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Abstract. It is well known that, for example, the application of the classical Galerkin
finite element method is inappropriate for the solution of advection equations, at high
Peclet numbers. Typically, unwanted spurious (non-physical) oscillations appear in the
numerical solution. In the last three decades, several alternative schemes have been devel-
oped in order to reduce these unwanted artifacts. The authors consider that the unstable
character of the numerical solutions lies in the inadequate discretization of the equations.
That is, a discretization scheme that adequately mimics, in the sense that is preserves
the same properties such as symmetries, conserved quantities, etc., of the continuous dif-
ferential equations should, intrinsically, result in a stable scheme. Hence, in this work,
a new approach is followed. Taking as basis the framework of differential geometry the
authors present a mimetic discretization scheme for the advection equation which is mass
and energy preserving.
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1 INTRODUCTION

Numerical schemes are an essential tool for solving PDE’s. These schemes, being a
model reduction, inherently lead to loss of information of the system being modeled,
namely on its structure, e.g. conservation of certain quantities – mass, momentum, en-
ergy, etc. – and symmetries, which are embedded into the PDE’s as a result of the
geometrical properties of the differential operators. It is known today2,3,15,21 that the
well-posedness of many PDE problems reflects geometrical, algebraic topological and ho-
mological structures underlying the problem. It is, therefore, important for the numerical
scheme to be compatible with these structures (the physics), i.e., to mimic them. The goal
of mimetic methods is to satisfy exactly, or as good as possible, the structural properties
of the continuous model, in doing so, one obtains stable schemes. Additionally, a clear
separation between the processes of discretization and approximation arises, the latter
only take place in the constitutive relations.

It is well known22 that the application of the classical Galerkin finite element method,
for high Peclet numbers, is inappropriate for the solution of advection equations with no
source terms:

∂ρ

∂t
+∇ · (vρ) = 0 (x, t) ∈ Ω× [0, T ], ρ(t, ∂Ωin) = ρb(t), ρ(0,x) = ρ0(x), (1)

where ρ is the advected quantity and v is the vector field that advects the quantity ρ.
Typically, unwanted spurious (non-physical) oscillations appear in the numerical solution.
In the last three decades, several alternative schemes have been developed22 in order to at-
tenuate these unwanted artifacts. The authors consider that the unstable character of the
numerical solutions lies in the inadequate discretization of the equations. As said before, a
discretization scheme that adequately mimics, that is, preserves the same properties such
as symmetries, conserved quantities etc., of the continuous differential equations should,
intrinsically, result in a stable scheme. Hence, in this work, a new approach is followed.
It is known from differential geometry1,6 that (1) is a specific case of a larger family of
boundary value problems modeling convective phenomena. For a scalar advected quantity
it is possible to express it in terms of the Hodge-? operator, ?, and the Lie derivative, Lβ,
in the following way:

Lβ ? ω0 = 0 in Ω ∈ Rm (2)

This is then an equation that models the space-time advection of 0-forms. Discrete dif-
ferential forms have shown to be a good approach for discretizing terms of the form δdωk

and dδωk, and its implementations can be found in the literature2,3,5,9,15,17. Hence, the
aim of this work is to take these ideas a step further and apply them to the discretization
of the Lie derivative operator. Taking as a starting point previous work from other au-
thors4,16, for the discretization of advection-like equations, the authors present a mimetic
quadrilateral high order, spectral finite element method which, under some conditions,
exactly conserves both the advected property and the energy associated with it.
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The path the authors will follow starts with an introduction to differential geometry,
where a brief introduction to fundamental concepts such as vector fields, differential forms,
exterior derivative, Hodge-? operator and Lie derivative is given. Following this, discrete
analogs of these concepts are presented. To finalize, these ideas are combined and applied
to the advection problem and numerical results showing some of the properties of the
derived scheme are presented.

2 DIFFERENTIAL GEOMETRY: A REFRESHER

The introduction presented here is done for a 2-dimensional manifold, since this will
be dimension of the space to which the advection equation will be applied to, the general-
ization to higher dimensional manifolds is straightforward, all equations expressed using
Einstein’s notation are automatically extended to higher dimensions.

2.1 Vector fields

On a manifold,M, the tangent space at a point, P , is usually thought of as a tangent
plane to a surface. Although this is not incorrect it proves to be better to realize a
tangent vector, ~v, to be understood as something that is tangent to a curve that lies in
the manifold. The important point here is that the curve lies exclusively in the manifold
M. The problem then, lies in the fact that different curves passing by the same point,
P , are “tangent” to the vector ~v. This leads to the idea of tangent vectors as equivalence
classes of curves. A geometrical definition of tangent vector as an equivalence class of
curves is13:

Definition 1.
1. A curve on a manifold M is a smooth (i.e., C∞) map γ from some interval (−ε, ε) of

the real line into M.

Note that the ‘curve’ is defined to be the map itself, not the set of image points in M.
It is important to remember this distinction between a function and its set of image
points.

2. Two curves γ1 and γ2 are tangent at a point P in M if

a) γ1(0) = γ2(0) = P ;

b) in some local coordinate system (x1, x2, . . . , xn) around the point, P , the two curves
are ‘tangent’ in the usual sense as curves in Rn:

dxi

dt
(γ1(t))

∣∣∣∣
t=0

=
dxi

dt
(γ2(t))

∣∣∣∣
t=0

for i = 1, 2, . . . , n.

