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Abstract. This work presents a numerical technique for solving the Second Order Fluid
constitutive equation for three-dimensional free surface flows. The governing equations are
solved by the finite difference method on a 3D-staggered grid. The freee surface is modeled
by a Marker-and-Cell type and the full free surface stress conditions are employed. The
numerical method developed in this work is validated by comparing the numerical predic-
tions obtained for the flow in a tube with the corresponding analytic solution for Second
Order Fluids. By using mesh refinement, the convergence of the numerical technique is
verified. The time-dependent extrudate swell is simulated for various values of the Deborah
number.

1 INTRODUCTION

Many processes in polymer industries involve free surface flows of complex fluids. For
example, the extrusion and the filling of containers with fluids having complex rheology.
These problems have motivated the development of numerical methods so that these prob-
lems can be studied via simulation. For instance, the rheological models Upper-Convected
Maxwel (UCM), Oldroyd-B and Phan-Thien-Tanner (PTT) have been considered by many
investigators and a variety of techniques for simulating viscoelastic flows using these mod-
els have been developed. See for example, Carew et al [11], Marchal and Crochet [16],
Phillips and Williams [5], Xue et al. [7], Yoo and Na [8], among many other researchers.
The problems treated have been the flow through a 4:1 contraction in two and three
dimensions (e.g. Alves et al. [4], Phillips and Williams [5], Yoo and Na [8], Mompean
and Deville [17], Xue et al. [7])). The extrudate swell problem has also been studied by
many investigators (e.g. Brasseur et al. [10], Crochet and Keunings [18, 25], Tomé et
al. [15], to cite only a few). Moreover, viscoelastic flows governed by the constitutive
equation Criminale-Ericksen-Filbey (CEF), which is known as Second Order Fluid, has
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been little studied. Among the works that deal with free surface flows using this consti-
tutive equation we can mention the work of Gast and Ellington [20] who employed the
FIDAP code [19] to simulate two-dimensional extrudate swell of a Second Order Fluid.
However, Gast and Ellington [20] presented results for fluids with small elasticity where
the Deborah number (De) was of order 0.1. More recently, Tomé et al. [9] presented a
numerical method for solving two-dimensional free surface flows governed by the Second
Order Fluid constitutive equation. More specifically, Tomé et al. [9] employed marker
particles [21] and developed a finite difference technique for solving the governing equa-
tions. The full free surface stress conditions were treated in details. Results for the flow in
a 4:1 contraction and the extrudate swell of fluids with high viscoelasticity were obtained.

The aim of this work is to extend the technique presented by Tomé et al. [9] to
three-dimensional flows of Second Order Fluids. We use the Marker-and-Cell method to
represent the fluid [1] and present a finite difference technique for solving the governing
equations. The numerical method developed is then validated against an analytic solution
for steady tube flow of Second Order Fluids. Numerical results include the simulation of
the transient extrudate swell of Second Order Fluids for several values of the Deborah
number.

2 PROBLEM FORMULATION

The governing equations for incompressible flows of a Second Order Fluid are the mass
conservation (1), the momentum equation (2) and the constitutive equation (3), as follows:

∇ · u = 0 , (1)

ρ

(
∂u

∂t
+∇ · (uu)

)
= −∇p+∇ · τ + ρg , (2)

τ = η0

[
D + λ2

∇
D + λ4 (D ·D)

]
, (3)

where u is the velocity field, ρ is the fluid density, p is the pressure field, g is the gravity
field, τ is the extra-stress tensor. The rate-of-strain tensor D and the upper convected

derivative
∇
D are given by

D = ∇u + (∇u)T ,
∇
D =

∂D

∂t
+∇ · (uD)−

[
(∇u)T ·D + D · ∇u

]
, (4)

respectively. In the constitutive equation (3), η0 denotes the viscosity of the fluid and
the parameters λ2 and λ4 represent material properties. To solve equations (2)-(3) we
write the extra-stress tensor τ as a sum of a Newtonian tensor η0D and a Non-Newtonian
tensor η0Φ

τ = η0

[
D + Φ

]
(5)
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where Φ is given by

Φ = λ2

∇
D + λ4(D ·D) . (6)

Introducing (5) into the momentum equation (2) it becomes

∂u

∂t
+∇ · (uu) = −∇p+

(
η0

ρ

) [
∇2u +∇ ·Φ

]
+ g, (7)

where p denotes the pressure per unit of density.

