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Abstract. In this work we present a stabilized discontinuous finite element method for a
second-gradient theory for treating incompressible fluid recently proposed in the literature.
This theory produces a fourth-order flow equation since it accounts for constitutive de-
pendencies on gradient of the velocity field and delivers boundary conditions involving an
additional length scale that characterizes the eddies found near walls. The developed finite
element approach combines concepts from both stabilized and discontinuous Galerkin meth-
ods, avoiding the need for mixed finite element approach or interpolation functions with
a high degree of continuity mainly employed to treat similar equations involving fourth-
order spatial derivatives. Here, we adopt an alternative approach in which the pressure
may also be discontinuous. Furthermore, we employ a GLS formulation with an appro-
priate choice for the stabilization parameter which results in a discontinuous Galerkin +
LS (Least Square) at element level. Therefore, our formulation is weakly coercive, obeys
the inf-sup condition in a norm for discrete space, is stable, and allows for an adequate
error estimative, which contribute to overcome the main deficiencies of the current for-
mulations. Numerical examples are presented in order to demonstrate the robustness and
capability of the proposed method.
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1 INTRODUCTION

Originally derived for flows of incompressible liquids at small-length scales, a continuum-
mechanical formulation based on a framework for fluid-dynamical theories involving gradi-
ent dependencies has been advanced, which provide a generalization of the Navier-Stokes
equations through a higher-order spatial derivatives in the velocity field incorporating
length-scales effects, and suitable boundary conditions on free and fixed boundaries sur-
faces (see Fried and Gurtin1). This second-gradient theory is suggested to capture effects
at sufficiently small-length scales, being therefore an extension of the classical Navier-
Stokes theory.

Additionally, viewing this framework involving gradiente dependencies as a means for
generalization of the Navier-Stokes-α equations (NS-α), which combine Lagrangian aver-
aged dispersive nonlinearity with Newtonian viscosity (see Chen et al.2,3 , for instance),
Fried and Gurtin developed an extended theory that provides an alternative continuum
mechanical foundation for the NS-α equations4,5. In contrast to Lagrangian averaging, this
new theory delivers both boundary conditions and thermodynamically-based Lyapunov
relations, and accounts for a dependence of kinetic energy upon the velocity gradient,
whose dependence suggests to alter the structure of the turbulent energy spectrum (see
T.-Y. Kim et al.6, for instance).

The slight generalized Navier-Stokes equations include fourth-order spatial gradients in
the velocity field and, therefore, demand boundary conditions in addition to the classical
non-slip condition, which involves a material length scale. The framework of the second-
gradient theory provides the basis for numerical studies of flows in complex and realistic
geometries of experimental importance.

These results encourage to advance new numerical methods to establish the range
of predictions and applicability of this high-order continuum-mechanical formulation.
Among the lines of inquiry that are encouraging by numerical studies of this theory
include the applicability in the understanding of the liquid flow behavior at small-length
scales, and elasticity problems with first and second deformation gradients dependencies
on strain energy, as generalized by Gurtin7 from the early Tupin’s8,9 results within a
independent-constitutive equations framework. For flows through irregular geometries of
experimental interest, the challenges include developing finite-element methods for fourth-
order problems.