Note that if γ1 and γ2 are tangent in one coordinate system, then they are tangent
in any other coordinate system that covers the point P ∈ M. Thus the definition
is an intrinsic one, i.e., it is independent of coordinate system.
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c) A tangent vector, ~v, at P ∈ M is an equivalence class of curves in M where the
equivalence relation between two curves is that they are tangent at the point P .
The equivalence class of a particular curve γ will be denoted by [γ]. One says that
~v = [γ].

d) The tangent space denoted by TPM toM at a point P ∈M is the set of all tangent
vectors at the point P .

The tangent bundle TM is defined as TM :=
⋃

P∈M TPM.

It is possible to show13 that the tangent space, defined in this way, is, in fact, a linear
vector space with properly defined addition and multiplication by scalars.

Another, more algebraic, approach to tangent vectors is to define them as a derivation
operator10:

Definition 2.
A derivation, v, at a point P ∈ M is an operator acting on smooth real valued functions
on M, that is:

v : C∞(M)→ R
satisfying:

(i) v(af + bg) = a v(f)|P + b v(g)|P , a, b constant.

(ii) v(f · g) = g(P ) · v(f)|P + f(P ) · v(g)|P .

where f, g ∈ C∞(M).

Using this definition it is possible to verify that v(c) = 0 for c a constant. This property,
present in derivation operators is produced essentially due to crucial Leibniz rule in (ii),
which is clearly analogous to the rule in elementary calculus for taking the derivative at a
fixed point of the product of two functions. The space DPM, can now be introduced as:

Definition 3.
The set of all derivations at P ∈M is denoted by DPM.

It is possible to endow this set with the structure of a vector space, by defining addition
and multiplications by scalars in the following way:

(v1 + v2)(f) := v1(f) + v2(f)

(kv)(f) := kv(f) (3)

for all v1, v2, v ∈ DPM, f ∈ C∞ and k ∈ R.
Now, it is possible to show10,13 that in a local coordinate system, (ξ1, ξ2, . . . , ξn), valid

in some neighborhood of P the following set of operators are a basis for the linear space
DPM:

∂i =
∂

∂ξi

∣∣∣∣
P
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The proof involves the linear approximation of a function f , using a Taylor expansion,
and then the application of v ∈ DPM to the linear approximation, using the above shown
property that c = 0. Hence, for any element DPM:

If v ∈ DPM⇒ v = vi∂i

where Einstein’s notation was used, in order to imply summation over i.
The connection between the objects of DPM and the ones of TPM is made in the

following way. First recall that the directional derivative of a function f along a vector
~v ∈ TPM is defined as:

~v(f) :=
d [f ◦ γ] (t)

dt

∣∣∣∣
t=0

where [γ] = ~v ∈ TPM

which enables the equivalence class of curves, ~v ∈ TPM to act as a differential operator
on the space C∞(M) of real valued differentiable functions on M. Expanding the right
hand side yields:

~v(f)|P :=
dγi(t)

dt

∂f

∂ξi

∣∣∣∣
t=0

=

(
dγi(t)

dt

∂

∂ξi

)
f

∣∣∣∣
t=0

Looking at the last equality it is easy to identify that:

dγi(t)

dt

∣∣∣∣
t=0

∂

∂ξi
∈ DPM

Hence it is straight forward to introduce the linear map σ : TPM→ DPM defined in the
following way:

σ(~v) :=
dγi(t)

dt

∣∣∣∣
t=0

∂

∂ξi
= v, where [γ] = ~v

It is possible to show13 that, in fact, this mapping, σ, is an isomorphism and hence one
can use one or the other space whenever it suits better.

Given the definitions of tangent vector and tangent space, the introduction of the
concept of vector field is straightforward12,13,19:

Definition 4.
LetM be a C∞ manifold. A vector field X onM is an assignment, to each point P ∈M,
of a tangent vector XP ∈ TPM, in such a way that XP is smooth, that is, it is of class
C∞ with respect to P : for all f ∈ C∞(M), the function Xf :M→ R defined by:

M→ R
P 7→ [X(f)](P ) := XP (f)

X is a section of the tangent bundle TM.
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In a local coordinate system of M, for each point P ∈ M, X is described as: XP =
ai(P ) ∂i, where the ai are functions defined in the local coordinates, (ξ1, . . . , ξn). Note,
however, that the local coordinates are not unique and hence, the geometrical properties
of the vector field do not depend on them. Let (y1, . . . , yn) be another local coordinate
system, then:

Xp =
∑
i,j

ai(P )
∂yj

∂xi

∂

∂yj

This transformation of coordinate system does not change the geometrical object. It is
possible to endow a vector space with additional structure, namely an inner product. In
Euclidean space the trivial inner product of two vectors a = ai∂i and b = bi∂i is simply
given by:

(a, b) =
∑

i

aibi = aibkδki (4)

This implies implicitly that (∂i, ∂j) = δij. This is not true, in general. Hence a metric, g,
is introduced19:

Definition 5.
Let M be a manifold, if for each point P ∈ M the tangent space TPM is provided with
a positive-definite inner product, gP (·, ·) or (·, ·)P :

gP : TPM× TPM→ R

in such a way that gP is of class C∞ in P , we say that g = {gP ;P ∈M} is a Riemannian
metric on M. One also says that M equipped with g is a Riemannian manifold.

