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Abstract. EULAG is a computational model for simulating flows across a wide range 
of scales and physical scenarios [1]. It is noteworthy for its grid adaptive technology, 
nonoscillatory forward-in-time integration, robust Krylov solver, and parallel 
scalability. The standard option for EULAG employs an anelastic approximation to 
capture nonhydrostatic effects and simultaneously filter sound sound waves from the 
solution. Early global applications of EULAG demonstrated that it is capable of closely 
matching previously published idealized Held-Suarez climates [2]. A more recent appli-
cation of EULAG to aqua-planet simulations has demonstrated its potential as a 
dynamics core with grid adaptive capabilities for climate models [3,4].  

In this paper, we examine the breaking of planetary waves and the resulting generation/ 
radiation of gravity wave packets in idealized Held-Suarez climates [5]. Using 1.4o 
horizontal resolution, EULAG simulations show the generation of pure internal waves 
from frontal collapse. These waves are small enough that coriolis effects are negligible. 
Measurable nonhydrostatic effects are also observed, but they are small. EULAG 
simulations for the baroclinic instability test of Jablonowski and Williamson [6] are 
also presented. EULAG solutions yield growth rates and disturbance amplitudes similar 
to [6] for a seeded perturbation, as well as extremely similar phase speeds during the 
linear growth regime of the nascent baroclinic instability. After ~ 8 days, vigorous 
baroclinic wavebreaking commences, at which point EULAG results begin to depart in 
some details from the hydrostatic results shown in [6]. General agreement in the global 
structure of the solution remains. 
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1 INTRODUCTION 

EULAG is a computational model with options to solve transport equations using 
either EUlerian (flux form) or LAGrangian (advective form) numerics, hence it’s name. 
Other noteworthy features of EULAG are its NFT (Nonoscillatory Forward-in-Time) 
integration, robust preconditioned non-symmetric Krylov solver for pressure, proven 
scalability on massively parallel architectures, dynamic grid adaptivity enabled by 
continous remappings of coordinates, and nonhydrostatic dynamics [1]. 

EULAG has a proven record of successful application to turbulent flows, and has 
options for DNS (Direct Numerical Simulation), LES (Large Eddy Simulation), and a 
default of ILES (Implicit Large Eddy Simulation). Other successful applications have 
been made in urban flows, gravity wave dynamics, flows past complex/moving 
boundaries, micrometeorology, cloud microphysics and dynamics, global atmospheric 
circulation, and basic fluid dynamics of incompressible fluids. Derivatives of EULAG 
have also been applied to simulations of  visco-elastic waves in the human brain, 
oceanic flows, and stellar convection (see [1] for references). The distinctness of 
MPDATA's ILES methodology compared to other high-resolution schemes is empha-
sized in [7, 8]. In these studies, the authors provide a framework for how MPDATA 
ILES can produce LES without invoking explicit SGS (SubGrid-Scale) models. 

The default analytic formulation of EULAG assumes the nonhydrostatic anelastic 
equations of motion. The anelastic approximation is an example of a filtering process to 
make equations that are sound–proof, that is, CFL stability of explicit integration is not 
affected by the speed of sound. Other well known examples of filtered, sound–proof 
approximations are the hydrostatic and Bousinesq approximations. In the hydrostatic 
approximation, the assumption is made that local departures from a hydrostatic, albeit 
stratified fluid, are negligible (→ very small vertical wind). In the Boussinesq approxi-
mation, the assumption is made that density variation is negligibly small (density ~ 
constant) and affects only the buoyancy term. In the anelastic approximation, both 
nonhydrostatic physics and stratified ambient states are retained. Instead, the assump-
tions are that (i) the vertical scale of motion is much smaller than the local potential 
temperature scale height, and (ii) perturbations of the dependent fields from a basic state 
are small enough that terms that are quadratic in perturbations are negligible [9]. The 
basic state is an ambient state in hydrostatic equilibrium. The anelastic assumptions 
allow the linearization of pressure gradient forces and mass fluxes in the momentum 
and mass conservation equations, respectively – numerical approximations that greatly 
facilitate the design of second-order accurate, flexible NFT models that are implicit with 
respect to inertia-gravity waves [10].  

As documented in the literature, the anelastic approximation is known to be accurate 
for atmospheric modelling up to synoptic scales [11]; is used successfully in 
astrophysics for modeling solar and stellar convection zones [12, 13]; and has led to 
simulations that successfully explain the superrotation of the Earth’s solid inner core 
[14, 15]. For research studies of multi-scale geophysical fluids, we have also found the 
anelastic approximation to be beneficial. However, the suitability of this approximation 
for global atmospheric applications has often been criticized. Arguments against the 
anelastic model using normal mode analysis have been given in [16]. There it is found 
that the anelastic model distorts the phases of deep planetary wave modes, a result that 
is not inconsistent with assumption (i) above. 

