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Abstract. This work represents an experience in using the hybrid parallel model to
perform large-scale DNS. Advantages of the hybrid approach compared to the MPI-only
approach are presented and discussed. The use of OpenMP in addition to MPI is demon-
strated for modelling of compressible and incompressible flows using both structured and
unstructured meshes. A parallel Poisson solver for incompressible flows with one periodic
direction extended with the hybrid parallelization is presented. A two-level domain decom-
position approach is considered for improving parallel algorithms for compressible flows.
An alternative strategy with partial data replication is represented as well. Several DNS
examples with mesh sizes varying from 106 to 108 control volumes are given to demon-
strate efficient usage of the upgraded algorithms. Performance tests and simulations have
been carried out on several parallel systems including Marenostrum, MVS-100000 and
Lomonosov supercomputers.
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1 Introduction

Further progress in computational fluid dynamics is closely related with efficient usage
of modern HPC systems. Performance of supercomputers grows rapidly mostly due to
increase in the number of CPU cores. Despite more computing power available these new
supercomputers bring new problems. In particular, a very large number of CPUs requires
highly scalable algorithms. The new architecture with multi-core nodes motivates the use
of a more complex parallel model - a hybrid parallel model that combines both distributed
and shared memory models. Hence CFD algorithms that can perform well on such a big
number of CPU cores are of high interest.

Huge computing power of new HPC systems is required in particular for large-scale
direct numerical simulations (DNS). These numerical experiments contribute to the de-
velopment of turbulence models like RANS, LES, DES etc. For this reason solutions of
model academic problems with fine resolution and huge computing demands serves in-
dustrial purposes providing more efficient and reliable tools for engineering applications.

This work represents experience in using the hybrid parallel model to perform large-
scale DNS. The use of OpenMP in addition to MPI is demonstrated for modelling of
compressible and incompressible flows using both structured and unstructured meshes.
Advantages of the hybrid approach compared to the MPI-only approach are presented
and discussed for two different cases.

On the one hand there is a complex parallel solver for incompressible flows with one
periodic direction1,2. It has explicit scalability limitations related in particular with re-
quirements of its component, the Schur complement based direct solver3. Using shared-
memory parallelization in this case is not just desirable but necessary in order to extend
efficient range of CPU numbers.

On the other hand an algorithm for compressible flow is considered as an opposite
example. It has rather efficient MPI parallelization without explicit limitations on scal-
ability, that allows to use efficiently several thousands of CPUs even for relatively small
meshes4. Hence using OpenMP in addition to MPI is much rather just desirable than
really necessary. But it has also been shown that even in this case the use of OpenMP is
profitable and allows to improve the solver performance.

In the next section the parallel Poisson solver extended with OpenMP paralleliza-
tion is described. Performance with MPI+OpenMP parallelization is demonstrated and
compared to MPI-only approach. The hybrid parallelization of the compressible flow al-
gorithm is presented in section 3. Illustrative applications of both solvers are given in
section 4. Finally section 5 is devoted to a brief summary of results and conclusions.

2 Parallel Poisson solver

The Poisson equation arises in modelling of incompressible flows from the incompress-
ibility constraint. It has to be solved at least once at each time step and it is usually the

main bottleneck from a parallel point of view. In the previous work
1,2

a scalable algorithm
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for Poisson equation was proposed. It performs well on both small clusters (even obsolete
ones with poor network performance) and on supercomputers.

This algorithm named Krylov-Schur-Fourier Decomposition (KSFD) can use efficiently
up to around a thousand of CPUs of a supercomputer. The FFT is used to uncouple
original 3D system into set of 2D systems that can be solved independently with Schur

complement based direct algorithm
3

or preconditioned conjugate gradient algorithm5.
However, since the FFT decomposition is applied in one direction a mesh is restricted

to be uniform in this direction and obstacles in flow can only be 2D shapes extruded along
this direction. There are implementations of the solver for both structured meshes and
unstructured meshes based on 2D triangular meshing extruded with constant step in the
3-rd direction2.

