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Abstract. The laminar flow of Newtonian fluids with suspended small particles in 
rectangular narrow channels has been receiving increasing attention owing to 
development of micro-devices for biomedical and micro-chemical technologies. The 
objective of the present study is to investigate the effect of the narrow rectangular 
channel height, sphere diameter and position on the drag force and torque that the fluid 
exerts on a sphere at rest or moving with uniform linear or uniform angular velocity, 
near the microchannel walls. Numerical simulations of creeping flow were performed 
by using the OpenFOAM 1.5 CFD software package, where the pressure-velocity 
coupling was managed by the SIMPLE algorithm. All the discretization schemes used in 
the CFD calculations were fourth order accurate, and the linear solvers tolerance were 
fixed at 10-7. The computational mesh was generated by the snappyHexMesh utility, 
with a larger refinement level near the sphere surface. A total of 1020 CFD simulations 
were carried out in a 254 CPU computational cluster with an average simulation time 
of 6 hours per simulation. The ratio between the sphere diameter and channel height 
was varied between 0.05 and 0.8.  The results showed that for sphere diameters of the 
same order of the channel height the calculated drag force strongly deviates from the 
Stokes force. The deviation is particularly high when the sphere touches the channel 
wall or when its radius is high. The torque exerted by the fluid on the spherical particle 
increases both with the particle radius and with the proximity to the channel walls. 
When the particle is moving and rotating in contact with the wall, it was observed that 
there is not a simultaneous equilibrium point both for the drag force and torque, and, 
therefore, a free-moving sphere near the channel walls must slip and rotate at the same 
time. 
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1 INTRODUCTION 
The laminar flow of Newtonian fluids with suspended small particles in narrow 

channels has gained in the last years considerable importance with the fast-growing 
development of micro-devices for biomedical and micro-chemical technologies [e.g. 
1,2]. In particular, the design of microfluidic micro-total-analytical-systems, which are 
based on the separation of magnetic microspheres from the fluid by using magnetic 
fields  [3], may be facilitated with prediction methods of drag force and torque exerted 
on the particle by fluid. 

In these systems the dimensions of the particles are often of the same order of 
magnitude of the channels height and, for this reason, the particles can not be regarded 
as a point mass and expedite Lagrangian particle tracking numerical methods fail too 
predict the movement of the particles (and the forces acting on them by the fluid) inside 
the channels, after the computation of the fluid velocity distribution [3]. Some authors 
suggest, without experimental or theoretical evidence, that Lagrangian particle tracking 
methods can still be used in micro devices, without specifying the limits of this 
approach [e.g. 4]. Yet, for particles with a diameter one order-of-magnitude lower than 
the microchannel height, the Stokes equation seems adequate to compute the drag force 
[5,6].  

When the size of the suspended particles is of the same order of magnitude of the 
channel thickness, more detailed work using computational fluid dynamics tools [7] has 
shown that the flow structure is influenced by the presence of the particle. In this 
situation, the torque, and drag and lift forces acting on the particle by the fluid cannot be 
computed by assuming that domain is unbounded and the velocity profiles are linear. 
Hence, in these circumstances and for a spherical particle, the Saffman’s lift force 
equation [8] and the Stokes law for the drag force are no longer valid. 

The prediction of the laminar flow of Newtonian fluids with suspended small 
particles in narrow channels by computational fluid dynamics (CFD) is a valuable tool 
for predicting the drag force and torque acting on the particle. For a single rigid particle, 
with a given geometry, flowing with the fluid inside the channel, the more rigorous 
numerical method to compute the fluid velocity distribution and the particle movement 
is to solve the Navier-Stokes equation by CFD using a dynamic mesh around the 
moving particle, which has 6 degrees of freedom. As this approach is computationally 
expensive, when the particle is at rest or moving with uniform linear or angular 
velocity, it is still possible, by a fraction of the computation cost of the more rigorous 
approach, to obtain useful information by CFD using a fixed grid. In this case, 
information about the drag force or torque is obtained that is very useful to establish the 
optimal conditions for the separation of magnetic particles, for instance. 

The purpose of this paper is to investigate the effect of channel height, sphere 
diameter and vertical position on the drag force and torque that the fluid exerts on a 
sphere at rest or moving with uniform linear or uniform angular velocity, near the 
microchannel walls. In addition the conditions of validity of the Stokes equation for this 
system are presented. 

 

2 PHYSICAL SYSTEM 
The physical system studied in this work is depicted in Figure 1. A Newtonian fluid 

with a viscosity μ and a density ρ enters in the narrow rectangular channel with a 
parabolic velocity profile, with a maximum velocity U0. A sphere with a radius RP, is 
located inside the channel at a distance yP from the centered horizontal plane and moves  
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with the fluid with a UP linear velocity and with a ωP angular velocity. Under these 
conditions, the sphere is subjected to a horizontal drag force FD, a vertical lift force FL, 
and a moment force FM, perpendicular to the xy plane. 