Within the framework of EULAG, the anelastic model readily generalizes into either 
a compressible/incompressible Boussinesq, or incompressible Euler system [2]. Recent 
work has focused on developing options for fully compressible equations for high-speed 
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flows [17], Durran's pseudo-incompressible system [18], and fully compressible 
equations for low and moderate Mach number flows. The Durran equations are of 
special interest because they conveniently separate baroclinicity per se from 
compressibility effects, thus enabling inquiries into the role of baroclinicity in fluid 
states close to bifurcation. The role of compressibility versus baroclinicity is of 
particular interest in weather and climate prediction and lies at the heart of the anelastic 
controversy. The modal analysis [16] predicts Durran’s approximation will have no 
phase error; whereas the EULAG variant using Durran’s approximation shows 
negligible differences from the default anelastic solution [18] for deep modes. A recent 
multiple parameter, singular perturbation study [19] using the method of distinguished 
limits finds that anelastic models gets the multiscale interaction between local gravity 
waves and synoptic scale planetary waves asymptotically close. This means that all 
differences between elastic and anelastic models are of order O(M 2/3) or smaller, where 
M is the Mach number. This translates into allowable stratifications of ~10% of the 
local mean potential temperature over a pressure scale height of the atmosphere. 

The motivation for the present study is twofold. First, in Section 3 we examine in 
some detail the generation of a localized gravity wave packet due to frontal collapse in 
Held-Suarez simulations. The success of EULAG in revealing such waves with modest 
resolution may be due, in part, to the asymptotically correct scale interaction revealed in 
[19], as well as to the numerical qualities of the model described in Section 2.3, below. 
Second, in Section 4 we compare EULAG simulations of the idealized baroclinic 
instability test to those presented in [5]. Results show extremely good quantitative 
agreement in phase speeds during the linear growth regime. Once planetary 
wavebreaking commences, notable differences in some details appear, although other 
details remain reasonably close and overall general agreement is seen.   

2 COMPUTATIONAL MODEL 
The model equations presented here are only for the dynamical variables; the 

interested reader is referred to [20 and 3, 1] and the references therein for generali-
zations involving moisture and chemistry. The nature of physical forces other than 
buoyancy, pressure, and Coriolis is explicitly unspecified. Because the grid adaptivity 
technology of EULAG is based upon coordinate transformations, a tensorial form of the 
model equations lies at the heart of the model. For clarity, a concise symbolic operator-
form description of the governing equations is shown below; for details of the orginal 
tensorial exposition – required for coding as well as diagnostics – refer to [21] and later 
references given in [1].  

2.1 Salient Analytical Details 
The problem to be solved by EULAG is posed in a physical space Sp, with 

coordinates (t, x, y, z). The governing equations for this space may be any stationary, 
orthogonal system of coordinates (e.g, Cartesian, cylindrical, spherical). Other systems 
(e.g., toroidal, …) can also be accomodated in principle, but require coding of the 
relevant metric coefficients. Appropriate choices for particular coordinate systems are 
based upon the physics under investigation as well as the geometry of the problem. 
EULAG transforms the physical representation of the problem and solves it in a 
computational space St with coordinates 

! 

(t , x , y , z ) . In this transformed space, the grid 
is always uniform and stationary. Details may be found in [21, 22, 10, 23, 1]. 

In the generalized coordinates of St the anelastic equations of Lipps & Hemler [9] 
take on the form: 

 



J.M. Prusa and W.J. Gutowski 
 

 4 

    

! 

" • (#$v 
s
) = 0       (1) 

 

   

! 

dv

dt 
= " ˜ G (# $ ') " g

% '

%o

" f & v'+M'+D     (2) 

 

    

! 

d"'

dt 
= #v 

s
•$ "e + H      (3) 

 
Here v is the physical velocity; 

! 

" , 

! 

" , and 

! 

"  denote the potential temperature, density, 
and density normalized pressure; g and f are gravitational and coriolis accelerations; and 
D and H denote viscous dissipation of momentum and heat, respectively. Primes denote 
deviations from Coriolis-balanced hydrostatic environmental states, denoted with sub-
script “e”. Subscript “o” denotes the basic state, a horizontally homogeneous, con-stant 
stability hydrostatic reference state used in the anelastic approximation. 
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"# $ "G  where 
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G  is the Jacobian of the coordinates describing St and 

! 

" = "
o
 is understood. 

  The coordinate system used to describe Sp generally has some metric structure 
compared to Cartesian. In the case at hand – spherical coordinates – there are 
geospherical terms that contribute to M in the momentum equations. Additionally, the 
metric structure of non Cartesian orthogonal systems contribute to the renormalized 
Jacobi matrix 

! 

˜ G  (i.e., it is not a Kronecker delta), as well as in numerous trans-
formations made throughout the model. It is also worth noting that two other forms of 
velocity  enter into the model, the solenoidal velocity 

! 

v 
s  (in continuity and potential 

temperature), and the contravariant velocity 

! 

v 
"  that lies inside the advective operator 

! 

d /dt = " /"t + v 
#

•$  in Eqs. (2,3). Use of multiple forms of the velocity minimizes the 
generation of Christoffel symbols (transformation terms that account for the bending 
and twisting of coordinates) and help to improve accuracy (via the rigorous 
implementation of tensor identities throughout the model). In the more general case of 
grid adaptation, these identities allow uniform second order accuracy to be maintained. 

2.2 Salient Numerical Details 
Each prognostic equation (2,3) of the anelastic system can be written in two 

equivalent forms, either a Lagrangian or Eulerian evolution equation. Since the Eulerian 
option is used exclusively in this study, we present only the Eulerian conservation form: 
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"  symbolizes the components of 

! 

v  or 
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"' , and 

! 