It is straightforward to see that, for a given coordinate system a metric is defined by a
tensor with the following entries:

gij = (∂i, ∂j) (5)

In this way the inner product between two tangent vectors of a Riemannian manifold,
a = ai∂i and b = bi∂i, becomes:

(a, b) = aibjgij

Hence, the introduction of the delta kronecker, δki, in (4), in Euclidean space: gij :=
(∂i, ∂j) = δij.

One way of assigning a metric is through the use of an embedding. The inner product
between two vectors in M is then given by the Euclidean inner product in the higher
dimensional Euclidean space where the embedding takes place.

2.2 Differential forms

Having defined a tangent vector and the tangent space, one can introduce differential
1-forms, that is cotangent vectors, and the cotangent space:
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Definition 6.
A cotangent vector, ω, at a point P ∈M is a mapping of TPM to the real line:

ω : TPM→ R

that satisfies the following property:

ω(av + bw) = aω(v) + bω(w)

The set of all cotangent vectors at a point P ∈ M is called the cotangent space, T ∗PM.
The set of all cotangent spaces is denoted by cotangent bundle:

T ∗M :=
⋃

p∈M

T ∗PM.

If T ∗PM is equipped with the following definitions for the addition of elements and mul-
tiplication by scalars, one obtains a linear vector space:

[α + β](v) = α(v) + β(v)

[kα](v) = k(α(v))

with α, β ∈ T ∗PM, v ∈ TPM and k ∈ R. Having in mind the Riesz representation
theorem7, one has that:

∀ω ∈ T ∗PM ∃w ∈ TPM | ∀v ∈ TPM ω(v) = (w, v)

and one says that ω is the dual of w, and writes: ω = w∗. In this way one also refers
to T ∗PM (or in some contexts Λ1) as the dual space of TPM. Where (w, v) is the inner
product of w and v, see subsection 2.1.

One can go a step further and try to find a set of basis elements for this dual space, in
the same way it was done for the tangent space. By definition, there is an infinite number
of sets of basis elements, one is free to choose any one of them. A typical and easy choice
is to choose a specific set, denoted by dξi, such that:

dξi(∂j) = δi
j (6)

It is important to note that this relation does not imply that in no way dξi it the dual
of ∂i, it only specifies the action of the elements of the basis of T ∗PM on the elements
of TPM. To see how the duality pairing is one needs to use the Riesz representation
theorem. This states that if ∂∗i ∈ T ∗PM is the dual of ∂i ∈ TPM then:

∂∗i (∂j) = (∂i, ∂j) (7)

But also, since ∂∗i ∈ T ∗PM it must be represented as a linear combination of the basis
elements:

∂∗i = cikdξ
k (8)
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But putting (7) and (8) together, yields:

cikdξ
k(∂j) = (∂i, ∂j) (9)

using (6) and (5) one sees that:

cikδ
k
j = cij = (∂i, ∂j) = gij (10)

With this equation it is straightforward to introduce the so called musical isomorphisms:
the flat operator, [, and the sharp operator, ].

Definition 7.
The [ operator, [ : TPM 7→ T ∗PM, is an operator that maps the elements of the TPM
into their dual elements in T ∗PM in the following way:

[ : ∂i 7−→ ∂∗i = gijdξ
j

where gij = (∂i, ∂j).

Due to this relation, it is possible to transform tangent vectors into cotangent vectors in
the following way:

[ : w = wi∂i 7−→ w∗ = w[ = wigijdξ
j, ∀w ∈ TPM (11)

If one looks at this operation in matrix form, one sees that one set of coefficients is
transformed into the other simply multiplying by a matrix whose coefficients are the gij

coefficients introduced in (10): ω1

...
ωn

 =

 g11 · · · g1n
...

. . .
...

gn1 · · · gnn


 w1

...
wn


hence, inverting the matrix, one gets the inverse transformation:

Definition 8.
The ] operator, ] : T ∗PM 7→ TPM, is an operator that maps the elements of the T ∗PM
into their dual elements in the TPM in the following way:

] : dξi 7−→
(
dξi
)∗

=
(
dξi
)]

= gij∂j

Where the coefficients gij are the coefficients of the inverse matrix of the matrix whose
coefficients are the metric coefficients, gij, and hence: gikgnk = gikgkn = δi

n, where for the
first equality the fact that the metric is symmetric was used to interchange indices.

For the cotangent space, T ∗PM, given the inner product defined for the tangent space,
TPM, in subsection 2.1, one can induce an inner product in the following way:
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Definition 9.
Let M be a manifold, each point P ∈ M of the cotangent space T ∗PM can be provided
with a positive-definite inner product, gP (·, ·) or (·, ·)P :

gP : T ∗PM× T ∗PM→ R

given by, for α, β ∈ T ∗PM:
(α, β) :=

(
α], β]

)
Where

(
α], β]

)
is the inner product of the tangent vectors α] and β], duals of α and β,

respectively, and the definition (5), of inner product of tangent vectors, and the defini-
tion (8), of sharp operator, were used.

In this way, and in local coordinates, the inner product between two cotangent vectors
of a Riemannian manifold, α = αidξ

i and β = βidξ
i, becomes:

(α, β) = αiβjg
ij

Coordinate representations are different but they render coordinate free geometrical prop-
erties such as angles and lengths.