The standard variational form of the fourth-order differential equation holds spatial
derivatives including order two in both the trial end admissible functions and, therefore,
to deal with the difficulties associated with the continuity representation of the high-order
derivative across the element boundaries, we adopt a discontinuous Galerkin approxima-
tion that allows fourth-order differential equations to be solved using standard C0 finite
element shape functions. This alternative approach avoids mixed methods or interpola-
tion functions with a high degree of continuity, such as C1 basis functions, employed to
treat similar equations involving fourth-order differential operators.
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The concept can be traced back to Engel et al.10, who utilized an interior-penalty type
formulation for solving thin beam, plates and strain gradient elasticity problems involv-
ing fourth-order elliptic operators. Continuity requirements for high-order derivatives are
weakly satisfied by borrowing concepts from discontinuous Galerkin methods, which is
achieved by including stabilized terms on the element boundaries. Wells et al.11 followed
a natural extension of this method to treat the hight-order differential operator appearing
in the Carhn-Hilliard equation. Similarly, T.-Y. Kim et al.12 developed a non-conforming
discontinuous Galerkin method for the aforementioned gradient theory for incompress-
ible flows closely related to a Nitsche’s method for elliptic and parabolic problems13. See
Arnold et al.14, Brezzi et al.15 and Angel et al.10 for a detailed review of works and ex-
tensive literature surveys on several unconditionally stable methods for elliptic problems.
Also, a family of discontinuous Galerkin finite elements methods for Stokes and Navier-
Stokes problems is found in Girault et al.16. Also, see Cockburn et al.17, Cockburn et al.18

and Bey and Oden19 for a additional background.
In this work, the focus is the advancement of a stabilized discontinuous finite element

method for fourth-order problems base on the second-gradient theory for incompress-
ible flows as discussed in Fried and Gurtin1,4. The proposed finite element formulation
combines concepts from both stabilized and discontinuous Galerkin methods. Previously
finite element approach for the treatment of fourth-order differential operators has been
proposed by Engel et al.10 and T.-Y. Kim et al.11. However, the weak coercivity or the
inf-sup condition in a norm for the discrete problem has not been established yet. In the
case of the fourth-order problem mentioned before, T.-Y. Kim et al.11 has presented an
approach in which the pressure is assumed to be continuous with the continuity imposed
in a weak sense, which may compromise the convergence order of their method.

Here, the main challenge concerning the proper incorporation of the higher-order ve-
locity gradients and pressure field is achieved, and we adopt an alternative approach in
which the pressure may be discontinuous. Furthermore, we use a GLS formulation with
an appropriate choice for the stabilization parameter which results in a discontinuous
Galerkin + LS (Least Square) at element level. Therefore, our formulation is weakly co-
ercive, obeys the inf-sup condition in a norm for discrete space, is stable, and allows for an
adequate error estimative, which contribute to overcome the main deficiencies of the cur-
rent formulations. We emphasize that for triangular and tetrahedral cubic elements the
fourth-order operator is empty which implies that any calculation involving derivatives of
order greater than two is trivial for these elements.

The approach followed to obtain the stabilization parameter is based on a recent pro-
cedure that find the optimum parameter of the GLS method for each element of the finite
element mesh, see Carmo et al20,21. We defer identifying this parameter as dependent
of the interpolation polynomial degree used for approximate the velocity and pressure
field, the geometry of the element, as well as the diffusion tensor. The stability of the
GLS method with this parameter is assured through a theorem that will be presented in
a future communication. The organization of this paper is as follow: the fourth order
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problem is introduced in Section 2 and the associated variational problem is presented in
Section 3. The discontinuous Galerkin formulation, along with a Galerkin/Least Square
stabilization (GLS) of the finite element method is discussed in Section 4. Numerical
examples are solved in Section 5, in order to show the capabilities of the method on some
significante model problems. Concluding remarks and a discussion in Section 6 complete
the paper.

2 THE STRONG FORM OF THE FOURTH-ORDER PROBLEM

We denote by Ω ⊂ Rn (n = 2 or 3) an open region in space, which is occupied by the
body over some time interval. The boundary surface of Ω is assumed to be smooth, and
is denoted by S = ∂Ω, and we write n for the outward unit normal on S. Further, we
consider a free-surface portion of S, namely Sf , and the remainder as a fixed, impermeable
surface without slip Sg, satisfying S = Sf ∪ Sg, such that Sf ∩ Sg = ∅.