R denotes the associated RHS.  
The conservation form (4) as well as the analogous semi-Lagrangian form are 

approximated to second order accuracy in time and space using an NFT (nonoscillatory 
forward-in-time) algorithm – see [24] for a review. The default NFT algorithms utilized 
in EULAG can be formally written in the form: 
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where 
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"i
n+1 is the solution sought at the grid point 

! 

(t 
n+1
, x i ); 
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LE  denotes a two-time-level NFT transport operator (e.g., MPDATA for the Eulerian 
option [25]).  



J.M. Prusa and W.J. Gutowski 
 

 5 

  For the current problem (inviscid adiabatic dynamics), the numerical equation (5) 
represents a system implicit with respect to all dependent variables in (2) and (3). 
Ultimately it leads to a system that is inverted algebraically to construct expressions for 
the solenoidal velocity components which are then substituted into the continuity Eq. 
(1) producing an elliptic equation for the pressure perturbation 

! 

" '. Details of this 
projection are given in the appendix of [21]. The elliptic problem with appropriate 
boundary conditions is solved via a preconditioned, generalized conjugate residual 
solver (a type of nonsymmetric Krylov solver, [26]). Given the updated pressure 
perturbation and solenoidal velocities, the updated physical and contravariant velocities 
may be computed using straightforward tensor transformations (see [21]). Exact 
conservation for mass can, in principle, be made to the level of round off error. In 
practice, however, that is prohibitively expensive for large grids, and stopping criteria 
[26] are more typically set for residuals of ~ 10-5 to 10-6 . 

2.3 EULAG Simulation of Gravity Waves  
The advection of potential temperature perturbation and the treatment of the 

convective derivative of the environmental state as an implicit forcing on the rhs of the 
entropy equation (3) has significant benefits for computational stability and accuracy. 
These two features allow stable integration of the terms responsible for gravity-wave 
propagation, allow conservation of entropy perturbations with accuracy to round-off 
error, and obviate changes in environmental stratification due to numerical error. 
Historically, these features were developed for high quality mesoscale gravity wave 
simulations in precursor models to EULAG. They are among the key ingrediants of 
EULAG’s multi-scale capability. A more complete development of EULAG’s advanced 
features is given in [1]. 

3 LOCALIZED INTERNAL WAVES IN HELD SUAREZ SIMULATIONS 
Held and Suarez [6] describe an idealized climate test for testing the dry dynamic 

core (dycore) of climate models. They prescribe idealized environmental profiles, and 
employ Rayleigh damping of low level winds and Newtonian relaxation of the 
temperature to replace complicated surface exchanges, as well as radiative and moist 
physics. In spite of this simplicity, the Held–Suarez (HS) climate develops into an 
approximately stationary, quasi-geostrophic state that replicates many of the essential 
features of the Earth’s climate, such as the mean meridional circulation, equatorial 
easterlies, the westerly midlatitude zonal jets, and fronts. 

Idealized HS simulations were run with three different horizontal grid resolutions, 
from an initial no-flow state to an approximately quasi-geostrophic one for which 
statistics are stationary. Typically this requires ~ 240 days of integration, although by 
~120 days the general morphology of the quasi-geostrophic state is established. Table 1 
summarizes the three simulations.  

Grid size and resolution refer only to the horizontal dimension; all three simulations 
used the same vertical grid with 41 vertical nodes, a domain depth of 30 km, and a 
vertical stretching using an analytically specified, stationary exponential mapping (scale 
height = 13.2 km) that concentrated vertical levels at lower atitudes such that 

! 

" z =  300 
and 2590 m at the domain bottom and top, respectively. In accord with Section 2.1, the 
transformed coordinates used a uniform vertical increment of 

! 

" z =  750 m. CPU time 
per day refers to the total CPU time over all processors (PEs) on Bassi, a POWER 5+ 
IBM RS/6000 at NERSC. EULAG scales very well up to thousands of PEs, but an 
upper limit for good scaling varies according to grid size [1]. In particular the HS2 grid 
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will work well with up to 512 PEs, but queuing times on Bassi dictated 128 PEs for 
better throughput. The HS1 and HS0 grids were run using 64 and 16 PE’s, respectively. 
The CPU times given are for integrations in the quasi-geostrophic regime. Early in the 
spinup, the CPU times are much less. 
 

Simulation Grid Size Resolution Integration 
 Interval 

CPU Time 
per Day 

HS0 128 x 64 2.813o 300 d 0.3 hr 
HS1 256 x 128 1.406o 300 d 3.6 hr 
HS2 512 x 256 0.703o 120 d 100 hr 

Table 1: Summary of Held-Suarez simulations 

3.1 Global Character of the Held-Suarez Quasi-geostrophic State 
The quasi-geostrophic regime of Held-Suarez flows shows striking synoptic-length 

filaments in the surface potential temperature field, sweeping west to east around the 
planet. They arise from large horizontal gradients of potential temperature – animations 
of which are strikingly reminiscent of satellite imagery of frontal motions. Figure 1 
shows that front thickness decreases dramatically with increasing grid resolution, 
attesting to the quality of EULAG’s NFT numerics in resolving fine scale features. 
Figure 2 (left panel) shows their appearance in the intermediate resolution result. Figure 
3 depicts the potential temperature (left panel) and zonal wind (right panel) fields at 
15km altitude corresponding to Figure 2. At this altitude, the left panel shows that 
resolution limited, horizontal gradients of potential temperature associated with fronts 
near the surface generally do not exist (nor at 7.5 km – not shown). The right panel 
clearly shows the instantaneous, undulating structure of the mid-latitude jet, with 
maximum jet speeds strongly correlated with maximum horizontal gradients of potential 
temperature.  

