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Abstract. We present two different numerical approaches to simulate flows resulting
from the sudden injection of fluid in a quiescent surrounding. The incompressible Navier-
Stokes equations are discretized using cylindrical coordinates in the first numerical code
and spherical coordinates in the second. The two approaches are well adapted for such
simulations, since the axisymmetry of the flow is assumed. High-resolution direct numer-
ical simulations are used to assess for the grid influence on the physical properties of the
simulated flows (vortex rings and jets). We quantify the influence of the coordinate sys-
tem on numerical results, when this is not aligned with the main flow direction (i.e. the
simulation of the conical injection flow using cylindrical coordinates, or the simulation of
the parallel injection flow using spherical coordinates).
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1 INTRODUCTION

Flows resulting from the sudden injection of fluid in a quiescent surrounding are en-
countered in numerous practical applications, ranging from combustion to bio-mechanics,
and synthetic jet actuators. A striking feature of these flows is the formation of a vortex
ring traveling at the tip of the injection plug. The vortex ring dominates the flow and
has a strong influence on the subsequent phenomena of practical interest for engineering
applications, e.g. the ignition of a combustible mixture in an internal combustion engine.

Even though the vortex ring has been studied for at least one hundred years, the
development of modern experimental and numerical tools allowed to put into evidence
new phenomena (e.g. the ’formation number’ of the vortex ring1) and refine basic evo-
lution laws of this fundamental flow. In particular, direct numerical simulations were
systematically used to support recent experimental or theoretical investigations on the
vortex ring formation2, post-formation3, circulation and trajectory4, mixing5, transport
and stirring6, etc.

Vortex rings are usually generated in laboratory by a piston/cylinder arrangement. A
column of fluid is pushed by a piston into a quiescent surrounding and the boundary layer
at the edge of the cylinder separates and rolls-up into a vortex ring. The flow is assumed
to be axisymmetric and thus naturally described in cylindrical coordinates (r, φ, z).

In a recent paper3 we used a Navier-Stokes solver in cylindrical coordinates to study
the postformation evolution of a laminar vortex ring. High resolution axisymmetric sim-
ulations allowed to correct the apparent discrepancy between different experimental7 and
theoretical studies reporting power-laws for the mathematical description of the evolution
of translation velocity and integrals of motion (circulation, impulse and energy). In a
subsequent contribution8, we showed that accurate numerical simulations of laminar vor-
tex rings can be performed without computing the flow inside the vortex ring generator.
Such simulations used a new analytic model prescribing the discharge velocity at the exit
section of the cylindrical vortex generator.

The purpose of the present contribution is to extend our previous numerical studies
from cylindrical to conical vortex generators. We consider starting flows issuing from a
static diverging conical nozzle. Such flows could still be simulated using a numerical solver
in cylindrical coordinates by prescribing appropriate inflow velocity boundary conditions
(as usually, the nozzle is not included in the computational domain). A different approach
is to use spherical coordinates (R, θ, φ) that allows to have a grid naturally aligned with
the main (diverging) direction of the flow. The grid adaptivity is thus acquired before sim-
ulation, unless usual dynamic adaptivity enforced during the calculation. Figure 1 depicts
how the computational domain results from the intersection between the shell defined by
two surfaces (R = const) and the cone starting from the center of the sphere with a fixed
opening angle. The advantage of this approach is that a constant step discretization is
able to follow the streamwise spreading of the flow; a well-balanced resolution of the flow
field is thus obtained with a reasonable number of grid points.
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The idea to use spherical coordinates for the simulation of starting flows from round
nozzles is quite original and was integrated by B. J. Boersma in a Navier-Stokes solver
that was successfully used to simulate different types of round jets9,10,11,12. This solver
(hereinafter denoted by SPH-code) will be used in the present study and compared to our
solver using cylindrical coordinates (CYL-code).

Figure 1: Details of the computational domain for the simulation using spherical coordinates.

Starting from the idea that one usually possesses a single numerical code, we use in
this paper high-resolution DNS to assess for the grid influence on the physical properties
of the simulated flows (vortex rings and jets). We report for the first time, to our best
knowledge, the influence of the coordinate system on the results when this is not aligned
with the main flow direction. We therefore consider in the following the simulation of
the conical injection using cylindrical coordinates and, respectively, the simulation of the
parallel injection using spherical coordinates.