Working from a general framework for fluid-dynamical theories involving gradient de-
pendencies, Fried and Gurtin1,4 introduced the slight generalized incompressible flow prob-
lem:





ρu̇ = div(S− pI) + curl div G in Ω,

div u = 0 in Ω,

(S− pI)n + divS(Gn×) + n× (div G− 2KGn) = tS
n×Gn = mS

}
on S,

(1)

in which tS and mS represent tractions on the bounding surface S, and with depending
on the constitutive relations for the extra stress S and the hyperstress G as a function of
the form

S = 2(µD + ρα2D̊),

G = µβ2(grad ω + γgrad ω).

}
(2)

Note that, to simplify our calculations, we use direct notation. However, for clarity,
we also present key definitions and results in component form. We write ρ for the mass
density, µ for the dynamic viscosity, u for the velocity field, p for pressure, D = 1

2
(gradu+

(gradu)T) for the stretching, D̊ = Ḋ+DW−WD for the corotational rate of D with W =
1
2
(gradu−(gradu)T) the spin, I for the second-order identity tensor and ω = curlu for the

vorticity. We use a superposed dot for the material time-derivative; u̇ = ∂u
∂t

+ (gradu)u.
In (1)3, a× denotes the axial tensor defined by (a×)w = a × w for every vector w, so
that (a×)ij = εikjak, then given any skew tensor A there is a unique vector a such that
A = (a×), cf. Fried and Gurtin4. The operator divS defines the surface divergence on
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S and K = −1
2
gradS n is the mean curvature of S, while µ, α, β are nonnegative scalar

moduli with |γ| ≤ 1.
Using (2)1,2 in (1)1, and stipulating that the moduli µ, α, β are constant, we arrive at

the flow equation

ρu̇ = −grad p + µ∇2(u− β2∇2u) + 2ρα2div D̊, (3)

which envolves two length scales, the modulus α of energetic origin and the other one of
dissipative origin, β. Remark that the constitutive dimensionless parameter γ does not
enter the flow equation, it would be present in the boundary conditions prescribing the
hypertraction; consider the condition (5)2.

In addition to the flow equation, the theory delivers boundary conditions. On Sf the
classical condition (S− pI)n = σKn is replaced by the conditions

(S− pI)n + divS(Gn×) + n× div G = 2σKn and n×Gn = 0, (4)

where σ denotes the surface tension of the free surface, while on Sg the classical non-
slip boundary condition is replaced by the generalized adherence conditions or wall-eddy
condition4

u = 0 and n× (Gn− µ`ω) = 0 on Sg. (5)

where ` is the wall-eddy length which carries dimensions of length.
Here, the corotational rate of D in the extra stress (2)1 is also neglected, so that

S = 2µD, (6)

and as a result, the last term on the right-hand side of (3) is empty. For sake of simplicity,
we neglected time dependency and advection whereby restricting our attention to a fourth-
order Stokes-like problem of (3).

In order to lay down a strong form of the fourth-order problem, we consider the follow-
ing spaces as defined in Adams22. Let L2(Ω) be a Hilbert space equipped with the scalar
product (·, ·)L2(Ω) and norm ‖ · ‖L2(Ω) on Ω. Also, let Hm(Ω) (m ≥ 1) be the classical
Sobolev space with distributional derivatives up to order m equipped with scalar product
(·, ·)Hm(Ω) and norm ‖ · ‖Hm(Ω). The corresponding vector (product) spaces are likewise
denoted by H1(Ω)n = H1(Ω) × ... × H1(Ω), with scalar product (·, ·)H1(Ω)n and norm
‖ · ‖H1(Ω)n .

Finally, we consider the following spaces

H1
div(Ω, µ) = {η ∈ H1(Ω); div (µ grad η) ∈ L2(Ω),

∇2
(
div (µβ2 grad η)

) ∈ L2(Ω)}

and
H1

div(Ω, µ)n = {u ∈ H1(Ω)n; ui ∈ H1
div(Ω, µ), (i = 1, ..., n)},
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for which we suppose that 0 < µ0 < µ < µ1 in Ω, where µ0, µ1 are nonnegative real
constants.