 
Figure 1: Physical system under study and forces acting on the sphere. 

 

2.1 Governing Equations and Numerical Method 
For very low Reynolds numbers, the flow is considered to be solely governed by 

viscous effects, being commonly described as Stokes flow or creeping flow [9]. In these 
conditions, the mass continuity and Navier-Stokes equations are given by: 

 0=⋅∇ U   (1) 

 ( ) p∇=∇⋅∇ Uν   (2) 

where U is the fluid velocity vector, ν is the kinematic viscosity of the fluid, and p is the 
kinematic pressure.  

The numerical simulations were performed by using the OpenFOAM 1.5 CFD 
software package [10], which is composed by a set of open-source libraries, allowing 
for an expedite development of tailored solvers and applications. OpenFOAM is based 
on the finite-volume method [11] with a collocated variable arrangement. The pressure-
velocity coupling in the solution of Eqs. 1 and 2 was managed by the SIMPLE 
algorithm [12]. 
 

 Computational Domain and Boundary Conditions. To reduce the volume of the 
computational domain, a referential moving with the spherical particle was used. In this 
referential, the channel walls are moving backward with a negative velocity UP. With 
this approach it was possible to use a domain with an height of 2h, a length of 8h and a 
width of 8h.  In order to reduce further the computational load, a symmetry plane was 
defined at the plane z = 0. Therefore, the computational domain comprises only half of 
the channel, as shown in Figure 2. An additional symmetry plane was defined for z = 
4h, while a no-slip boundary condition was imposed on the top and bottom walls. The 
linear velocity on the surface of the spherical particle was imposed taking into account 
its angular velocity. At the channel outlet, a zero velocity gradient was imposed. 

 
Mesh generation. The computational mesh used for the numerical simulations was 

generated using the snappyHexMesh OpenFOAM utility. The snappyHexMesh utility 
automatically generates a high-quality mesh comprised mostly by hexahedra. The 
meshing process starts from a hexahedral background mesh, and iteratively adapts to the 
sphere surface. Larger cell refinement levels were defined for the sphere surface. The 

 3



 José L.C. Santos, Luís P. Fonseca, Vítor Geraldes 
 

last step of the meshing process introduced a pre-defined number of layers of 
hexahedral cells in the boundary layer close to the sphere surface. 

The resulting mesh for the larger RP
* value of 0.8, shown in Fig. 3, was obtained 

after a grid-independence study, where the drag force and shear stress at the sphere 
surface were used as monitoring quantities between meshes of different refinement 
levels. This mesh has 1.4 million cells, with a larger cell density in the vicinity of the 
sphere. The cell density of this mesh was maintained in the generation of the meshes for 
the remaining RP

* values. 
 

 
Figure 2: Computational domain, with symmetry planes defined for z =4h and z = 0. 

 

Figure 3 – Surface detail of the computational mesh with 1.4 million cells used in the CFD simulations 
for a RP

* of 0.8. 

 

2.2 Discretization schemes and solution control 
All the discretization schemes used in the CFD calculations were fourth order 

accurate. The linear solvers used in this work were the Geometric Agglomerated 
algebraic MultiGrid solver (GAMG) solver for the pressure with a relative tolerance of 
0.01 and an absolute tolerance of 10-7, and the Preconditioned Conjugate Gradient 
(PCG) solver for the velocity with a relative tolerance of 0.1 and an absolute tolerance 
of 10-7. Under-relaxation coefficients of 0.3 and 0.7 were selected for pressure and 
velocity, respectively. Three non-orthogonal correctors were used in order to cope with 
the non-orthogonality in the mesh near the sphere surface. This means that the pressure 
correction step in the SIMPLE algorithm is run 3 times. Full solution convergence was 
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always achieved with about 2000 iterations, meaning that the absolute residual 
tolerances of pressure and velocity were met. 

The CFD simulations were carried out in a 254 CPU computational cluster (AMD 
Opteron cluster with 2.8 GHz CPU's and 1 GB RAM/CPU), with an average simulation 
time of 6 hours per simulation. The computational meshes were decomposed for parallel 
processing in order to maintain a ratio of 100 thousand cells/CPU. 

 

2.3 Dimensional analysis  
The drag force, FD, and the resulting moment of force (torque), T, that the fluid in the 

rectangular microchannel exerts on a sphere moving with a uniform linear velocity UP 
and with a uniform angular velocity ω  may be put on a dimensionless form as follows: 

  
0hUD μ

≡Π
FD  (3) 

 
0

2Uh
T

T μ
≡Π

)/(*
Ppp Rhyy −=

 (4) 

A dimensional analysis reveals that the previous independent dimensionless numbers 
are function of the following dimensionless numbers 

  (5) 

  (6) hRR /=∗
PP

0/URPωω =∗  (7) 

  (8) 0/UUU PP =∗

 

2.4 Parametric set-up of the CFD simulations.  
A parametric CFD study was performed by varying the independent dimensionless 

numbers in a wide range of values, as shown in Table 1. 
 