2 NUMERICAL METHOD AND INFLOW BOUNDARY CONDITIONS

The two numerical codes use similar key ingredients. The incompressible Navier-Stokes
equations are discretized by centered second-order finite differences on a staggered grid.
In the CYL-code, the equations are written in primitive variables (r · vr, vφ, vz) to avoid
the problem of the singularity introduced by the axis13. For the time advancement, an
explicit Adams-Bashfort scheme is used in the SPH-code and a semi-implicit fractional-
step method14,15 in the CYL-code. The momentum equations are first integrated using an
explicit treatment of the pressure gradient. The resulting non-solenoidal field is corrected
to satisfy the continuity equation by solving a Poisson equation. The Poisson solver uses a
fast Fourier transform following the azimuthal direction and an effective cyclic reduction
method (Fishpack subroutines) for solving the remaining two-dimensional system. In
both codes, the numerical method is globally second-order accurate in space and time.

For the purpose of this paper, we use both numerical codes to perform axisymmetric
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direct numerical simulations of a laminar starting flow. Since the vortex generator will not
be simulated, we prescribe the inflow velocity at the inlet of the computational domain.
In cylindrical coordinates, the specified discharge velocity (SDV) profile reads:

Vz(t, r) = V0(t)Vzb(r), (1)

where V0(t) is the ’velocity program’ proposed by James and Madnia16 to describe the
piston motion
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and Vzb is the classical hyperbolic tangent profile, which matches very well the shape of
profiles measured in experiments (see e.g. Michalke17):
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The parameter δω is the dimensionless thickness of the vorticity layer at the inlet, i.e. δω =
U0Dp/‖∂Vz/∂r‖max. The constants τ1 and τ2 separate the three parts in the piston motion:
acceleration for t ∈ [0, τ1[), velocity plateau V0 = U0 for t ∈]τ1, τ2] and deceleration for
t ∈]τ2, toff]. At toff the axial velocity becomes zero in the entire inlet section.

In the following, all presented quantities will be normalized using as length and velocity
scales the diameter Dj of the vortex generator at the exit section, and, respectively, the
bulk velocity U0. The corresponding reference time is thus Dj/U0. The main physical
parameter of the flow is the Reynolds number based on the characteristic velocity, Re =
U0Dj/ν. We set Re = 1500, δω = 1/80 for all simulations.

In the simulations using the SPH-code, the axial velocity U (see Fig. 2) is prescribed
using the model (1), with r replaced by the curvilinear coordinate s = R0θ, where θ is the
colatitude andR0 the radius of the inner shell. The computational domain in Fig. 2 is built
by imposing the vortex generator diameter Dj and the (conical injection) angle θj. The
equivalent velocity profile for the simulations using the CYL-code is obtained by simply
imposing the streamwise and radial velocity components as Vz = U cos θ and Vr = U sin θ,
respectively. The velocity profiles for the simulations using cylindrical coordinates are
also displayed in Fig. 2. For very small values of θj we recover the velocity profile (1)
that is commonly used to model the exit section of a cylindrical vortex generator3,8.

At the downstream boundary, a convective18 boundary condition is applied, enforced
by a global mass conservation procedure19. The lateral boundary is modeled as a slip-wall
in the CYL-code, while flow entrainment20 is allowed in the SPH-code.
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Figure 2: Geometry of the inlet section for the simulation using spherical coordinates (left). Equivalent
inflow velocities prescribed at the inlet for the simulation using cylindrical coordinates (right): axial (Vz)
and radial (Vr) velocities for different jet injection angles θj .

3 NUMERICAL RESULTS

3.1 Cylindrical nozzle

We first compare the two numerical codes when the flow issuing from a cylindrical
nozzle is simulated. Since the inflow section is accurately modeled in the CYL-code, the
results obtained with this code will be used as reference. We attempt to answer the
following fundamental question: how small the jet angle θj should be in the simulations
with the SPH-code in order to recover the results obtained with the CYL-code? In other
words, we attempt to assess for the influence of the curvature of the grid used in the
SPH-code on the accuracy of the results.