The main scalability limitation comes from the Schur complement based solver that has
to be used for solving at least one of the 2D systems (that corresponds to the lowest Fourier
frequency). The present work is devoted to extend the previous algorithm to make it run
efficiently on several times bigger number of CPUs and letting it reach a number around
10000 CPUs. The extension is based on the hybrid two-level parallelization approach that
complements the standard MPI parallelization with OpenMP.

2.1 Overview of the CFD algorithm

The non-dimensional incompressible Navier-Stokes equations in primitive variables are
considered

∇ · u = 0 (1a)

∂u

∂t
+ (u · ∇)u =

1

Re
∆u−∇p (1b)

where Re is the non-dimensional Reynolds number.

Equations (1a-1b) are discretised on a staggered grid in space by fourth-order symmetry-
preserving schemes6 in case of the structured solver. The unstructured solver2 uses a
collocated grid and second-order scheme. For the temporal discretisation, a fully explicit
dynamic second-order one-leg scheme6 is used for both convective and diffusive terms. Fi-
nally, to solve the pressure-velocity coupling a classical fractional step projection method
is used. Further details about the time-integration method can be found in7,8.

Parallelization of the overall algorithm is straightforward except for the Poisson equa-
tion that has be solved on each time step. The parallel Poisson solver is considered further
in details.

The original 3D system to be solved is following:

Ax = b. (2)

Diagonalisation of blocks of the system (2) that correspond to discretisation in periodic
direction leads by means of the FFT to the set of independent systems to be solved:
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A2D
i x2D

i = b2D
i , i = 1, ..., Nx, (3)

where Nx is the number of nodes in the periodic direction. The 2D systems are ordered
ascending the corresponding Fourier frequency. Hence first systems that correspond to
lower frequencies are much more problematic for an iterative solver. The set is divided
into 2 groups by delimiter 1 ≤ D ≤ Nx. The first group is solved using a direct method,
the second is solved using an iterative method. The algorithm of the Poisson equation
solution is following:

1. Transformation of the r.h.s. vector b to the Fourier space by means of the FFT
provides the set of r.h.s. b2D

i for 2D systems;

2. Solution of A2D
i x2D

i = b2D
i , i = 1, ..., D, using the direct Schur complement based

solver;

3. Solution of A2D
i x2D

i = b2D
i , i = D + 1, ..., Nx, using the block-preconditioned conju-

gate gradient iterative solver;

4. Transformation of solution vectors x2D
i by means of FFT restores the solution x of

the original 3D system (2).

The 3D domain is discretised uniformly along the periodic direction, x, and consists
of Nx planes of Nyz nodes. Partitioning is done by decomposing the domain into Px

parts along the periodic direction and each plane is decomposed into Pyz parts engaging
P = Px × Pyz CPUs in total. Considering that FFT is hardly possible to parallelise
efficiently within distributed memory model (especially for such small vectors around 100
500 elements) it has been replicated inside of the Px-groups. The FFT is relatively fast
and its replication would not affect much the overall efficiency but it also involves a group
communication within Px-groups that limits the Px number. It has been shown in1 that
Px can be taken up to 8 with reasonable efficiency and then performance goes down rapidly
for bigger numbers. On the other hand Pyz is also limited due to the main scalability
bottleneck of the Schur solver that is used on the stage 2 of the algorithm. This scalability
limitation is described in details in1. In the Schur complement algorithm there is an
interface system to be solved. This system growth with both the CPU number and the
mesh size finally becoming hardly possible to solve. And this interface system is especially
problematic for high-order scheme because of its large space stencil. For example with a
mesh of 108 nodes and the 4-th order scheme the solver works well for Pyz around 100 -
200 but it is hardly possible to use it for say Pyz = 500. Limitations are mainly due to the
preprocessing stage requirements, the memory requirements for interface system solution,
the size of the group communication of reduction type that takes place in Schur solver to
obtain contributions of interface nodes. Considering these limitations and according to
our experience this Poisson solver with MPI-only parallelization can be efficiently used
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on say up to 1000-2000 CPUs. Nowadays that it is quite enough, but considering the fast
grows of CPU number in supercomputers this range may soon become insufficient. For
this reason MPI parallelization has been extended with additional OpenMP parallelization
that works inside of multi-core nodes.