In this work, we focus on the following boundary-value problem for the fourth-order
flow equation that reads: find (u, p) ∈ H1

div(Ω, µ)n × L2(Ω) such that




grad p− div (µ grad ui) +∇2
(
div (µβ2 grad ui)

)
= 0 in Ω,

div u = 0 in Ω,

(2µD− pI)n + divS(Gn×) + n× div G = σKn

and n×G = 0

}
on Sf ,

ui = 0 and n× (Gn− µ`ω) = 0 on Sg.

(7)

See Fried and Gurtin1,4,5 for a complete justification and discussion of the constitutive
equations and boundary conditions. The quantities µβ2 and µ` can be interpreted as a
hyperviscosity and a boundary viscosity, respectively, and we refer β as the gradient lenth

3 THE ASSOCIATED VARIATIONAL PROBLEM

As a result of working within a framework based on the principe of virtual power1,4,
we recall that the weak formulation of the flow equation and the boundary conditions of
problem (7) is straightforward to derive, and consists in finding (u, p) ∈ Su×Sp such that

A(u, p,v, q) = l(v, q) ∀(v, q) ∈ (Vu × Sp), (8)

where

A(u, p,v, q) =

∫

Ω

(
S(u) : gradv + G(u) : grad curlv− p div v

)
dΩ

+ b(u, p,v, q) +

∫

Sg

µ`ω × n · ∂v

∂n
dS,

b(u, p,v, q) =

∫

Ω

q div u dΩ,

and

l(v, q) =

∫

Sf

σKn · v dS.

Regularity and boundary conditions are established by the solution set Su = {u ∈
H2(Ω)n; ui = gi on Sg} and the admissible variation space Vu = {v ∈ H2(Ω)n; vi =
0 on Sg}. Also, we consider the set Sp = {p ∈ L2(Ω);

∫
Ω

p dΩ = 0} and Vp = {q ∈
L2(Ω);

∫
Ω

q dΩ = 0} as the spaces of square-summable functions with zero mean in Ω.
Using the relations (6) and (2)2, we obtain correspondence with the flow equation (7)1.
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4 THE ASSOCIATED DISCONTINUOUS GALERKIN/LEAST-SQUARE
FORMULATION

We present the discontinuous Galerkin formulation proposed. To this end, let us
consider a partition Ωh = {Ω1, ..., Ωne} of the region Ω into non degenerated finite
elements Ωe, each with boundary Γe = ∂Ωe, such that Ωe can be mapped in stan-
dard elements by isoparametric mappings: Ωe ∩ Ωe′ = ∅ and Γe ∩ Γe′ = ∅ if e 6= e′;
Ω ∪ S = ∪ne

e=1(Ωe ∪ Γe). The following terminology is also used in the discontinuous
Galerkin formulation: Γee′ = ∪ne

e=1Γe −S for the union of interelement boundaries, where
S = Sf ∪ Sg with Sf ∩ Sg = ∅. The jump J·K and mean-values {·} operators on a vector-
or scalar-function across either side of each interelement boundary are definite as usual.

In what following we introduce the finite element spaces

Hh,k = {η ∈ H1(Ω); ηe ∈ Pk(Ωe)},

Hh,k,n = {η = (η1, . . . , ηn); ηi ∈ Hh,k},
Lh,l = {η ∈ L2(Ω); ηe ∈ P l(Ωe)},

with Pm being the space of the polinomial shape functions on local coordinates defined
on element Ωe, where m > 0 is the polinomial order; k > 0 and k > l > 0 are integers.
Also, we consider the solution sets

Sh,k
u = {wh ∈ Hh,k,n; wh

i = gh
i on Γg} and Sh

p = Sp ∩ Lh,l,

where gh
i (i = 1, . . . , n) is the usual interpolating of gi, and the spaces

V h,k
u = Vu ∩Hh,k,n and V h

p = Vp ∩ Lh,l.

