoint of
the cube is located at (x, y, z) = (0, 0, 0). The x-direction is the streamwise direction. A
relatively coarse grid with a mesh width h ≈ 0.05L in the close vicinity of the cube has
been used to increase the visible effect of the surface modification. We shall investigate
the flow at Mach number M = 0.1 and a Reynolds number Re = 100, where the flow
field is steady and symmetric. Flow separation at the leading edge occurs without any
reattachments at the side walls24,25.

Fig. 10 shows the velocity magnitude in the y-symmetry plane. The upper part of the
picture shows the solution with the modified method, while the solution with the original
method of Hartmann et al.6,7 is depicted below the x-axis. The beveling of the leading

Figure 10: Velocity magnitude of the uniform flow past a cube (y-symmetry plane). Upper half: solution
with the modified approach (sharp edge); lower half: solution with the original approach (beveled edge).
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Figure 11: Arrow representation of the flow field (y-symmetry plane). Upper half: solution with the
modified approach (sharp edge); lower half: solution with the original approach (beveled edge).

edge results in a smaller and narrower separation region while the modified method is able
to capture the precise separation point and thus produces the correct bigger separation
region. In Fig. 11, the same split view is applied for an arrow illustration of the flow
direction. The upper part of the picture gives the solution for the sharp-edged cube with
our generalized approach while the original solution together with the beveled cube is
shown in the lower part. In both cases, the flow field follows the outline of the respective
cube representation neatly. This exemplifies the ability of our method to modify the flow
field appropriately in the presence of highly complex geometries.

4.2 Flow in a pipe elbow

The simulation of the flow in a pipe elbow shall be used to show the effect of our
modification when applied to cells with non-unique boundary conditions occurring in
internal flow simulations. A grid being refined near the wall to a minimum mesh width h ≈
0.014D is used to discretize the computational domain. The pipe extends approximately
L = 4D in the y- and z-direction of the bend, where D is the pipe diameter. The
Reynolds number used for the simulation is Re = %∞v∞D

µ∞
= 500 and the Mach number

is set to M = 0.1. The flow field is initialized with zero flow velocity. At time t = 0,
a lower pressure is applied to the outflow boundary normal to the z-axis. Homogeneous
Neumann boundary conditions are used for the flow velocities and the density on the
outflow boundary. On the inflow boundary normal to the y-axis, the normal velocity is
prescribed using a parabolic profile according to the instantaneous mass flux. Pressure
and density are calculated to match the mass flux. Fig. 12 shows the situation after
t = 5.6∆t time units for the y-component of the velocity. Due to the representation of the
geometry by piecewise planar surfaces for cells with non-unique boundary conditions in
the inlet and outlet cross sections, no instabilities can be observed close to the respective
cross sections. This is even more obvious when Fig. 13 is considered, where the normal
components of velocity in the inlet and outlet cross sections are depicted.

Contrary, if the original method is applied nonplanar surfaces inlet/outlet boundary
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Figure 12: Laminar flow in a pipe elbow: velocity component normal to the inflow boundary.

(a) (b)

Figure 13: Normal component of the velocity: (a) inlet cross section, (b) outlet cross section.

surfaces occur and the solution process diverges after few iterations. In Fig. 14, the
pressure and the normal velocity in the outlet cross section after t = 0.06∆t is shown.
Nonphysical perturbations due to highly twisted boundary surfaces can be clearly detected
which effect the instability of the solution method.

5 CONCLUSIONS

An extension to an existing strictly conservative Cartesian cut-cell method for general
two- and three-dimensional problems of viscous flow was presented. In this method, em-
bedded boundaries which do not coincide with the grid lines are represented by assigning
multiple ghost cells freely positioned in space to each cut cell. This makes the extended
method applicable to problems including highly complex geometries with sharp concave
features. Furthermore, it was shown that the application of stable boundary conditions
for internal flows including cells with non-unique boundary conditions is greatly simpli-
fied. A strategy for the application of this method to moving boundary problems using
the level-set method has been outlined. The success of the extended method is shown by
means of the simulation of the flow past a cube and in a pipe elbow.
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(a) (b)

Figure 14: Nonphysical perturbations in the outlet cross section due to nonplanar cut surfaces: (a)
pressure, (b) normal velocity.
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