 

 Figure 1: Effect of grid size on the resolution on quasi-geostrophic regime fronts in Held-Suarez 
 simulations. North polar projection. Outermost circle is the equator, also shown are 45o and 75o 
 latitude circles. Left panel: low resolution result (2.8o). Right panel: high resolution result (0.7o).  
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 Figure 2: Similar to Figure 1 except for HS1 simulation (1.4o resolution) at 277.50 days. Left panel: 
 surface potential temperature. Right panel: Lower stratosphere vertical wind field depicting localized 
 gravity wave packet (NW5) generated following passage of the front.  

Figure 3: Similar to Figure 2 except potential temperature and zonal winds at 15 km altitude at 277.75 
days are shown for simulation HS1.  

3.2 Local Wave Event NW5 and its Synoptic Environment 
In [23], we reported on the generation of topographically forced internal gravity 

waves in global simulations with EULAG. Here, we report on the generation of internal 
gravity waves via frontal collapse. The right panel of Figure 2 depicts a localized wave 
event, named NW5, that forms briefly following the passage of the front shown in the 
left panel. The front is moving east (upward in the left panel). The gravity wave packet, 
by contrast, is very slowly drifting ~ ENE (upwards and slightly to the left in right panel 
of Figure 2). These events are not observable in the troposphere at 7.5 km altitude, but 
are obvious at 15 km. Due to their transient nature and short duration, animations of the 
vertical wind fields were key to their (surprizing) discovery. In the HS1 simulation, ~ 3 
to 5 small-scale (i.e., wavelengths less than synoptic) wave packets are observed to 
form in each hemisphere per week at mid-latitudes in the quasi-geostrophic regime. The 
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wave packets are localized, with horizontal scales ~ 1000 - 2500 km and time scales of 
~1- 2 days.  

Wave packet NW5 appears a few hours before day 277.0, and vanishes a few hours 
after day 278.0 – a lifetime of ~ 30 hrs. The initial development of the waves follows 
the development of a NS low-pressure ridge that advances from the north to the south. 
This development coincides with the projection to the south of cooler potential 
temperatures near 20o longitude, shown in the left panel of Figure 3; and the breakup 
and southward ejection of a parcel of high zonal winds from the jet core – observable in 
the right panel of Figure 3. These two panels also show in the immediate neighborhood 
of NW5 that the lower stratospheric potential temperature and zonal wind are 
approximately uniform. Not shown, the meridional wind has an ~ zero NS gradient in 
the vicinity of NW5, but has a (synoptically) large EW gradient of ~  - 4 x 10-5 s-1 with 
NW5 being close to the phase line of zero meridional velocity. Animations show that 
the synoptic structure is zonally stationary in the vicinity of NW5, beginning at ~ 274.0 
days and resuming ~ 276.5 days just as the NW5 event begins. 

3.3 Analysis of Wave Event NW5 
A more in depth diagnosis of NW5 was undertaken in order to determine if it 

satisfied a free internal wave dispersion equation, and to determine in particular, what 
role (i) coriolis force, and/or (ii) nonhydrostatic effects played. The polar projections 
shown in Figures 1-3, along with similar information from YZ projections depicted in 
Figures 4-5, were used to estimate the characteristics of the internal waves of NW5. The 
plane of the YZ slices is depicted by the blue line in the right panel of Figure 2. Wave 
event NW5 was selected out of approximately two dozen candidates in the interval from 
270 – 300 days because it showed the most intense and compact series of waves. There 
were a number of wave events that were more intense, but occurred over larger spatial 
and temporal scales and obviously exhibited significant coriolis effects. 

The relevant dispersion equation [27] for classical linear inertio -gravity waves is: 
 

  

! 

"rel

2
= (" #Uk #Vl)2 = f

2
+ N

2
(k

2
+ l

2
) /(m

2
+1/4H$

2
) (6) 

 
Here, ω, f, and N represent wave frequency, local coriolis parameter, and the local 

value of Brunt-Vaisala (BV) frequency, respectively. The wavenumbers k, l, and m refer 
to the zonal, meridional, and vertical directions, respectively. Mean zonal and merdional  

 
Figure 4: Region containing event NW5 at time 277.75 days. YZ slices at 18.3o longitude (zonal node 
i=14, meridional nodes j ∈ [72, 107] ). Left panel: potential temperature. Right panel: vertical wind field.  
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Figure 5: Same as Figure 4 but horizontal winds. 

 
winds, U and V, respectively, are assumed. We use 

! 

N = g /H"  to estimate the BV 
frequency, where 

! 