2.1 Basic Equations

We consider three-dimensional Cartesian free surface flows and use the notation

u =

 u
v
w

 , D =

 Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 , τ =

 τxx τxy τxz

τxy τ yy τ yz

τxz τ yz τ zz

 . (8)

Let L and U be length and velocity scales, respectively. We employ the nondimensional-
ization

x̄ =
x

L
, ū =

u

U
, p̄ =

p

ρU2
, ḡ =

g

g
, t̄ =

U

L
t.

Therefore, equations (1), (7) and (6) can be written as (the bars have been dropped for
clarity)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (9)

∂u

∂t
+

∂(u2)
∂x

+
∂(uv)

∂y
+

∂(uw)
∂z

= −∂p

∂x
+

1
Re

[∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

+
∂Φxx

∂x
+

∂Φxy

∂y
+

∂Φxz

∂z

]
+

1
Fr2

gx ,

(10)

∂v

∂t
+

∂(uv)
∂x

+
∂(v2)
∂y

+
∂(vw)

∂z
= −∂p

∂y
+

1
Re

[∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

+
∂Φxy

∂x
+

∂Φyy

∂y
+

∂Φyz

∂z

]
+

1
Fr2

gy ,

(11)

∂w

∂t
+

∂(uw)
∂x

+
∂(vw)

∂y
+

∂(w2)
∂z

= −∂p

∂z
+

1
Re

[∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

+
∂Φxz

∂x
+

∂Φyz

∂y
+

∂Φzz

∂z

]
+

1
Fr2

gz .

(12)
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Φxx =De

{
∂Dxx

∂t
+

∂(uDxx)
∂x

+
∂(vDxx)

∂y
+

∂(wDxx)
∂z

− 2

[ (
∂u

∂x
Dxx

)
+

(
∂u

∂y
Dxy

)
+

(
∂u

∂z
Dxz

) ]}
+ κ

[
(Dxx)2 + (Dxy)2 + (Dxz)2

]
,

(13)

Φxy =De

{
∂Dxy

∂t
+

∂(uDxy)
∂x

+
∂(vDxy)

∂y
+

∂(wDxy)
∂z

−

[ (
∂v

∂x
Dxx

)
+

[(
∂u

∂x
+

∂v

∂y

)
Dxy

]
+

(
∂v

∂z
Dxz

)
+

(
∂u

∂y
Dyy

)

+
(

∂u

∂z
Dyz

) ]}
+ κ

[
(DxxDxy) + (DxyDyy) + (DxzDyz)

]
(14)

Φxz =De

{
∂Dxz

∂t
+

∂(uDxz)
∂x

+
∂(vDxz)

∂y
+

∂(wDxz)
∂z

−

[ (
∂w

∂x
Dxx

)
+

(
∂w

∂y
Dxy

)
+

[(
∂u

∂x
+

∂w

∂z

)
Dxz

]
+

(
∂u

∂y
Dyz

)

+
(

∂u

∂z
Dzz

) ]}
+ κ

[
(DxxDxz) + (DxyDyz) + (DxzDzz)

]
(15)

Φyy =De

{
∂Dyy

∂t
+

∂(uDyy)
∂x

+
∂(vDyy)

∂y
+

∂(wDyy)
∂z

− 2

[ (
∂v

∂x
Dxy

)
+

(
∂v

∂y
Dyy

)
+

(
∂v

∂z
Dyz

) ]}
+ κ

[
(Dxy)2 + (Dyy)2 + (Dyz)2

]
(16)
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Φyz =De

{
∂Dyz

∂t
+

∂(uDyz)
∂x

+
∂(vDyz)

∂y
+

∂(wDyz)
∂z

−

[ (
∂w

∂x
Dxy

)
+

(
∂v

∂x
Dxz

)
+

(
∂w

∂y
Dyy

)
+

[(
∂v

∂y
+

∂w

∂z

)
Dyz

]

+
(

∂v

∂z
Dzz

) ]}
+ κ

[
(DxyDxz) + (DyyDyz) + (DyzDzz)

]
(17)

Φzz =De

{
∂Dzz

∂t
+

∂(uDzz)
∂x

+
∂(vDzz)

∂y
+

∂(wDzz)
∂z

− 2

[ (
∂w

∂x
Dxz

)
+

(
∂w

∂y
Dyz

)
+

(
∂w

∂z
Dzz

) ]}
+ κ

[
(Dxz)2 + (Dyz)2 + (Dzz)2

]
.

(18)

where

D =

 2∂u
∂x

∂u
∂xy

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂u
∂xy

+ ∂v
∂x

2∂v
∂v

∂v
∂z

+ ∂w
∂y

∂u
∂z

+ ∂w
∂x

∂v
∂z

+ ∂w
∂y

2∂w
∂z

 . (19)

In equations above, Re = ρ U L
η0
, F r = U√

Lg
, De = λ2

U
L
, are the Reynolds, Froude and

Deborah numbers, respectively. The nondimensional number κ is defined by κ = λ4
U
L
.