2.2 Additional OpenMP parallelization

The use of OpenMP in addition to MPI allows to extend the solver limitations Pt times,
where Pt is the number of OpenMP threads. This means on a typical supercomputer
with 8-core nodes the solver can run efficiently on 8 times bigger number of CPU cores.
Parallelization of explicit parts of the overall CFD algorithm is rather straightforward and
is done mainly by decomposing further MPI subdomains. The Poisson solver also fits well
the shared memory model. Stages 1 and 4 of the solver algorithm are easily parallelised by
second-level decomposition: each thread performs FFTs for its own subset of subvectors
(note that each FFT itself is still sequential). Stages 2 and 3 of the algorithm are also
easily made parallel with OpenMP: each thread solves its own subset of 2D systems, so
threads work with their own sets of data with no intersections. The use of OpenMP gives
following advantages:

1. The size of interface in Schur solver decreases Pt times hence decrease in memory
requirements, preprocessing stage cost, communications, etc.

2. Size of communications and the number of communicating processes decreases around
Pt times

3. More RAM memory available for MPI processes

All these allows the solver to use efficiently around Pt more CPUs. For a typical super-
computer with 8-core nodes it leads to the number around 10000 CPUs.

Performance tests for OpenMP parallelization have been performed on MVS-100000
(RAS) and Lomonosov (MSU) supercomputers on example of a real CFD application,
the differentially heated cavity (DHC) DNS9,10, for reduced-size mesh of 11 ∗ 106 nodes
using 4-th order scheme. Figure 1 shows comparison of the Poisson solver speedup on
Lomonosov supercomputer for MPI and OpenMP: Pyz = 64 is fixed, Px varies from 1 to 8
in case of MPI and Pt varies from 1 to 8 in case of OpenMP. Results show using OpenMP is
more efficient than decomposing periodic direction. Figure 2 left shows OpenMP speedup
of the Poisson solver for MPI groups of 64 and 128 processes. Figure 2 right shows overall
CFD algorithm OpenMP speedup (together with explicit part) for fixed Pyz = 200 and
Pt varying from 1 to 8.

Speedups for OpenMP have been demonstrated on example of reduced mesh size 11∗106

nodes in order to save computing time. Typically the mesh size is more than 100 millions
of nodes. Considering the previously achieved results1 on MareNostrum supercomputer
with MPI-only parallelization, the new results with MPI+OpenMP allow us to expect
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Figure 1: Comparison of MPI and OpenMP speedups on Lomonosov supercomputer

that the solver will run efficiently on around 10 thousands of CPUs when such a big
number will be commonly available for single jobs in queue systems of supercomputers.

3 Parallel CFD algorithm for compressible flows

In the previous case the use of OpenMP was necessary because it allows to extend
limitations by reducing interface size in Schur solver. This case in contrast does not
require additional OpenMP parallelization. But it is shown further that even in this case
the hybrid model gives advantages while being rather easy to implement.

The in-house code Noisette11 designed for solving 2D and 3D CFD and computational
aeroacoustics (CAA) problems for compressible flows using unstructured triangular and
tetrahedral meshes and high-order algorithms12. The parallel algorithm is well-scalable
for both explicit and implicit time integration.

The use of OpenMP in this case improves performance mainly for big numbers of CPUs
when the mesh size per core is small.

3.1 Overview of the Noisette

There are several basic models implemented in Noisette including Euler Equations
(EE), Navier-Stokes Equations (NSE), Nonlinear Disturbances Equations (NLDE), Lin-
earised Euler Equations (LEE). The system of equations for any of these models is of
hyperbolic type and can be represented in a general form:

∂Q

∂t
+

∂F(Q)

∂x
+

∂G(Q)

∂y
+

∂H(Q)

∂z
=

1

Re

(
∂Fν(Q)

∂x
+

∂Gν(Q)

∂y
+

∂Hν(Q)