Table 1 – Range of independent dimensionless numbers in the parametric CFD study. 

RP
* 0.05, 0.1, 0.2, 0.35, 0.5, 0.8 

yP
* 0, 0.25, 0.5, 0.75, 1 

UP
* 0, 0.01, 0.03, 0.1, 0.3, 0.9, 1

ω* 0, 0.1, 0.2, 0.5, 0.75, 1 

 
3 RESULTS AND DISCUSSION 

 
The vector distribution of the velocity in the center plane xy and the distribution of 

shear stress magnitude at the spherical particle surface is displayed in Fig. 4, for 
RP

* = 0.5, UP
* = 0, and yp

* = 1. As shown in this figure, the density of nodes that was 
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used is more than sufficient to resolve with accuracy the velocity field. In this particular 
case, as the diameter of the particle is half of the channel height, the velocity field in the 
center of the channel is strongly affected by the presence of the particle. 

 
 

 
Figure 4: Vector distribution of the velocity in the center plane xy and distribution of shear stress 

magnitude at the spherical particle surface (RP
*= 0.5, UP

* = 0, y*= 1). 

For a motionless sphere, the ratio between the drag force and the Stokes force, 
computed with the inlet Uy value at the same level of the sphere center, is higher than 1 
and is a function of RP* and yP* (Fig. 5). This ratio is particular high when the sphere 
touches the channel wall or when its radius is high. When the sphere touches the wall, 
the following correlation fits the numerical predictions with a maximum relative error of 
0.4% 

 13.0*4.2* )(62.0)(33.11 pp
Stokes

D yy
F

F
++=  (10)  

For the motionless sphere in the center of the channel (y*p = 0), the following 
correlation fits the CFD predictions with a maximum relative error less than 1.6%. 

 5.1* )(9.11 p
Stokes

D y
F

F
+=   (11) 

The dimensionless torque number TΠ , also for the motionless sphere, increases both 
with y*

p and with R*
p and is zero when the sphere is located in the middle of the channel 

at y*
p = 0, as expected (Figure 6). Between 0.05 ≤ R*

P ≤ 0.5 the correlation  

   (12) ]9.01[)()(6.11 *2*9.0*
pppT RRy −=Π

fits the CFD prediction with a maximum error less than 5%. 
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Figure 5: Ratio FD/FDStokes vs. RP

* for different values of yP
*. and for a motionless spherical particle.  
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Figure 6: Dimensionless torque number TΠ , vs. RP

* for different values of yP
* , and for a motionless 

spherical particle.  

When the particle rotates in contact with the channel without slipping (UP = ωRP), 
both the dimensionless drag force and torque increase with the angular velocity and 
depend on the sphere radius (see Figure 7 and 8).  
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Figure 7:  Dimensionless drag force DΠ , vs. ω*for different values of RP

* and for a non-slipping 
spherical particle rotating over the channel wall.   
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Figure 8. Dimensionless torque , vs. ω* for different values of RP

* and for a non-slipping spherical 
particle rotating over the channel wall.   

TΠ

There is a critical value of the dimensionless angular velocity for which the drag 
force is zero and this value depends on the dimensionless sphere radius, as seen in Fig. 
7. This critical value can also be defined based on the condition of zero torque (see 
Fig. 8). These critical dimensionless angular velocities vs. R*p are displayed in Figure 9. 
The analysis of this figure shows that the two critical velocities are never equal and, 
hence, when the sphere rotates on the wall without slipping the drag force and torque 
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can never be both zero. This means that, for this condition of the sphere movement, 
there is not an equilibrium point. Therefore, a freely-moving sphere must slip and rotate 
at the same time when it moves on the top of the wall. The angular velocity of the 
spherical particle must be within the dashed region of Fig. 9. 
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Figure 9. Critical values of ω* vs. RP

* for a non-slipping spherical particle rotating over the channel wall.   

4. CONCLUSIONS 

A numerical analysis using the OpenFOAM 1.5 CFD software package was 
performed to investigate the movement of a spherical particle inside a narrow 
rectangular channel with a Newtonian fluid in laminar creeping flow, assuming that the 
sphere was either at rest or moving with uniform linear or angular velocity adjacent to 
the narrow rectangular microchannel walls. The results have shown that for sphere 
diameters of the same order of the channel height the calculated drag force strongly 
deviates from the Stokes equation. The deviation is particularly high when the sphere 
touches the channel wall or when its radius is high. The torque exerted by the fluid on 
the spherical particle increases both with the particle radius and with the proximity to 
the channel walls. When the particle is moving in contact with the channel walls, it was 
observed that there is not an equilibrium point of drag force and torque, and sphere that 
moves freely in the circulating fluid must slip and rotate at the same time. Several 
correlations for the dimensionless drag force and torque numbers were derived that can 
be useful to identify equilibrium force conditions that prevail when, for instance, 
external magnetic forces act on the particle. 
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