To simulate three-dimensional free surface flow of a Second Order Fluid, we need to
solve equations (9)-(19) subject to appropriate boundary conditions.

2.2 Boundary Conditions

On rigid boundaries we adopt the no-slip condition (u = v = w = 0) while at fluid
entrances (inflows) the normal velocity is prescribed by un = uinf and the tangential
velocities are zero (um1 = um2 = 0). On fluid exits (outflows) the homogeneous Neumann
condition ∂u

∂n
= ∂v

∂n
= ∂w

∂n
= 0 (here n denotes a normal direction to the boundary and

m1,m2 tangential directions).
We consider a viscous fluid flowing into a passive atmosphere so that the components

of the stress tensor must be continuous throughout the free surface. Thus, if one neglect
surface tension effects, the appropriate conditions on the free surface are (see Batchelor
[2], page 153)

n · (σ · n) = 0 , (20)

m1 · (σ · n) = 0 , (21)

m2 · (σ · n) = 0 , (22)

where n is the outward unit normal vector to the free surface and m1,m2 are unit
tangential vectors and σ is the total stress tensor σ = −pI + 1

Re

[
D + Φ

]
.
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3 METHOD OF SOLUTION

To solve equations (9)-(19) together with the boundary conditions we employ the
GENSMAC3D methodology of Tomé et al. [14] as follows.

Suppose that u(x, tn) is known and boundary conditions for velocity and pressure are
given. Then, u(x, tn+1) where tn+1 = tn + δt can be calculated by the following steps:

1. With u(x, tn) compute the rate-of-strain tensor D(x, tn) by (19) and then compute
the components of the non-Newtonian tensor Φ(x, tn) through equations (13)-(18).

2. Let p̃(x, tn) be a pressure field that satisfies the correct pressure condition on the
free surface. This pressure field is calculated such as the normal stress condition
(20) is satisfied.

3. Introduce Φ(x, tn) and D(x, tn) into the momentum equations (10)-(12) and com-
pute an intermediate velocity field ũ(x, tn+1) from

∂ũ

∂t
=

{
−∇ · (uu)−∇p̃+

(
1

Re

) [
∇2u +∇ ·Φ

]
+

1

Fr2
g
}n

. (23)

This equation is solved by the explicit Euler method. It can be shown that ũ(x, tn+1)
possesses the correct vorticity at time tn+1 but it does not satisfy the mass conser-
vation equation (9) (see Tomé et al. [6]). Let us define

u(x, tn+1) = ũ(x, tn+1)−∇ψ(x, tn+1) (24)

where the function ψ(x, tn+1) obeys the Poisson equation

∇2ψ(x, tn+1) = ∇ · ũ(x, tn+1). (25)

Therefore, u(x, tn+1) conserves mass and the vorticity remains inaltered.

4. Solve the Poisson equation (25).

5. Calculate the final velocity (24).

6. Compute the pressure by (see Tomé et al. [6])

p(x, tn+1 = p̃(x, tn) +
ψ(x, tn+1)

δt
. (26)

7. Update the marker particles positions. This last step find new positions for the
markers by solving

∂xP

∂t
= u(xP, tn+1) , (27)

for each particle xP . The fluid surface is defined by a piecewise linear surface
composed of triangles and quadrilaterals that have marker particles on their vertices.
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4 FINITE DIFFERENCE APPROXIMATION

The equations described in the procedure presented in the previous section are solved
by the finite difference method as follows. A staggered grid is employed: the pressure p,
potential function ψ and the non-Newtonian tensor Φ are positioned at cell centres while
the velocities u, v, w are located at cell faces (see figure 1a). In this work we intend to
simulate flows with moving free surfaces so that a procedure to identify the fluid region and
the fluid free surface is employed (see Castelo et al. [12] for details). To accommodate this,
the cells within the mesh are defined as: EMPTY CELLS (E) - cells that do not contain
fluid; FULL CELLS (F) - cells that contain fluid and do not have any face in contact
with an E-cell face; SURFACE CELLS (S) - cells that contain fluid and contains at least
one face in contact with an E-cell face; INFLOW CELLS (I) - cells that define an inflow
boundary; OUTFLOW CELLS (O) - cells that define an outflow boundary; BOUNDARY
CELLS (B) - cells that define a rigid boundary. An example of these cells is displayed in
figure 1b. The rate-of-strain tensor equation (19), the components of the non-Newtonian

a) b)