We remark that these function spaces possess less regularity than would be required in a
conventional approach for fourth-order equation, which would seek solutions in a subspace
of H2(Ω), rather than in subspaces of H1(Ω).

Following the ideas presented in Engel et al.10, the associated discontinuous Galerkin/least-
square formulation to the problem (8) then reads: let τ be any positive constant, find
(uh, ph) ∈ Sh,k

u × Sh
p such that, for all (vh, qh) ∈ Sh,k

u × V h
p ,

Ah(u
h, ph,vh, qh) = Acd(u

h, ph,vh, qh)

+
ne∑

e=1

Ae
LS(uh, ph,vh, qh) = ltot(v

h, qh), (9)

where

ltot(v
h, qh) =

∫

Sf

σKn · vh dS,
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Acd(u
h, ph,vh, qh) = A(uh, ph,vh, qh)

+
ni∑

e=1

(
−

∫

Γee′
{G(uh)n} · JcurlvhK dΓ

+

∫

Γee′
{G(vh)n} · JcurluhK dΓ +

∫

Γee′

τ

hee′
JcurlvhK · JcurluhK dΓ

)
,

A(uh, ph,vh, qh) =∫

Ω

(
S(uh) : gradvh + G(uh) : grad curlvh − ph div vh

)
dΩ

+ b(uh, ph,vh, qh) +

∫

Sg

µ`ω × n · ∂vh

∂n
dS,

b(uh, ph,vh, qh) =

∫

Ω

qh div uh dΩ,

and

Ae
LS(w, q, δw, δq) =

∫

Ωe

δ(h2
e)

( n∑
i=1

Ri(w, q) Ri(δw, δq)

)
dΩ,

in which

Ri(w, q) = −div (µ grad wi) +∇2
(
div (µβ2 grad wi)

)
+

∂q

∂xi

,

with (w, q) ∈ H1
div(Ωe, µ)n × L2(Ωe) and (δw, δq) ∈ H1

div(Ωe, µ)n × L2(Ωe). Here, hee′

denote a measure of the interelement boundary, while he is a mesh parameter usually
adopt as a measure of the element e.

It is well-known that the determination of the stabilized parameter δ(h2
e) is one of the

key issues in the development of stabilized finite element methods. See Franca and Frey23,
Zienkiewicz and Taylor24 and Xia and Yao25 for a review concerning these parameters.
Here, we will adopt the following expression for these parameters: δ(h2

e) = αe(he)
2/µ,

where the dimensionless constant αe depends on the degree of interpolation polinomial,
the geometry of the element and the viscosity µ, according to methodology introduced by
Carmo et al.20,21.

5 Numerical examples

Here, we demonstrate the potentials of the stabilized finite element method described
above when applied to the fourth-order problem (7). We solved the classical lid-driven
cavity flow problem in which the domain is Ω =

[
0, 1

] × [
0, 1

]
and boundary conditions
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are set to u = (0, 0) and n × (Gn − µ`ω) = 0 on x = 0 and 0 < y < 1, u = (0, 0) and
n × (Gn − µ`ω) = 0 on x = 1 and 0 < y < 1, u = (0, 0) and n × (Gn − µ`ω) = 0 on
y = 0 and 0 < x < 1 and u = (1, 0) and n ×Gn = 0 on y = 1 and 0 < x < 1. Note
that on the fixed boundary surface, no-slip boundary conditions are considered along with
generalized adherence boundary conditions. Here, we only examine the limiting case of
` → 0 for the gradient theory, which correspond to weak adherence conditions on the
cavity walls. One nodal pressure is also set to zero to avoid the constant mode and the
Reynolds number was 1. We used a cartesian uniform mesh with 20 × 20 second order
quadrilateral elements.