∂z

)
, (4)

where Q - is a vector of full or linearised conservative variables, F,G,H - vectors of
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Figure 2: OpenMP speedup of the Poisson solver (left) and overall CFD algorithm (right) on MVS-100000

full or linearised conservative fluxes, Fν ,Gν ,Hν - vectors of full or linearised dissipative
fluxes, Re - Reynolds number. A high order vertex-centred space approximation for
unstructured meshes12,13 is used for numerical solution of (4) regardless of model. The
method is based on a finite-volume approach and a 2nd order approximation on arbitrary
unstructured triangular or tetrahedral meshes. The method includes elements of a finite-
difference approach and on ”Cartesian” areas of mesh the finite-volume approximation
of the 2nd order is exactly the finite-difference approximation of a high order (up to 6th
depending on scheme parameters). Viscosity terms in the Navier-Stokes equations are
approximated using finite-element method of 2nd order of accuracy. Time integration can
be explicit Runge-Kutta up to 4-th order or implicit based on Newton linearisation. In
case of implicit scheme a block-preconditioned stabilised bi-conjugate gradient solver is
used.

In14 it was demonstrated that Noisette can efficiently run on several thousands of
CPUs even with relatively small meshes. To go further OpenMP parallelization has been
implemented.

3.2 Additional OpenMP parallelization

The main advantage that OpenMP gives is reduction of time spent on communications
due to the following reasons:

1. Number of communicating processes reduced Pt times

2. Size of interfaces between subdomains reduced around Pt times

3. Communications are faster also because there are no multiple processes queueing
for network hardware inside of a multi-core the node.
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The main problem for OpenMP is intersection in memory between threads on writing
data. Such an intersection is considered here on a simple example of calculation of gradi-
ents: there is a loop over tetrahedrons and resulting data is added to nodes. Each node
can belong to several tetrahedrons so when the loop over tetrahedrons is decomposed
there can be several threads modifying data in the same node at the same time. This
leads to inconsistency of data and must be avoided. This is done by the second level
decomposition. MPI subdomain is decomposed further into Pt parts, mesh elements are
reordered in a way that element from a part with higher rank has a bigger number. Then
each thread only iterates tetrahedrons that have at least one node belonging to its part
and each thread only updates values in nodes that belong to its part so the intersection is
naturally avoided. There is some small overlap of computations in interface tetrahedrons
that have nodes from different parts but this interface is minimised by proper partition-
ing with Metis. This kind of intersection also occurs in calculation of fluxes, viscosity,
boundary conditions, and generally in matrix vector products. An alternative approach
with replication of data can be used as well: certain arrays that are affected by inter-
section are replicated between threads, each thread writes to its own array, then master
thread performs summation to resulting arrays. This approach is more simple but leads
in particular to unnecessary memory consumption. It works well for example in case of
calculation of fluxes because arrays to replicate are few but it doesn’t work in case of
gradients because there are too many arrays to replicate.

3.3 Performance tests on Lomonosov supercomputer

Computing time was measured using manual instrumentation profiling with high-
resolution timing built in Noisette. Two test cases with reduced mesh size were taken
from real application configurations:

1. ”Flow around a finite cylinder”, mesh with 783650 nodes and 4605496 tetrahedrons,
full NSE, 4-th order explicit time integration

2. ”Round jet and cylinder”, mesh with 2047992 nodes and 12066956 tetrahedrons,
full NSE, 4-th order explicit time integration

These cases are related with studying of acoustic sources in a turbulent wake. Speedup
results are shown in figure 3. It can be seen that MPI+OpenMP only outperforms MPI
at rather big numbers of CPUs. The point of intersection of the plots for MPI and
MPI+OpenMP moves to the bigger number of CPUs when the mesh size increases. In
the first case (fig 3 left) it is around 250 CPU while in the second case (fig 3 right) that
has 2.5 times bigger mesh it is above 500 CPUs.