2.3 Wedge product and k-forms

It was seen previously in Section 2.2, that any 1-form, α1, can be written, in a particular
coordinate system, using the basis 1-forms dξi, as:

α1 = αidξ
i (12)

It was also seen in definition (6) that differential forms, α1 = αidξ
i ∈ T ∗PM, are function-

als, ω : TPM→ R, acting on tangent vectors v = vi∂i ∈ TPM such that:

α1(v) = αiv
i (13)

independent of the coordinate system, due to the transformation of vectors and 1-forms.
Several operators acting on differential forms will be introduced here. The most simple

one being the tensor product, ⊗, of m 1-forms, iα
1 ∈ T ∗PM:

1α
1 ⊗ · · · ⊗ iα

1 ⊗ · · · ⊗ mα
1 : TPM× · · · × TPM× · · ·TPM 7→ R (14)

which, for iv ∈ TPM, is defined in the following way:

1α
1 ⊗ · · · ⊗ iα

1 ⊗ · · · ⊗ mα
1(1v, · · · , iv, · · · ,mv) := 1α

1(1v) · · · iα1(iv) · · ·mα1(mv) (15)

A particularly important combination of tensor products is the wedge product, ∧:

∧ : T ∗PM× T ∗PM 7→ T ∗PM⊗ T ∗PM (16)
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which, for α1, β1 ∈ T ∗PM, is defined in the following way:

α1 ∧ β1 := α1 ⊗ β1 − β1 ⊗ α1 = σ2 (17)

Where σ2 ∈ T ∗PM×T ∗PM is an anti-symmetric differential form of rank 2, a 2-form. The
space of all anti-symmetric 2-forms is denoted by Λ2. Using (17) it is easy to show that
the wedge product has the following properties:

α1 ∧ β1 = −β1 ∧ α1 and α1 ∧ α1 = 0 (18)

It is possible20 to construct higher rank forms, k-forms, by wedging and adding k 1-forms.
The way to compute the wedge product between more than two 1-forms is shown for the
case of α1 ∧ β1 ∧ γ1:

α1 ∧ β1 ∧ γ1 = (α1 ⊗ β1 − β1 ⊗ α1) ∧ γ1

= (α1 ⊗ β1 − β1 ⊗ α1)⊗ γ1 − γ1 ⊗ (α1 ⊗ β1 − β1 ⊗ α1)

= α1 ⊗ β1 ⊗ γ1 − β1 ⊗ α1 ⊗ γ1 − γ1 ⊗ α1 ⊗ β1 + γ1 ⊗ β1 ⊗ α1

= σ3 (19)

Where σ3 ∈ T ∗PM× T ∗PM is a completely anti-symmetric diferential form of rank 3, a
3-form. Analogously, the space of all anti-symmetric 3-forms is designated by Λ3. This
process is easily extended to higher ranks, hence it is adequate to refer to Λk as the space
of all anti-symmetric k-forms, and Λ0 is the space of scalar functions, by definition. In a
coordinate basis a 1-form can be written as α1 = αidξ

i hence, following the definition of
wedge product any k-form, σk ∈ Λk can be written as:

σk = σi1...ikdξ
i1 ∧ . . . ∧ dξik , ii < . . . < ik (20)

note that Einstein’s notation is used, implying summation over repeated indices.
Having in mind that in a manifold M of dimension n, there are only n linearly inde-

pendent basis 1-forms, one can show that, at most, in a manifold of dimension n there
are differential forms of maximum rank n, that is, n-forms. Hence, in this way one can
state that the wedge product is an operator:

∧ : Λk × Λl 7→ Λk+l, k + l < n, (21)

And, by definition:
α0 ∧ β1 := α0β1, ∀α0 ∈ Λ0, ∀β1 ∈ Λ1 (22)

2.4 Exterior derivative

The exterior derivative, d, plays an important role in differential geometry and in a
n-dimensional space, is a mapping:

d : Λk 7→ Λk+1, k = 0, 1, . . . , n− 1, (23)

10



A. Palha, J. Kreeft and M. Gerritsma

which satisfies:

d
(
ωk ∧ αl

)
= dωk ∧ αl + (−1)kωk ∧ dαl, k + l < n (24)

and
ddαk := 0, ∀αk ∈ Λk (25)

and is defined for 0-forms, α0 ∈ Λ0, as:

dα0 :=
∂α0

∂ξi
dξi (26)

Having in mind (22), α1 = αidξ
i := αi ∧ dξi, and using (24):

dα1 := d(αi ∧ dξi) := (dαi) ∧ dξ1 + α0 ∧ ddξi = (dαi) ∧ dξ1 (27)

Where (25) was used. This equation can be further expanded into:

dα1 =
∂αi

∂ξj
dξj ∧ dξi (28)

It follows directly that, on an n-dimensional manifold:

dαn = 0, ∀αn ∈ Λn (29)

It is possible to show6 that differential k-forms are naturally integrated over k-dimensional
manifolds. Moreover it is also possible to prove Stokes’ theorem which generalizes several
integral theorems of vector calculus:∫

Ωk+1

dαk =

∫
∂Ωk+1

αk (30)

2.5 Hodge-?

The Hodge-? operator, ?, on an n-dimensional manifold, is a mapping:

? : Λk 7→ Λn−k, k ≤ n, (31)

that satisfies:
α ∧ ?β = (α, β)ωn, ∀α, β ∈ Λk. (32)

where ωn is the normalized volume form defined as ωn := 1∧?1 and given on a coordinate
system as ωn =

√
|g|dξ1 ∧ . . . ∧ dξn. One important point to note here is the fact that,

contrary to theexterior derivative, d, the Hodge-? is metric dependent and hence local
in nature, since the metric has a local nature. As will be seen in Section 3, metric
dependent operators turn out to be the most difficult to discretize and are the ones where
all approximation takes place. Hence, one can say that the crucial point of a proper
discretization lies in the discretization of the Hodge-? and of the interior product, ιv, with
a vector field, v. It is also important to introduce the L2 inner product of two k-forms,
αk, βk ∈ Λk, 〈αk, βk〉:

〈αk, βk〉 :=
(
αk, βk

)
ωn (33)

where ωn is the normalized volume form defined previously.

