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Abstract. This paper provides an immersed boundary method using a flexible local grid
refinement technique for solving conjugate-heat-transfer problems. The proposed method
is used to solve the flow between two heated cylinders together with the temperature field
within the inner hollow cylinder and then to predict turbomachinery blade cooling.
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1 INTRODUCTION

In recent years the immersed boundary (IB) method is emerging as a very appealing
approach for solving flows past very complex geometries, like those occurring in most
industrial applications. Its main, very significant, feature is the use of a Cartesian grid
embodying the complex boundaries of the flow domain, which allows one to generate the
computational mesh within few minutes instead of the hours or even the days required to
generate very complicated body-fitted grids. The IB technique was originally developed
for incompressible flows [1, 2, 3, 4, 5] using non-uniform Cartesian grids to take advantage
of simple numerical algorithms. Some of the authors have extended the IB method to
the preconditioned compressible Reynolds-averaged Navier–Stokes (RANS) equations in
order to solve complex flows for a wide range of the Mach number [6] and equipped it
with a local mesh refinement procedure to resolve boundary layers and regions with high
flow gradients (e.g. shocks) [7].

In this work, the IB method is extended to the solution of conjugate heat-transfer
problems. The Fourier heat-conduction equation is solved inside the immersed body
coupled together with the RANS equations closed by the k − ω turbulence model.

In the following sections, after a brief description of the method and of the boundary
conditions at the immersed boundary, results are obtained for a well documented test-case
as well as for the blade cooling of a turbine cascade.

2 GOVERNING EQUATIONS AND NUMERICAL METHOD

The Reynolds Averaged Navier–Stokes (RANS) equations, written in terms of Favre
mass-averaged quantities and using the k−ω turbulence model, can be written as follows:
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In the equations above, H̃ and pt are the total enthalpy and the pressure comprehensive
of the turbulent kinetic energy, k,
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the eddy viscosity, µt, is defined in terms of k and of the specific dissipation rate, ω,
according to the low-Reynolds-number k − ω turbulence model of Wilcox [8], namely:

µt = γ∗
ρ k

ω
. (7)

Moreover, τ̂ij indicate the sum of the molecular and Reynolds stress tensor components.
According to the Boussinesq approximation, one has:

τ̂ij = (µ + µt)

[
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

]
− 2

3
ρ k δij. (8)

Finally, the heat flux vector components, qj, are given as:
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+
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)
∂h

∂xj

, (9)

where Pr = 0.71 and Prt = 1 are the laminar and turbulent Prandtl numbers, respec-
tively. The Sutherland law is used to compute the molecular viscosity coefficient.

It is useful to write the RANS equations (1)-(5) in compact form:
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where Q is the conservative variable vector, E, F , G and Ev, Fv, Gv indicate the inviscid
and viscous fluxes, respectively, and D is the vector of the source terms.
A pseudo-time derivative is added to the left-hand-side of equation (10) in order to use a
time marching approach for both steady state and unsteady problems and the precondi-
tioning matrix, Γ, proposed in [9, 10] is used to premultiply the pseudo-time derivative
in order to improve efficiency. The final system reads:
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where Qv = (pt, u, v, w, T, k, ω)T is the primitive variable vector, which is related to Q
by the Jacobian matrix P = ∂Q/∂Qv. Equation (11) is rewritten in delta form dis-
cretizing the pseudo-time derivative by an Euler implicit scheme and approximating, for
unsteady-flow problems, the physical-time derivative by a second-order-accurate three-
point backward difference. After some modifications to improve the efficiency of the
method, which do not affect the residual [7], applying the diagonalization procedure of
Pulliam and Chausee [11], followed by a factorization, one obtains the following system:
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where Rr represents the residual at the previous iteration and the matrices S, M, R, and
Λ are given in [7].

Equation (12) is discretized in space using a cell-centred finite volume approach. The
convective terms at the RHS are discretized using a second-order-accurate upwind flux-
difference-splitting scheme. The viscous terms are discretized by second-order-accurate
centred differences. The LHS convective term is always discretized using a first-order up-
wind scheme, according to a deferred-correction approach, in order to ensure convergence
of the iterative solver.