Figure 1: (a) Computational cell used; (b) type of cells employed by GENSMAC3D.

tensor equations (13)-(18) and the Poisson equation (25) are discretized at cell centres.
The velocities u, v, w are approximated at the nodes (i + 1

2
, j, k), (i, j + 1

2
, k), (i, j,+1

2
),

respectively. The time derivative is discretized by the explicit Euler method while the
Laplacian operator is approximated by second-order differences. The pressure gradient
and the divergence of the non-Newtonina tensor Φi,j,k are discretized by central differences.
The convective terms are approximated by the high order upwind CUBISTA scheme of
Alves et al. [3]. For instance, the x-momentum equation (10) is calculated by the following
difference equation
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ũn+1
i+ 1

2
,j,k

= un
i+ 1

2
,j,k

+ δt

{
− C(uu)

∣∣∣
i+ 1

2
,j,k

− C(vu)
∣∣∣
i+ 1

2
,j,k

− C(wu)
∣∣∣
i+ 1

2
,j,k

−
(

p̃i+1,j,k − p̃i,j,k

δx

)
+

1
Re

[
ui+ 3

2
,j,k − 2ui+ 1

2
,j,k + ui− 1

2
,j,k

δx2

+
ui+ 1

2
,j+1,k − 2ui+ 1

2
,j,k + ui+ 1

2
,j−1,k

δy2
+

ui+ 1
2
,j,k+1 − 2ui+ 1

2
,j,k + ui+ 1

2
,j,k−1

δz2

+
Φxx

i+1,j,k − Φxx
i,j,k

δx
+

Φxy

i+ 1
2
,j+ 1

2
,k
− Φxy

i+ 1
2
,j− 1

2
,k

δy
+

Φxz
i+ 1

2
,j,k+ 1

2

− Φxz
i+ 1

2
,j,k− 1

2

δz

]

+
1

Fr2
gx

}n

(28)

respectively. In equations above, the terms C(uu)
∣∣∣
i+ 1

2
,j,k
, · · · , C(ww)

∣∣∣
i,j,k+ 1

2

represent

finite difference approximations for the convective terms ∂(uu)
∂x

, · · · , ∂(ww)
∂z

. These approx-
imations are computed by the high order CUBISTA method [3]. Details of the finite
difference equations involved in the implementation of the CUBISTA method for three-
dimensional flows can be found in [13]. Some derivatives are calculated by terms which
are not defined in cell positions. These are computed by averaging the closest neighbours,
for instance, Φxy

i+ 1
2
,j+ 1

2
,k

and Φxy

i+ 1
2
,j− 1

2
,k

are computed by

Φxy

i+ 1
2
,j+ 1

2
,k

=
Φxy

i,j,k + Φxy
i+1,j,k + Φxy

i,j+1,k + Φxy
i+1,j+1,k

4
,

Φxy

i+ 1
2
,j− 1

2
,k

=
Φxy

i,j,k + Φxy
i+1,j,k + Φxy

i,j−1,k + Φxy
i+1,j−1,k

4
.

(29)

However, for cells that lie close to mesh boundaries the cross derivatives from the diver-
gence of the non-Newtoninan tensor Φ are calculated by a second order approximations.

For instance, with respect to figure 2a, the derivative∂Φxy

∂y

∣∣∣
i+ 1

2
,j,k

is obtained by differ-

entiating the second order interpolating polynomial of Φxy passing through the points
(i+ 1

2
, j, k), (i+ 1

2
, j+1, k), (i+ 1

2
, j+2, k) at the point (i+ 1

2
, j, k). In this case, we obtain

the formula
∂Φxy

∂y

∣∣∣
i+ 1

2
,j,k

=
−3Φxy

i+ 1
2
,j,k

+ 4Φxy

i+ 1
2
,j+1,k

− Φxy

i+ 1
2
,j+2,k

2δy
. (30)

The expressions for the other cross derivatives of the components of Φ are obtained
similarly.
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(a) (b)

Figure 2: Stencil employed to calculate ∂Φxy

∂y

∣∣∣
i+ 1

2 ,j,k
by a second order difference approximation.