11
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2.6 Interior product and Lie derivative

The interior product, ιv, of a vector v, acting a differential k-form, αk, is a linear
mapping:

ιv : Λk 7→ Λk−1 (34)

Defined in the following way on 1-forms, α1 ∈ Λ1:

ιvα
1 := α1(v), ∀α1 ∈ Λ1, v ∈ TPM (35)

and in the following way on 0-forms:

ιvα
0 := 0, ∀α0 ∈ Λ0, v ∈ TPM (36)

and with the following distribution property with the wedge product, ∧:

ιv(αp ∧ βq) := (ιvα
p) ∧ βq) + (−1)pαp ∧ (ιvβ

q), ∀αp ∈ Λp, βq ∈ Λq, v ∈ TPM (37)

The Lie derivative, Lv, acting a differential k-form, αk, is a linear mapping:

Lv : Λk 7→ Λk (38)

Using Cartan’s magic formula one can express the Lie derivative, Lv as:

Lv := dιv + ιvd (39)

Given the properties of the interior product, ιv, and of the exterior derivative, d, it follows
directly that, on an n-dimensional manifold:

Lvα
0 = ιvdα

0, ∀α0 ∈ Λ0 (40)

because of (36), and that:
Lvα

n = dιvα
n, ∀αn ∈ Λn (41)

because of (29).

3 DISCRETE DIFFERENTIAL GEOMETRY

The process of discretizing a physical process modeled by a differential equation involves
two distinct, although connected since both influence each other, steps: the discretiza-
tion of the physical quantities and the discretization of the operators that establish the
relations between them and with the physical space-time in which they lie. One will
start by introducing the discretization of differential forms and then will introduce the
discrete exterior derivative, a purely topological operator, and then the discrete Hodge-?
and metric dependent operators. It will become clear that the discretization of the exte-
rior derivative, being of topological nature, can be done exactly with no error involved,
contrasting with all metric dependent operators that due to their local nature can only
be approximated. Hence the crucial point of a good discretization scheme resides in the
way in which the metric dependent operators are approximated.
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σ ∂σ ∂∂σ P1 P2

P3P4

L1

L2

L3

L4 S1

Figure 1: Left: the boundary of a cube and the corresponding boundaries of each face of
the boundary of the cube. Right: orientation of a surface and of the lines that constitute
its boundary, L3 and L4 have an opposite orientation to the one of the boundary of S1,
induced by the orientation of S1, and L1 and L2 have the same orientation of the one of
the boundary of S1, induced by the orientation of S1.

3.1 Discrete differential forms and Discrete exterior derivative

The process of discretization of physical quantities, hence differential forms, can be
seen simply as a choice of a finite set of degrees of freedom (or samples), that are used to
represent a continuous physical quantity. With this finite representation one can easily
represent the physical quantities as finite dimensional column vectors, and all linear oper-
ators acting on them as matrices. Although, in principle, the choice of degrees of freedom
is arbitrary, it turns out that some choices are be better than others. This choice explicitly
determines how the discrete operators are. Here, one will try to give a motivation for the
choice made for the degrees of freedom used to discretize differential forms, avoiding as
much as possible an ad hoc introduction.

It was stated before, see subsection 2.4, that k-forms are naturally integrated over
k-dimensional manifolds. Another property that was introduced was Stokes’ theorem:∫

Ωk+1

dαk =

∫
∂Ωk+1

αk (42)

This, again, stresses the important role that integration plays in differential forms and
their relation to differentiation. Let one consider a 3-dimensional space, say R3. See
figure (1).

Here, Stokes’ theorem for 0-forms becomes:∫
Ω1

dα0 = α0(P2)− α0(P1), ∀α0 ∈ Λ0 (43)

with Ω1 a curve in R3, starting at point P1 and ending at point P2. Now, for the case of
1-forms, Stokes’ theorem becomes:∫

Ω2

dα1 =

∫
∂Ω2

dα1, ∀α1 ∈ Λ1 (44)
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with Ω2 a surface in R3. Now, consider that Ω2 is a square in the xy-plane, whose
bottom, top, left and right boundaries are ∂Ω2

y−, ∂Ω2
y+, ∂Ω2

x−, ∂Ω2
x+, and are oriented in

the positive direction of the axis., then:∫
Ω2

dα1 =

∫
∂Ω2

dα1 =

∫
∂Ω2

y−

dα1 −
∫

∂Ω2
y+

dα1 +

∫
∂Ω2

x+

dα1 −
∫

∂Ω2
x−

dα1, ∀α1 ∈ Λ1 (45)

The same can be done for a 2-form, if with Ω3 in this case is a cube with faces parallel to
the coordinate axis, denoted by ∂Ω3

x+, ∂Ω3
x−, ∂Ω3

y+, ∂Ω3
y−, ∂Ω3

z+ and ∂Ω3
z−, and oriented

in the positive direction of the axis, then:∫
Ω3

dα2 =

∫
∂Ω3

α2 =

∫
∂Ω3

x−

α2−
∫

∂Ω3
x+

α2 +

∫
∂Ω3

y−

α2−
∫

∂Ω3
y+

α2 +

∫
∂Ω3

z−

α2−
∫

∂Ω3
z+

α2 (46)

valid for all α2 ∈ Λ2. For a 3-form, since dα3 := 0, in any 3-dimensional manifold, (29),
then its integral must also be zero.