The resulting discrete system is solved direction-by-direction using a BiCGStab [12]
approach, the boundary conditions being treated explicitly.

A data structure is employed which allows an efficient local grid refinement (LGR) for
clustering cells near the immersed boundary and at other high-flow-gradient regions. For
each face, the contributions of the neighbour cells are collected to build the corresponding
convective and diffusive operators for the cell, the maximum number of neighbours being
limited to two for the present 2D computations (see [7], for details).

3 IMMERSED BOUNDARY METHOD

The IB technique used in this work is based on that proposed in [3, 4]. In a preliminary
step, the geometry under consideration, which is described by a closed polygon in two
dimensions (a closed surface in three dimensions), is overlapped onto a Cartesian (non
uniform) grid. Using the ray tracing technique based on the geometrical algorithms
reported in [13], the computational cells occupied entirely by the flow are tagged as
fluid cells; those whose centres lie within the immersed body are tagged as solid cells.
Furthermore, the fluid cells neighbouring with solid ones are tagged as interface fluid
cells, and the solid cells neighbouring with fluid ones are tagged as interface solid cells.
Interface cells are used to enforce the boundary conditions between the solid body and
the fluid. In the present implementation, starting from an auxiliary grid with uniform
mesh size, a structured grid is generated by recursively halving the mesh size at the
immersed boundary region, until an assigned target value is reached. This automatic
refinement is based on the following strategy. A tag function, generated using the ray
tracing technique, is used to mark the cells inside and outside the immersed body: an
integer value ±1 is assigned to “fluid” and “solid” cells, respectively. The gradient of this
function is different from zero only at the immersed boundary and depends on the local
grid size. The components of this gradient in the x and y directions are used to select the
rows of cells to be refined. The grid is refined until a user specified resolution is achieved
at the boundary. A smoothing function can be applied on the ±1 tagging function to
obtain a smeared interface that will allow a smoother transition between the coarse and
the refined regions. By this procedure, a uniform grid is obtained. Then, starting from
such a grid, it is possible to coarse the cells in the regions far from the boundaries until
a maximum prescribed cell-size is achieved. Finally, one can define other regions of the
computational domains to be refined, selecting the local resolution of the mesh, like the
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wake or wall regions and, finally, it is possible to refine on void surfaces, namely, surfaces
without solid or interface points, like the bow-shock regions.

4 CONJUGATE HEAT TRANSFER

The RANS equations, solved at the “fluid cells” are coupled with the following equation
for the thermal conduction which is solved at all points inside the solid body

∂T

∂t
=

ks

ρscs

∇2T, (13)

where T is the temperature and ks, ρs, and cs are the solid thermal conductivity, density,
and specific heat, respectively. Two boundary conditions are needed at the surface of the
body to enforce the equality of the solid (s) and fluid (f) temperatures and heat fluxes
at their interface:

Tf = Ts, (14)

kf∇Tf = ks∇Ts, (15)

kf being the thermal conductivity of the fluid. The two conditions above are implemented
according to the following procedure. The temperature gradient in the fluid at the surface,
∇Tf , is firstly computed; then, the temperature gradient in the solid, ∇Ts, is evaluated
from equation (15). For each interface cell inside the solid, using such a gradient and
the computed values of the temperature at the solid points surrounding the interface
cell, Ti,s, i = 1, ...Nnbr, the temperature value at the closest point on the wall, Tw,s, is
determined. The following interpolation formula is employed for this purpose:

Ts =

∑Nnbr

i Ti,sαi∑Nnbr

i αi

+

(
1

β
+

1∑Nnbr

i αi

)
∇Ts, (16)

where αi and β are the inverse distances between the surrounding cell centers and the
interface cell center and between the wall point and the interface cell center, respectively.
Finally, equation 14 is employed to compute Tf . In conclusion, when going from the fluid
to the solid, the value of ∇Tf is enforced, whereas, when going from the solid to the fluid,
the value of Ts is enforced.