The major time consuming components of the algorithm are represented and com-
pared in table 1 for 4-step explicit Runge-Kutta time integration. The wall-clock time
was measured for 30 time steps when running the case 1 on 1280 CPUs of Lomonosov
supercomputer.
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Figure 3: OpenMP speedup of the Poisson solver (left) and overall CFD algorithm (right) on MVS-100000
(log. scale)

Name of channel N of calls t, sec. MPI t, sec. MPI+OpenMP
Reduction communication (max) 30 0.2252 0.1347
Calculation of gradients 120 1.1647 1.3875
Calculation of fluxes 120 1.5750 1.1740
P2P communication 120 1.3333 0.6086

Table 1: Comparison of major time consuming components of the algorithm when running on 1280 CPUs

It must be noted that by the time the tests were performed the second level decompo-
sition for OpenMP was not yet fully implemented and calculation of gradients was done
with a substantial overlap (which later has been substantially reduced). Results in table
1 also show that the time spent on communications is substantially reduced in case of
MPI+OpeMP. Finally MPI+OpenMP outperformed MPI in total around 16% for case 1
and 8% for case 2 when running on 1280 CPUs.

4 Illustrative applications

The described algorithms with hybrid parallelization are currently used to perform
several DNS cases. In particular:

1. ”Impinging jet” DNS case, incompressible flow, mesh 100 millions of nodes, 4-th
order scheme, Re = 20000, running on 320 CPUs of MareNostrum supercomputer

2. ”Round jet and cylinder”, compressible flow, Mach 0.1, Re = 14000, mesh sizes 16
and 64 millions of nodes, full NSE, high-order scheme

Some illustrations of instantaneous flow fields are given in figure 4.
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Figure 4: ”Impinging jet” DNS case (left) is shown in three fragments: the whole domain (bottom) and
zoom to the jet region (middle and top). ”Round jet and cylinder” (right): top view (top) and lateral
view (bottom). This visualisation of instantaneous flow fields is based on velocity module.

5 Conclusions

The use of OpenMP in addition to MPI for CFD applications has been demonstrated.
A parallel Poisson solver for incompressible flows with one periodic direction has been
adapted to modern supercomputer architecture with multi-core nodes by hybrid paral-
lelization that will allow to use the solver efficiently on around 10000 CPUs. A parallel
CFD/CAA algorithm for compressible flows has been upgraded with the two-level paral-
lelization using OpenMP on the second level. In both cases implementation of additional
OpenMP parallelization appeared to be profitable considering the extension in efficient
CPU number range it provided and the relatively small effort it required. It must be
noted that OpenMP is not the only choice for the second-level parallelization. It could
also be done with POSIX Threads or with MPI again, but OpenMP was chosen for the
sake of simplicity and portability.
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of two- and three-dimensional turbulent natural convection flows in a differentially
heated cavity of aspect ratio 4. Journal of Fluid Mechanics, 586:259–293, 2007.

[9] F. X. Trias, A. Gorobets, M. Soria, A. Oliva, Direct numerical simulation of a
differentially heated cavity of aspect ratio 4 with Ra-number up to 1011 - Part I:
Numerical methods and time-averaged flow, Int. J. Heat and Mass Transfer, 53
(2010) 665-673, Elsevier

[10] F. X. Trias, A. Gorobets, M. Soria, A. Oliva, Direct numerical simulation of a
differentially heated cavity of aspect ratio 4 with Ra-number up to 1011 - Part II:
Heat transfer and flow dynamics, Int. J. Heat and Mass Transfer, 53 (2010) 674-683,
Elsevier

11



A. V. Gorobets, R. Borrell, F. X. Trias, T. K. Kozubskaya and A. Oliva

[11] T.Kozubskaya A.Gorobets. Technology of parallelization of explicit high-accuracy al-
gorithms on unstructured meshes in computational fluid dynamics and aeroacoustics.
Matematicheskoe modelirovanie, 19 (2):68–86, 2007.

[12] Tatiana Kozubskaya Ilya Abalakin, Alain Dervieux. High Accuracy Finite Volume
Method for Solving Nonlinear Aeroacoustics Problems on Unstructured Meshes. Chi-
nese Journal of Aeroanautics, pages 97–104, 2006.

[13] C. Debiez and A. Dervieux, Mixed element volume MUSCL methods with weak
viscosity for steady and unsteady flow calculation, Computer and Fluids, Vol. 29,
1999, pp. 89-118.

[14] A.V. Gorobets, T.K. Kozubskaya, S.A. Soukov, On efficiency of supercomputers in
CFD simulations, Parallel CFD 2008, Lyon (France), May 2008

12