Having in mind these last four equations, it makes sense, although not a trivial step, to
use as degrees of freedom for k-forms their integrals over a set of k-dimensional manifolds.
In this way, 0-forms can be represented by their values at a set of points, 1-forms by their
line integrals over a set of curves, 2-forms by their surface integrals over a set of surfaces,
3-forms by their volume integral over a set of volumes, and so on. This not only makes
sense but also is compatible with the exterior derivative and Stokes’ theorem.

The choice of geometrical objects where to sample the differential forms, although
endowed with some freedom is not completely arbritrary. Again, using Stokes’ theorem,
one sees that the exterior differentiation combined with integration relate geometrical
objects with their boundary. Hence it is necessary to construct the geometrical objects
such that the set of geometrical objects on the boundary of each geometrical object Ωk,
is contained in the set of geometrical objects Ωk−1, that is:

∀Ωk ∈ Ck ⇒ ∂Ωk
i ⊆ Ck−1 (47)

where Ck is the set of all geometrical objects of k-dimension taken as integration domains
for the discretization of k-forms. This is satisfied by a tesselation 8 of the space-time, in
which the phenomena occur, with convex polytopes 8, that is, a usual mesh in which nodes,
edges, faces, volumes, and so on, now all play an equivalent role.

With this introduction, one can define the discretization, or reduction, operator, Rk,
of a k-form, given a tesselation, T , of space-time:

Rk : Λk → Rm (48)

where m is the number of k-dimensional geometrical objects in the tesselation T . In this
way:

Rk(αk) = vk = [vi] =

[∫
Ωk

i

αk

]
, vk ∈ Rm, Ωk

i ∈ T (49)
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In this way it is possible to construct an exterior differentiation that exactly represents the
continuous one, if done properly. Let βk ∈ Λk and αk+1 ∈ Λk+1 be such that dβk = αk+1.
Moreover, let their discretizations be Rk(βk) = bk and Rk(αk+1) = Rk(dβk) = ak+1

then one wishes to have that the discrete exterior derivative acting on discrete k-forms,
Dk = [Dk

ij], to exactly satisfy:

DkRk(βk) = Rk+1(dβk) = Rk+1(αk+1) (50)

Which is, in terms of the discretized forms:

Dkbk = ak+1 (51)

But, using Stokes’ theorem, (42):∫
Ωk+1

i

αk+1 =

∫
∂Ωk+1

i

dβk =

∫
∂Ωk+1

i

βk =
∑

j

ck+1
ji

∫
Ωk

j∈∂Ωk+1
i

βk (52)

where ck+1
ji are coefficients that relate the orientation of the boundary of the geometrical

object Ωk+1
i to the geometrical object Ωk

j , -1 if they have opposite orientations, 1 if they

have the same orientation and 0 if Ωk
j /∈ ∂Ωk+1

i . One can define a matrix of these coeffi-

cients, Ck+1, as Ck+1 = [ck+1
ij ]. In this way, combining the definition of the discretization

of a k-form, (49), with (52), yields:

ak+1 = (Ck+1)t bk (53)

where (Ck+1)t is the transpose of the matrix Ck+1. Combining (51) with (53), follows
directly that:

Dk = (Ck+1)t (54)

This relation is very important since it can be shown9,14,15 that Ck+1 = ∂k+1, with ∂k+1

the discrete boundary operator, that acts on geometrical objects of dimension k+1, hence,
the formal discrete duality pairing can be made:

〈Dkak,Ωk+1〉 = 〈ak, ∂k+1Ωk+1〉 (55)

since Dk = (∂k+1)t. This mimics exactly the continuous one:

〈dαk,Ωk+1〉 :=

∫
Ωk+1

dαk =

∫
∂Ωk+1

αk := 〈αk, ∂Ωk+1〉 (56)
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3.2 Discrete metric dependent operators

As stated previously, metric dependent operators are the most difficult to discretize
and are the ones that yield all approximations the scheme will contain. In this section one
will introduce a method to discretize any metric dependent operator. The idea behind
this method lies in the reconstruction of an approximation of the continuous differential
form from the discretized one. One stresses approximation since, upon discretization,
part of the information contained in the original continuous differential form is lost and
cannot be retrieved since the discretization is nothing but a projection operator from a
higher dimensional space onto a smaller dimensional space. The reconstruction process
is, essentially, an histopolation11,18, Ik

p , that takes the discrete degrees of freedom and
maps them into a continuous, polynomial of order p, differential form:

Ik
p : Rm 7→ Λk

p ⊂ Λk (57)

that acts on discrete differential k-forms, ak ∈ Rm in the following way:

Ik
p (ak) :=

∑
i

ak
i ε

k,p
i (x1, . . . , xn) (58)