The answer is offered in Fig. 3 displaying the time evolution of the circulation of the
flow Γ =

∫ ∫
ωφ, with ωφ the azimuthal vorticity. The total circulation is an important

integral quantity that characterizes the flow and is very sensitive to the inflow velocity
condition. It is surprising to see that differences are visible for the jet angle value of
π/125, suggesting that the curvature of the inflow section is still important. Very small
values of θj are necessary to fully converge to the values obtained with the CYL-code for
the same set of parameters and equivalent mesh resolutions.

For θj = π/314, the inflow section in the SPH-code becomes flat and coincides with
the inflow model used in the CYL-code. Using this value of the jet angle, we compare in
Fig. 4 the instantaneous fields of vorticity and passive scalar. Almost identical pictures
are obtained for both fields.
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Figure 3: Cylindrical nozzle. Representation of the computational domain for the simulation using
spherical coordinates (left). Time evolution of the circulation Γ of the flow (right).
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Figure 4: Cylindrical nozzle. Simulations using cylindrical (CYL) and spherical (SPH) coordinates.
Instantaneous (t = 6) contour lines of the azimuthal vorticity ωφ and passive scalar χ. The SPH simulation
uses the value θj = π/314 for the jet angle.
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3.2 Conical nozzle

The injection through conical nozzles proved in engineering applications, but also in
biological systems, an effective way to manipulate circulation of the injected slug by con-
trolling the effective exit Reynolds number and exit area21,22. An interesting phenomenon
in the injected flow is depicted in Fig. 5 for important values of the injection angle θj.
The slug flow follows the injection angle until the vortex ring rolls-up and acquires suffi-
cient circulation to evolve independently from the slug. It then travels towards the axis
of symmetry. The influence of the injection angle is therefore restricted to a small zone
near the inflow boundary.
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Figure 5: Conical nozzle. Simulations using cylindrical (CYL) coordinates. Instantaneous (t = 5) contour
lines of the azimuthal vorticity ωφ.

Following this observation, we focus in Fig. 6 on the comparison between the two
numerical codes for the early stages of the flow evolution. The circulation of the flow in
the SPH simulation grows faster and a stronger vortex ring is obtained. The vortex ring
induces an earlier bending of the injected flow towards the axis. This effect is stronger for
higher injection angles (θj = π/6, pictures not shown). The differences in the shape of the
vortex rings could also result from the influence of the lateral boundary conditions that
allows flow entrainment in the SPH-code. In exchange, the lateral slip-wall in the CYL
simulations induces a larger zone of negative vorticity at the inlet section. Separating
the effects of the curvature of the computational grid from the influence of the lateral
boundary is an interesting issue that needs careful future investigations.
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Figure 6: Conical nozzle. Simulations using cylindrical (CYL) and spherical (SPH) coordinates. Instan-
taneous (t = 2) contour lines of the azimuthal vorticity ωφ (left) and time evolution of the flow circulation
at early stages of the injection (right).

4 CONCLUSIONS

Two Navier-Stokes solvers using equivalent numerical methods were used to simulate
impulsively stated flows from cylindrical and conical nozzles. The equations are discretized
using cylindrical (CYL) coordinates in the first code and spherical (SPH) coordinates
in the second. The two approaches are well adapted for such simulations, since the
axisymmetry of the flow is assumed.

The simulation of laminar vortex rings generated by a cylinder/piston mechanism al-
lowed to quantify the influence of the curvature of the computational grid in the SPH
simulation. Using quantitative measurements of the flow circulation, we showed that sur-
prisingly small values of the injection angle (θj < π/125) are required to recover the results
obtained using the CYL approach. Only for such configurations we obtained identical flow
patterns from the two numerical codes.

For larger values of the injection angle (θj = π/10 and π/6) the reference results were
provided by the SPH code. A simple model to prescribe an equivalent velocity at the
inlet of the CYL computational domain was derived. Preliminary results showed larger
differences in the computed fields than in the case of the cylindrical injection. These
results will serve in future investigations to assess for the influence of different numerical
parameters (curvature of the grid, influence of the lateral boundary) and will provide a
starting point for a full comprehension of the dynamics of the conical injection flow.
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