H"  is the local potential temperature scale height. The local density 
scale height is denoted by Hρ , and is determined from the anelastic basic state profiles. 
We regard all of these properties with the exception of ω as input parameters, readily 
estimated from the model solution. The evaluation of the RHS of Eq. (6) then provides 
the relative frequency, ωrel. Given the estimated wavenumbers and mean wind speeds, 
the relative frequency then provides the absolute frequency. Checks for consistency are 
provided by independently estimating the wave phase speeds and/or period from the 
model solution. Since event NW5 is distributed over a region of space and time, and the 
local synoptic environment is changing as the wave packet evolves, this diagnosis 
cannot be expected to provide a precise match to Eq. (6). It has already been noted that 
the zonal shear of meridional wind is not negligible. Nevertheless, we have found a 
reasonably good match occurs if wave properties near the center (in time and space) of 
the event are used. Mean values are listed in Table 2, along with estimates of standard 
deviation when available.  

Using the values listed in Table 2, it is readily estimated that the relative frequency is 
ωrel = 2π/2.4 hr-1. Substituting in the mean wind speeds, then the absolute frequency that  
 

Wave Property Symbol Est. 
mean 

Est. 
SD 

zonal wavelength 

! 

"
x
 430 km 50 km 

meridional wavelength 

! 

"y  610 km 50 km 
vertical wavelength 

! 

"z  14.0 km 0.5 
km 

zonal phase speed 

! 

c
x
 -22 ms-1  

meridional phase speed 

! 

cy  -31 ms-1 5 ms-1 

period P 5.0 hr  
potential temperature  scale height 

! 

H"  27.5 km  
BV frequency N 0.019 s-1  

zonal wind U 10 ms-1 5 ms-1 
meridional wind V 20 ms-1 5 ms-1 

Table 2: Summary of NW5 properties. 
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results is 

! 

"  = -2π/4.5 hr-1, a good match to the observed period listed in Table 2. Note 
that the negative root from Eq. (6) is choosen. This is required because the phase speeds 
are negative. Next we compute the phase speeds, 

! 

c
x

=" /k  and 

! 

cy =" / l. The results are 
-38 and -27 ms-1, respectively. The magnitudes are 20% too large, but given the 
uncertainties in Table 2 as well as the constant wind assumption, we believe the result 
provides an acceptable confirmation of wave event NW5 physics.  

A few more observations are possible. Comparing terms in Eq. (6), it immediately 
follows that coriolis accerleration is negligible since 

! 

( f /"rel )
2

 = 0.010 – thus NW5 
consists of pure internal gravity waves. The density stratification effect on the waves is 
larger but still small as 

! 

(1/4H"

2
) /m

2  = 0.050. An estimate of nonhydrostatic effect can 
also be made according to 

! 

nhydro =1+ ("pphy /"z) /(#g), where 

! 

"  is the basic state density, 
z is the physical altitude, and 

! 

pphy  is the recovered physical pressure (see [3] for 
details). A hydrostatic state corresponds to 

! 

nhydro = 0. This metric has been computed 
along the two vertical paths shown by the red lines in the right panel of Figure 4 in 
order to improve the signal to noise ratio. The result is 

! 

"nhydro =  0.04. 

4 GLOBAL SIMULATIONS OF BAROCLINIC INSTABILITY  
Jablonowski and Williamson [5] describe a dycore test specifically taylored to 

illuminate model behavior on baroclinic modes – extremely important in climate 
simulations. They prescribe environmental states for zonal wind, temperature, and 
geopotential (gradient of gravity) in eta coordinates (a normalized pressure). This state 
is in geostrophic and hydrostatic balance. A guassian perturbation is applied to the zonal 
wind to excite baroclinic instability. The simulation consists of following the nascent 
linear growth of the instability and briefly, the following period of baroclinic 
wavebreaking. 

4.1 Balanced States in EULAG 
The Jablonowski and Williamson (JW) test was designed with hydrostatic models in 

mind. EULAG is nonhydrostatic, uses potential temperature rather than temperature, 
and geometric height rather than eta coordinates. In principle, this requires the inversion 
of the geopotential to set up the corresponding environmental state. Fundamentally, 
however, the governing equations of EULAG are not those of the dycores in [5], thus 
even if the geopotential is inverted to machine precision, the resulting environmental 
field will not be balanced for EULAG.  

Significant effects from neglecting this factor are implied in [18] in a study on 
baroclinic waves simulated by EULAG with its default anelastic model and a recent 
variant based upon the psuedo-incompressible model of [28]. Thus in practice, we 
specify eta as a function of altitude a priori, employ the specified environmental 
temperature and compute the environmental potential temperature, and correct the zonal 
wind so that an initialization consistent with a balanced state of EULAG’s equations is 
obtained. Without the zonal wind perturbation, the model solution then remains 
balanced for ~ 20 days of integration.  

The zonal wind correction required for balance is small, but not negligible. It 
increases the jet core speeds ~5%, compared to [5]. We have partially compensated for 
this effect by modifying the wind speed parameter, u00 (see Table 3), such that after 
geostrophic adjustment, the core wind speed matches the JW specification of 35 ms-1 to 
within ± 0.01 ms-1 during the first 5 days of simulation. This compensation does not 
correct subtle differences in gradients of the environmental zonal wind. 
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4.2 Grid Convergence  
Baroclinic instability simulations were run using the same three horizontal grid 

resolutions as for the HS simulations, see Table 3. Similarly, all three simulations used 
the same vertical grid, only now with 47 vertical nodes, a domain depth of 23 km, and 
uniform vertical increments.  CPU times per day on Bassi were comparable to those 
found in the HS simulations. The times listed in Table 3 are for the planetary wave 
breaking regime. For a given level of convergence of the Krylov solver, CPU times can 
be much less during the linear growth phase. However, this was generally offset by the 
result that convergence generally had to be increased with grid size in order to maintain 
a high level of accuracy. Due to the shorter integration times for the baroclinic vs HS 
simulations, throughput was improved by using smaller numbers of PE’s for the two 
larger grids. Simulations BA0, BA1, and BA2 used 16, 32, and 64PE’s, respectively.  