5 RESULTS

5.1 Rotating flow inside a tube

The heat transfer problem studied in [14] has been considered at first to validate the
present approach. As shown in figure 1, the fluid is comprised between a stationary hollow
inner cylinder and a rotating outer one. The outer cylinder has a radius Ro = 1.8 m, moves
at a speed U0 = 5 m/s and is kept at To = 700 K. The inner hollow cylinder has radii
equal to Ri = 0.45 m and Rm = 0.9 m, respectively, the inner surface is kept at Ti = 500 K
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Figure 1: Scheme of the rotating flow test case.

and ks/kf = 9. An analytical solution is available for the two-dimensional Navier–Stokes
equations with the above boundary conditions [14]. The velocity distribution is given as

ur = 0; uθ(r) =


0, for Ri < r < Rm (solid)

− RoR
2
mUo

(R2
o −R2

m)r
+

RoUo

(R2
o −R2

m)
r, for Rm < r < Ro (fluid)

(17)

whereas the temperature distribution is given as

T (r) =


Ti +

To − Ti

log(Rm/Ri) + (ks/kf ) log(Ro/Rm)
log

(
r

Ri

)
, for Ri < r < Rm (solid)

To −
To − Ti

log(Ro/Rm) + (kf/ks) log(Rm/Ri)
log

(
Ro

r

)
, for Rm < r < Ro (fluid).

(18)
Computations have been performed using a Cartesian grid having about 131000 cells
with ∆x = ∆y = 0.025. The solution provides the flow field as well as the temperature
field within the hollow cylinder, see Figure 2 which provides the contours of the velocity
magnitude (a) and of the temperature (b). Figure 3 provides the comparison between
the scatter plots of the velocity (a) and temperature (b) radial distributions and the
corresponding analytical solutions. A satisfactory agreement is obtained.

5.2 Flow past a cooled turbine cascade

This second and last test case concerns the simulation of a highly-loaded cooled two-
dimensional turbine cascade. The geometry of the blade is provided in [16] and it is
known as the T106 turbine cascade which has been modified in order to add three cooling
channels. The flow is subsonic, with isentropic exit Mach number equal to 0.3, inlet flow
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(a) (b)

Figure 2: Rotating flow: velocity contours (a); temperature contours (b).

(a) (b)

Figure 3: Rotating flow: radial velocity distribution (a); radial temperature distribution (b).

angle equal to 37.7, and Reynolds number, based on the chord length and on the exit
conditions, equal to 3×105. Air and stainless steel are considered for the fluid and for the
solid, respectively. At the inlet boundary points, the total pressure and temperature are
assigned, together with the flow direction, whereas only the static pressure is prescribed
at the outlet points. Three cooling holes are added to the original geometry. Two of them
have assigned wall temperature, equal to Tc = 200 K, whereas, cooling air with inlet
temperature Tc = 200 K and inlet velocity vc = 5 m/s flows through the main central
hole. Such a cooling air issues from a secondary channel into the main flow forming a film
along the suction side. In the span-wise direction, the total pressure and temperature
at the cells corresponding to the inlet of the main cooling channel are imposed, together
with the direction of the velocity, normal to the endwalls. Thanks to the versatility of the
present IB approach, the complete geometry of the blade can be discretized easily and
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(a) (b)

Figure 4: T106 cascade: locally refined grid (a); local view of the grid (b).

efficiently. The computational grid, using about 66000 cells (33700 in the solid region),
shown in figure 4(a), is refined at the leading edge of the blade, at the region of maximum
curvature, and near the cooling holes, see figure 4(b). Figures 5(a) and (b) provide the
computed temperature countours in the solid and in the fluid, and the velocity-vector
field in and around the main central cooling channel. This test case demonstrates the
capability of the present method to solve conjugate-heat-transfer problems of industrial
interest.

6 CONCLUSIONS

An immersed boundary method for computing compressible viscous flows using a flex-
ible local grid refinement technique has been extended to solve conjugate-heat-transfer
problems. The proposed method has been tested versus the flow between two heated
cylinders and then applied with success to predict turbomachinery blade cooling.
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