Where εk,p
i are k-form basis functions11,18 of order p. For a 0-form, the reconstruction

operator I0
p is the usual nodal interpolation operator of order p. For higher rank forms,

they are designated in the literature as edge basis functions11.
Having introduced the p order reconstruction operator of k-forms, Ik

p , the procedure to
discretize any metric dependent operator, or combination of them, is done in the following
way. Reconstruct the differential form using the reconstruction operator, then find the
discrete version of the operator that minimizes the difference in the L2 norm, (33). Let
us consider an example arbitrary metric dependent operator, F, and its discrete version,
Sk

p = [Sk,p
ij ], which as already stated, can be any combination of operators, for example ?,

ιv or ιv?:
F : Λk 7→ Λq, Sk

p : Rn 7→ Rm (59)

We have, for αk = Ik
p (ak) and βk = Iq

p(bq), in the continuous level and in the discrete
level:

αk := Fβq, ak ≈ Sq
pb

q (60)

Hence, Sk
p is found by setting to zero the following difference in the L2 inner product:

〈Ik
p (ak)−FIq

p(bq), εk,p
j 〉 = 0, ∀εk,p

j ,∀bq (61)

Which, using (60) gives:

〈Ik
p (Sq

pb
q)−FIq

p(bq), εk,p
j 〉 = 0, ∀εk,p

j ,∀bq (62)
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And using the definition of the reconstruction operator, (58), gives:

〈
∑
i,l

Sq,p
il b

q
l ε

k,p
i −F(

∑
l

bql ε
q,p
l ), εk,p

j 〉 = 0, ∀εk,p
j ,∀bq (63)

Taking all constants outside, by linearity of the L2 inner product, and noting that, by
linearity of F operator, one can interchange constants with F:∑

i,l

Sq,p
il b

q
l 〈ε

k,p
i , εk,p

j 〉 −
∑

l

bql 〈Fεq,p
l , εk,p

j 〉 = 0, ∀εk,p
j ,∀bq (64)

In matrix notation this is:

Ek
pS

q
pb

q − (E
q,k

p )tbq = 0, ∀bq (65)

Where, Ek
p = (Ek

p )t = [〈εk,p
i , εk,p

j 〉] and E
q,k

p = [〈Fεq,p
l , εk,p

j 〉]. Which implies that:

Sq
p = (Ek

p )−1(E
q,k

p )t (66)

4 ADVECTION EQUATION

4.1 Continuous formulation

As mentioned in Section 1, the advection equation in vector notation can be represented
in the following way:

∂ρ

∂t
+∇ · (vρ) = 0 (x, t) ∈ Ω× [0, T ], ρ(t, ∂Ωin) = ρb(t), ρ(0,x) = ρ0(x) (67)

This is the differential formulation of the advection equation of the scalar quantity ρ by
the flow v. It is possible to integrate it in space and time and obtain the equivalent
integral formulation, valid for any space-time volume Ω ⊆ Ω× [0, T ]:∫

Ω

∂ρ

∂t
dV dt+

∫
Ω

∇ · (vρ) dV dt = 0, ∀Ω (68)

The divergence operator ∇·, which is space like only, can be extended to a space-time
divergence operator, ∇·, in a straightforward way: ∇· := ( ∂

∂x1 , . . . ,
∂

∂xn ,
∂
∂t

)·. In this way,
introducing the space-time current vector, J := (vρ, ρ), one can express (68) in the
following form: ∫

Ω

∇ · J dV dt = 0, ∀Ω (69)

Using Gauss’s theorem, this space-time volume integral can be expressed as a flux integral
over the space and time boundaries:∫

∂Ω

J · n dS = 0, ∀Ω ⊆ Ω× [0, T ] (70)
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This space-time formulation simply states that the content of the quantity advected, at
any time instant, t + ∆t, is equal to what was there at time instant t plus the balance
between what flowed into and out of the domain.

Using differential geometry, an equivalent equation is derived, rendering an appropriate
discretization scheme since all physical quantities are associated to proper differential
forms and, as was seen previously in Section 3, there is a direct discrete analogue to
each differential form and each operator. If one introduces the space-time velocity vector
v := vi∂i + ∂t, and the space-time scalar quantity 0-form, ρ0 = ρ, then the following
equation is equivalent to (67):

Lv ? ρ
0 = 0, ∀Ω ⊆ Ω× [0, T ] (71)

It is not immediate that this equation is the analogous of (67). It seems unnatural to
start with a 0-form and then apply the Hodge-? to it: why not start with a volume form
directly? The reason being the fact that physically ρ0, the space-time 0-form, is not the
usual density ρ that is naturally integrated in space, although related in the following
way. As pointed previously, the space-time velocity, v, contains a space-like component
and a time-like component. In this way, when one usually refers to zero velocity in fact
one moves in space-time with the velocity v = ∂t. Hence the usual density, naturally
integrated in space, in terms of space-time differential forms, is a time-like flux, that is,
a space-like (n)-form in the (n+1)-dimensional space-time, the space-like components of
the mass current form, jn. This mass current form is given by ?(ρ0 ∧ v[) which can be
rewritten as6 ιv ? ρ

0. The statement that jn should be conserved, leads directly to the
conservation equation:

djn = dιv ? ρ
0 (72)