 
Simulation Grid Size Resolution Integration 

 Interval 
CPU Time 

per Day 
u00 

BA0 128 x 64 2.813o 20 d 0.3 hr 33.38 ms-1 

BA1 256 x 128 1.406o 20 d 6.0 hr 33.26 ms-1 

BA2 512 x 256 0.703o 16 d 100 hr 33.23 ms-1 

Table 3: Summary of Baroclinic Instability Simulations 

Figure 6 shows 10 hPa contours of surface pressure at 8 days, relative to the mean 
surface pressure of 101 kPa, for the three grid sizes. It clearly indicates that simulations 
BA1 and BA2 are closer to each other than are BA1 and BA0 or BA2 and BA0. Not 
shown, the level of grid convergence at 6 days between BA1 and BA0 is similar to that 
between BA2 and BA1 shown in Figure 6. At 8 days, the approximate end of the linear 
growth regime, only the core of the wave packet is similarly represented with all three 
grid resolutions. The trailing and leading edges of the wave packet show more notable 
differences – which continue to increase as the flow develops into the baroclinic wave 
breaking regime. The locations and amplitudes of the extreme surface pressure features 
are given in Table 4 for all three resolutions to facilitate quantitative comparison. 

 
Figure 6: Grid convergence at 8 days. Rectangular XY plots of surface pressure, p.  
Dashed contours are for p < 101 kPa, solid contours are for p > 101 kPa. Red, 
green, and dark blue contours correspond to simulations BA0, BA1, and BA2, 
respectively. Contours shown are ± 5 and -15 hPa. 

 
Figure 7 shows grid convergence at 11 and 16 days. At 11 days, the flow is well into 

the wavebreaking regime, although some linear features still remain at the leading edge  
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Figure 7: Grid convergence at 11 and 16 days via surface pressure diagnostic. North polar projections,  
latitude circles every 15o from 15o N (bold) to 75oN (smallest). Solid contours are for p > 101 kPa, dashed 
contours are for p < 101 kPa. Contour increment is 5 hPa for left panels (11 days) and 10 hPa for right 
panels (16.0 days). Horizontal resolutions: BA0 (2.8o), BA1 (1.4o), BA2 (0.7o). See Table 4 for extrema. 
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Day Sim. Ext. λ  
(deg) 

φ 
(deg) 

Amp. 
(hPa) 

Δλ 
(deg) 

Δφ 
(deg) 

Δs 
(km) 

Δamp 
(hPa) 

4 BA0 H1 82 46. 1. -3. 1. 260 0. 
  L1 106.5 47. -1. 0.5 -0.5 65 0. 
 JW H1 85. 45. 1. * * * * 
  L1 107. 47.5 -1. * * * * 
          
6 BA0 H1 121. 45.5 4. -4. -0.5 315 0. 
  L1 147.5 49. -4. 0.5 -0.5 65 4. 
 JW H1 125. 46. 4. * * * * 
  L1 147. 49.5 -8. * * * * 
          
8 BA0 H1 161. 45.5 10. -0.5 0. 40 

(235) 
0. 

  L1 190. 52.5 -12.5 0. 2.5 280 
(570) 

6. 

 BA1 H1 162. 46.5 10. 0.5 1. 115 0. 
  L1 191. 55. -16. 1. 0. 65 2.5 
 BA2 H1 161.5 45.5 10. * * * * 
  L1 190. 55. -18.5 * * * * 
 JW H1 164. 45.5 10. 2.5 0. 195 0. 
  L1 192. 57.5 -30. 2. 2.5 305 -11.5 
          

11 BA0 H1 273.5 47.5 20. 5.5 0. 410 -2.5 
  L1 251. 63. -62.5 -8.5 -4. 600 20. 
 BA1 H1 271. 48.0 20. 3. 0.5 230 -2.5 
  L1 259.5 65.5 -72.5 0. -1.5 165 10. 
 BA2 H1 268. 47.5 22.5 * * * * 
  L1 259.5 67. -82.5 * * * * 
 JW H1 262.5 45.5 30. -5.5 -2. 480 7.5 
  L1 254. 68.5 -75. -5.5 1.5 285 7.5 
          

16 BA0 H1 325. 42.5 27.5 -31.5 -3.5 2520 -10. 
  L1 56. 67. -70. 9.5 -9. 1050 62.5 
 BA1 H1 354. 44. 32.5 -2.5 -2. 295 -5. 
  L1 71. 77.5 -102.5 24.5 1.5 640 30. 
 BA2 H1 356.5 46.0 37.5 * * * * 
  L1 46.5 76.0 -132.5  * * * * 
 JW H1 337.5 43. 40. -19. -3. 1540 2.5 
  L1 36. 72. -115 -10.5 15. 550 17.5 