First, we compare numerical approximations for the the components of the velocity
field and pressure field for the classical Stokes flow and the fourth-order Stokes-like flow
obtained by the second gradient theory. As examined by Fried and Gurtin1, the theory
yields the classical solution when gradient length is negligibly small in comparison to the
representative length scale of the flow domain and the adherence length is negligibly small
in comparison to the gradient length, and although the analise has been confined to the
problem of plane Poiseuille flow subject to weak adherence conditions, it is carried over
general flows.

Figures 1, 2 and 3 show a comparison of the velocity component profiles and pressure
profiles across the cavity centerlines x = 0.5 and y = 0.5, respectively, for the classical
theory and weak-adherence boundary condition on the cavity flow, and different values
of gradient length β. The numerical result for the classical Stokes theory were performed
with a quasi-optimum α parameter for the GLS stabilization, α = 0.1, as obtained by
Carmo et al.20,21. For the gradient theory we adopted and α = 0.25. Figures 4 and 5
provide the pressure comparison between classical and gradient theories.
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Figure 1: Velocity profiles across x = 0.5.
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Figure 2: Velocity profiles across y = 0.5.

As expected, the results reveal a qualitative difference between classical and gradient
theory. Remark that where the ratios β/L, determined by the gradient and flow domain
lengths, are sufficiently large would the gradient effects due to fourth-order terms appear-
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Figure 3: Pressure profiles across y = 0.5.
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Figure 4: Pressure field for classical Stokes the-
ory and stabilization parameter α = 0.1.
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Figure 5: Pressure field for gradient theory and stabilization parameter α = 0.25.

ing in the flow equation (7) and generalized boundary condition be of importance. Hence,
the gradient effects are important only for flow domain length scale sufficiently small and,
therefore, the classical Stokes equation perhaps loses validity.

We next examine the sensibility of our stabilized method with different α parameters.
The results were obtained using a uniform mesh of 20×20 elements and ratio β/L = 0.135.
Shown in figures 6, 7 and 8 are the velocity profiles and pressure fields across the cavity
centerlines x = 0.5 and y = 0.5, respectively. As expected, the sensibility of the results
with the α stabilization parameter is evident. Results for the pressure field are depicted in
figures 9, 10 and 11, indicating again the dependence of the pressure with the α parameter.

We remark that α = 0.25 is a good guess for the case investigated here. How-
ever, the optimum and quasi-optimum stabilization parameters for the discontinuous
Galerkin/least-square method proposed for the fourth-order incompressible problem will
be automatic computed and should be preferred, whenever available.
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Figure 6: Velocity profiles across x = 0.5.
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Figure 7: Velocity profiles across y = 0.5.
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Figure 8: Pressure profiles across y = 0.5.
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Figure 9: Pressure field for gradient theory and
stabilization parameter α = 0.02.
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Figure 10: Pressure field for gradient theory
and stabilization parameter α = 0.22.
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Figure 11: Pressure field for gradient theory
and stabilization parameter α = 1.0.
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6 CONCLUSIONS

In this communication, we advanced a stabilized finite element method for a fourth
order flow equation originated from a second-gradient theory for fluid. The proposed fi-
nite element method combines concepts from both stabilized and discontinuous Galerkin
methods. We use a GLS formulation with a suitable choice for the stabilization parameter
which result in a discontinuous Galerkin + Least Square at element level. Here, we based
our approach on second order quadrilateral elements, so that the fourth-order operator is
empty which implies that any calculation involving derivatives of order greater than two
is trivial for these elements; the same is true for triangular and tetrahedral cubic elements.
The quasi-optimum stabilization parameter for each element of the mesh depends on the
polinomial used to approximate the velocity and pressure fields, the geometry of the ele-
ment and the viscosity tensor. The numeric results suggest that the finite element method
purposed here is robust for modeling fourth order incompressible flow at sufficiently small
scale. The authors understand that this work can be naturally extended to developing
finite-element methods based on the generalization of the Navier-Stokes-αβ equation4 for
turbulent flows.
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