This, noting that ?ρ0 is an (n+ 1)-form in space-time and hence (41) holds, lead directly
to (71). This is a common formulation of advection in relativistic hydrodynamics23.
Nevertheless, an interesting point that certainly deserves further investigation is the Lie
advection of the volume form, ρn+1 = ?ρ0, directly. To show that (71) is in fact equivalent
to (67) one just needs to use Cartan’s magic formula, (39), the definition of the Hodge-?
operator, (32), and to use the relation d ? α0 = 0, valid for all α0 ∈ Λ0, obtaining:

Lv ? ρ
0 = dιv ? ρ

0 = dιv ρ dθ ∧ dt = 0 (73)

where θ := dx1 ∧ . . . ∧ dxn is the space-like volume form. Using the definition of interior
product, (35) and (37):

Lv ? ρ
0 = d

(
ρvidθ|i ∧ dt+ (−1)nρdθ

)
= 0 (74)

where θ|i := dx1∧ . . .∧ (dxi)∧ . . .∧dxn, (dxi) meaning that the term dxi does not appear.
It is clear, see (38), that Lv ? ρ

0 is a space-time (n+ 1)-form, that is, a space-time volume
form, hence naturally integrated over a space-time manifold of dimension n+ 1, Ω:∫

Ω

Lv ? ρ
0 =

∫
Ω

d
(
ρvidθ|i ∧ dt+ (−1)nρdθ

)
= 0 (75)
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Which is simply a formulation of (69) in terms of concepts of differential geometry. Using
the generalized Stokes theorem, (30), one can write:∫

Ω

Lv ? ρ
0 =

∫
∂Ω

ρvidθ|i ∧ dt+ (−1)nρdθ = 0 (76)

Which, again, is simply a formulation of (70) in terms of concepts of diferential geometry.
In this way, solving (69) or (70) is equivalent to solving (67), with the advantage that a
proper discretization scheme is straightforwardly obtained from Section 3. This will be
presented next.

4.2 Discrete formulation

For the implementation of the discretization of the advection equation one takes its
differential form formulation, (75) identical to (72). With this, one has two distinct, but
related, physical quantities: ρ0, a space-time 0-form, and mass current j1 a space-time
(n)-form, if space has dimension n. These two physical quantities are related by a metric
dependent operator: ιv?. And an additional topological relation that states that the
mass current, jn, has exterior derivative, d, identical to zero. Hence, following the path
presented in Section 3, one needs to discretize one 1-form, one n-form and two operators,
one metric dependent, ιv? and another an exterior derivative, metric independent.

For the discretization of the differential forms, one uses nodal basis functions of order
p for the zero form, and edge basis functions of rank n and order p for the n-form, hence
defining their degrees of freedom as point evaluations, 0-form, and as n-dimensional flux
integrals,:

Rk(ρ0) = ρ0, Rk(jn) = jn (77)

For the exterior derivative, (54) is used. As for ιv?, its discrete counterpart, Sq
p is given

by:

S0
p = (En

p )−1(E
n,0

p )t (78)

Where, En
p = (En

p )t = [〈εn,p
i , εn,p

j 〉] and E
0,k

p = [〈ιv ? ε0,p
l , εn,p

j 〉]. This will yield the following
system of equations: (

En
p (E

n,0

p )t

Dn 0

)(
j1

ρ0

)
=

(
0
0

)
(79)

4.3 Numerical results and discussion of results

As a preliminary study of this numerical scheme, it was applied, for (1+1)-space-time,
to the linear advection in a steady and uniform velocity field, v = ∂x + ∂t, over the
time intervals, T = 8.0s, 95s, for cosine hill and square wave initial condition, periodic
boundary conditions spatial length, Lx = 5.0m. These computations where performed
for four different CFL numbers: 0.8, 1.0, 1.8 and 9.0, obtaining the following results: One
can see, observing figure (2), that the numerical scheme presented behaves very well for a
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Figure 2: Left: cosine hill advection. Right: square wave advection. Both: CFL=1.0,
p=1, ∆ x=0.05, ∆ t=0.05.

CFL=1, not dissipating energy and preserving the speed and shape of the traveling wave.
Observing figure (3) it is possible to state that the scheme behaves well for the advection
of the cosine hill, but for a square wave spurious oscillations appear. An interesting point
is the fact that this oscillations do not increase in time, they are kept with a bounded
amplitude. This effect was noticed in all discontinuous traveling waves tested. Looking at
figure (4) it is possible to see that the scheme preserves mass exactly, as expected, since
the conservation of mass is explicitly introduced in the scheme. A surprising fact is the
almost conservation of energy, which oscillates but does not diverge from the initial value
at t = 0.
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Figure 3: Left: cosine hill advection. Right: square wave advection. Both: CFL=0.8,
p=1, ∆ x=0.0521, ∆ t=0.0417.
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Figure 4: Left: Mass conservation at each time step. Right: Energy conservation at each
time step. Both: CFL=0.8, p=5, ∆ x=0.1562, ∆ t=0.1250, advection of a cosine hill.

5 CONCLUSIONS

In this work, a mimetic scheme for the solution of the advection equation in space-
time is presented. Taking as a starting point the framework of differential geometry, it is
possible to develop a numerical scheme capable of capturing many structural properties
of the differential equation that it tries to solve. In doing so, one obtained a reasonably
stable scheme that is capable of adequately advecting smooth initial conditions for large
time intervals with no dissipation and spurious oscillations. The not so good behaviour
of this scheme for discontinuous initial conditions alerts to the possibility of existence of
some inconsistencies in the development of the scheme. In this way, further research is to
be taken in this direction, given the promising results obtained.
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