Table 4: Baroclinic Instability Simulations – Surface Pressure Extrema. JW refers to Eulerian-spectral 
dycore of [JW06]. Sim., Ext., and Amp. refer to simulation, pressure extremum, and amplitude of extrema 
relative to mean surface pressure, respectively. H1 and L1 refer to maximum pressure high and minimum 
pressure low. Longitude and latitude are denoted by λ and φ, respectively. Δ quantities denote differences 
from reference simulation in bold. Δs denotes distance (on the sphere) of extrema center from 
corresponding location in reference simulation (values in parentheses are referenced to JW). Estimated 
errors are 1o in latitude and 100 km in longitude, and 1/1.25/2.5 hPa in amplitude for days 4,6/8/11,16 
respectively.  
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of the wave packet which is nearing completion of a global circuit. At the trailing edge, 
a wake has developed. The lows have moved northward and intensified vs. the highs 
that have remained close to 40o N – the latitude of the incipient perturbation. Also of 
interest is that flow over the pole is becoming significant. Prior to this time, the quality 
of polar boundary conditions is of little consequence. At 16 days, no obvious linear 
features remain, a strong polar low has formed, and a broader nearly uniform pressure 
(~ 101 kPa) wake has formed. Table 4 also contains data for all three resolu-tions at 
these two times.  

Careful inspection of the figures and tabulated data at 11 and 16 days again indicates 
that simulations BA1 and BA2 are, in toto, closer to each other than are BA1 and BA0 
or BA2 and BA0. While this indicates reasonable grid convergence for most features, 
the possibility of nonhydrostatic effects beginning to be felt at the highest resolution 
should be considered. In particular, note that the strong polar low in the BA2 result at 
16 days is centered at  ~75o N, where the local zonal resolution is ~20 kms. This is close 
to the threshold (~10 km, [23] and [29]) at which nonhydrostatic effects become 
significant. This effect could be related to the apparent non-converging trend in the am-
plitude of the low (-70, -102.5, and -132.5 hPa for BA0, BA1, and BA2, respectively), 
but clearly a more definitive diagnoses of nonhydrostatic effect vs. grid size is needed. 

4.3 Comparison with JW 2006 
EULAG’s linear regime results at days 4, 6, and 8 (Figure 6) were compared against 

the surface pressure plots on the left side of Figure 5 of [5]. To facilitate comparison, 
we carefully estimated the locations and amplitudes of the pressure extrema shown in 
JW’s Figure 5 and recorded those estimates in Table 4. The corresponding values for 
EULAG are also entered. Since grid convergence is assured for the core of the wave 
packet at this time (see preceding section), there is no need to examine the BA1 and 
BA2 results at 4 and 6 days. The data in Table 4 indicate an initial difference in location 
of the extreme high pressure, H1, of 260 km. The difference in the location of the 
extreme low pressure, L1, is zero to within accuracy of measurement. Averaged over 4 
days, the 260 km displacement of H1 corresponds to a phase speed difference of 0.8 

! 

ms
"1, with EULAG being slower. From 4 to 6 days, the distances between the EULAG 

and FV extrema remain the same, implying they have the same phase speeds to within 
the accuracy of the measurement, which for 2 days is 0.4 ms-1. We observe that the 
match in positions of L1 up to day 6 corresponds to a maximum phase speed difference 
of 0.1 ms-1. These differences are small compared to the baroclinic wave speed, which 
averages 20 ms-1 from 4 to 8 days. These trends continue to 8 days, with the exception 
that the amplitude of L1 grows more rapidly for the FV result than is seen in any of the 
EULAG results.  

Since [18] and [16] both indicate that the anelastic model should propagate deep 
baroclinic modes too quickly1, and the above results indicate EULAG’s phase speeds 
are at most, too slow, we can conclude that deep baroclinic modes are of little 
consequence during the linear growth phase of the test problem. The results from [18] 
also predict that the anelastic model will grow baroclinic disturbances more slowly. 
This fits in with the observed results for L1 at 6 and 8 days; but conflicts with the good 
match of high pressure amplitude. 
______________________________________________________________________ 
1Although the computational results from [18] support the trends predicted by [16], the 
magnitudes of the effects are less than predicted by the normal mode analysis. In 
particular, the excess wave speed of the deep baroclinic wave mode of the anelastic 
model vs. the psuedo-incompressible  model is ~3%. 
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We conclude this section with a comparison of the wavebreaking regime results. The 
reader is referred to the top row of Figure 9 (the Eulerian-spectral dycore results) of [5]. 
These results are at T170 spectral resolution, comparable to the BA2 results (0.70o 
horizontal resolution) in our Figure 7. JW’s results use a stereographic projection 
whereas the EULAG results shown in Figure 7 use a polar projection. Provided one 
takes care to match up the latitudes of various features on the two types of projections 
(the polar projection has uniform latitudinal increment whereas the stereographic has 
larger increments at lower latitude2) visual comparison can be made. All panels in 
Figure 9 of [5] use a contour interval of 5 hPa, whereas in our Figure 7 only the 11 day 
results use this interval and the 16 days results use 10 hPa. Further, the contours in JW’s 
figures are indexed to the reference pressure of 100 kPa, whereas those in Figure 7 
straddle the reference pressure (e.g, they begin at ± 2.5, 5 hPa). Locations and ampli-
tudes of the JW pressure extrema at 11 and 16 days are in Table 4.  

At 11 days, there remains general agreement between JW and EULAG in the global 
structure of the solution. The two most notable differences are in details of the wake 
developing at the trailing edge of the wave packet, and in the appearance of a high 
pressure ridge connecting the two strongest highs in the EULAG results. Due to these 
two global features, it appears that BA0, BA1, and BA2 are converging to a solution 
that is not quite the same as that given in JW. This does not appear to be the case during 
the linear growth regime. The amplitude of H1 is 22.5 hPa in BA2 vs. 30 hPa for JW. 
The amplitudes of L1 compare more favorably, -82.5 and -75 hPa for BA2 and JW, 
respectively. The zonal locations of H1 and L1 are advanced 5.5o and -5.5o, respec-
tively, for BA2 vs. JW. However L1 is now at 68oN so the actual physical displacement 
between the BA2 and JW locations for L1 is similar in magnitude to that at 8 days 
(~300 km). H1, however remains in the mid-latitudes and shows ~ 2X the displacement 
compared to 8 days. Because phases of various highs and lows are advanced or retarded, 
BA2 vs. JW; and amplitudes may be less or more, it is hard to conclude at this time that 
differences are due to limitations of the anelastic model or other effects such as 
numerics [2], filtering, nonhydrostatics, initialization, environment, and so forth. 

The comparison between BA2 and JW at 16 days gives very similar results to those 
at 11 days. There still remains general agreement between the two results in the global 
structure of the solution, although it is weaker than at 11 days. Again, two of the most 
notable differences are in details of the trailing wake region, and in the appearance of 
ridges connecting high pressure regions. There are more obvious differences in the 
locations and amplitudes of some of the sub-extrema (lows and highs other than H1 and 
L1). That BA0, BA1, and BA2 are converging to a solution that is not quite the same as 
that given in JW is more apparent. BA2’s extrema show greater displacements 
(compared to 11 days) relative to JW of 1540 (19o) and 550 (4o) kms (degrees zonally), 
for H1 and L1, respectively. The amplitudes of H1 are 37.5 hPa and 40 hPa, for BA2 
and JW, respectively – a better match that at 11 days. The amplitudes of L1 are -132.5 
hPa and -115 hPa for BA2 and JW, respectively. Interpretations of these differences 
remain as for the comparison at 11 days. 

5 SUMMARY AND REMARKS 
Held Suarez simulations with EULAG clearly indicate that the model is capable of 

resolving small scale internal waves due to frontal collapse that are only a few grid 
intervals in wavelength. This mechanism complements previously reported  [23] topo-
______________________________________________________________________ 
2The stereographic projections in Figure 9 of [5] start at 15o N latitude, and index other 
latitude circles every 15o northward to 75o (private comm. with C. Jablonowski). 
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graphical generation of internal waves in EULAG global simulations. These waves 
appear to reasonably satisfy classical dispersion relations for such waves. In the 
presently diagnosed case, which occurred for the intermediate resolution grid (1.4o), the 
waves were sufficiently small that coriolis accelerations were negligible and the waves 
behaved as pure internal gravity waves. We note that a number of wave events 
characterized by somewhat larger scales were also evident, and these clearly showed the 
signatures of inertio-gravity waves. In fact there appear to be a continous spectrum of 
waves, from small internal gravity waves to planetary scale. Future investigations will 
examine the role of grid resolution in producing these waves, and in resolving 
nonhdrostatic effects well enough that it begins to alter synoptic flow. We conjecture 
that the HS1 resolution is close to the threshold for capturing pure interval waves, and 
that the success of EULAG in resolving them may stem from its numerical design [1] as 
well as from the correct asymptotic behavior of the anelastic model in capturing 
mulitscale interactions [19]. 

The baroclinic instability study failed to reveal pathologies predicted for the anelastic 
model in [16]. During the linear growth phase, which is the only time during this test 
case that phase speeds can be compared with high accuracy, differences between 
anelastic EULAG and hydrostatic JW dycore results is negligible. Apparently the deep 
baroclinic modes – which the modal analysis indicates will be propagated too quickly 
by an anelastic model – are of little consequence during this phase of the test case. 
During the baroclinic wavebreaking phase of the test, differences between EULAG 
simulations and those of JW emerge, but are more in the nature of details of particular 
features, with good agreement in the overall global structure of the flow as well in 
numerous other particular features. Nevertheless, it does become clear by 16 days, as 
judged from a grid convergence study, that the EULAG solution is not quite the same as 
the Eulerian-spectral dycore solution of JW. Because phases of various highs and lows 
are advanced or retarded, and amplitudes may be less or more in the EULAG simulation 
BA2 vs. JW; it is impossible to conclude that limitations due to use of the anelastic 
model are present in the wavebreaking regime. Other effects such as numerics [2], 
filtering, nonhydrostatics (recall from the grid convergence study that the zonal 
resolution of the extreme low pressure at 16 days is ~20 km), initialization, 
environment, and so forth may overwhelm any errors in representing deep modes. 
Future extensions of the present study will attempt to examine these effects in detail. In 
particular, the pseudo-compressible variant of EULAG may allow a sharpened 
assessment of deep baroclinic modes while keeping other factors nearly the same. 
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