4.1 Computation of rate-of-strain tensor D and non-Newtonian tensor Φ

The rate-of-strain tensor is computed at the centre of cells by second order differences
as follows. The diagonal components Dxx, Dyy, Dzz are straithforward calculated by

Dxx
i,j,k = 2

∂u

∂x

∣∣∣
i,j,k

, Dyy
i,j,k = 2

∂v

∂y

∣∣∣
i,j,k

, Dzz
i,j,k = 2

∂w

∂z

∣∣∣
i,j,k

, (31)

where

∂u

∂x

∣∣∣
i,j,k

=
ui+ 1

2
,j,k − ui− 1

2
,j,k

δx
,
∂v

∂y

∣∣∣
i,j,k

=
vi,j+ 1

2
,k − vi,j− 1

2
,k

δy
,
∂w

∂z

∣∣∣
i,j,k

=
wi,j,k+ 1

2
− wi,j,k− 1

2

δz
.

The off-diagonal components of D are obtained by

Dxy
i,j,k =

[∂u
∂y

+
∂v

∂x

]
i,j,k

, Dxz
i,j,k =

[∂u
∂z

+
∂w

∂x

]
i,j,k

, Dyz
i,j,k =

[∂v
∂z

+
∂w

∂y

]
i,j,k

, (32)

where the derivatives are calculated by central differences. For instance,

∂u

∂y

∣∣∣
i,j,k

≈
ui,j+ 1

2
,k − ui,j− 1

2
,k

δy
, (33)

where

ui,j+ 1
2
,k =

ui+ 1
2
,j,k + ui− 1

2
,j,k + ui+ 1

2
,j+1,k + ui− 1

2
,j+1,k

4

ui,j− 1
2
,k =

ui+ 1
2
,j,k + ui− 1

2
,j,k + ui+ 1

2
,j−1,k + ui− 1

2
,j−1,k

4
.

9
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The other cross derivatives are obtained similarly. However, for cells that are situated near
rigid boundaries or near the free surface, a second order formula similar to that employed
for computing the divergence of the non-Newtonian tensor Φ (see equation (30)) is used.

For instance, related to figure 2b, the value of ∂u
∂y

∣∣∣
i,j,k

is calculated by

∂u

∂y

∣∣∣
i,j,k

≈ −3ui,j,k + 4ui,j+1,k − ui,j+2,k

2δy
, (34)

where

ui,j,k =
ui+ 1

2
,j,k + ui− 1

2
,j,k

2
, ui,j+1,k =

ui+ 1
2
,j+1,k + ui− 1

2
,j+1,k

2
, ui,j+2,k =

ui+ 1
2
,j+2,k + ui− 1

2
,j+2,k

2
.

After computing the rate-of-strain tensor D for all interior cells in the mesh, the com-
ponents of the non-Newtonian tensor Φ, on the centre of the cells, are calculated from
equations (13)–(18). In this work we intend to simulate surface flows that reach a steady
state so that in equations (13)–(18) the time derivative was neglected. For instance, the
component Φxx

i,j,k was calculated by

Φxx
i,j,k =De

{
∂(uDxx)

∂x

∣∣∣∣
i,j,k

+
∂(vDxx)

∂y

∣∣∣∣
i,j,k

+
∂(wDxx)

∂z

∣∣∣∣
i,j,k

− 2

[ (
∂u

∂x
Dxx

) ∣∣∣∣
i,j,k

+

(
∂u

∂y
Dxy

) ∣∣∣∣
i,j,k

+

(
∂u

∂z
Dxz

) ∣∣∣∣
i,j,k

]}
+ κ

[
(Dxx)2

∣∣
i,j,k

+ (Dxy)2
∣∣
i,j,k

+ (Dxz)2
∣∣
i,j,k

]
,

(35)

The other components of Φ are obtained similarly (see Revoredo [24] for details).

4.2 Approximate boundary conditions on the free surface

To apply the boundary conditions on the free surface according to equations (20)–
(22), we suppose that the mesh spacing is small so that, locally, the free surface can be
approximated by three types of linear surface as follows:

00 Planar surfaces: these surfaces are defined to have the outward unit normal vector
parallel to one of the coordinate axis (n = (±1, 0, 0) or n = (0,±1, 0) or n =
(0, 0,±1)). 00-Planar surfaces are identified by SURFACE cells that have only
one face in contact with EMPTY cells (figure 3(a) illustrates one example of 00-
planar surface).

450 Planar surfaces: these surfaces are defined to have the outward unit normal vector
making a 450 angle with two coordinate axes so that in these surfaces the normal
vector takes the form:

(
±

√
2

2
,
√

2
2
, 0

)
,

(√
2

2
,±

√
2

2
, 0

)
,

(
±

√
2

2
, 0,

√
2

2

)
,

(√
2

2
, 0,±

√
2

2

)
,
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Murilo F. Tomé, Igor Revoredo

(a)

EE E

S SS

(b)

E

S E

Figure 3: Examples of 00-Planar surface (a) and 450-Planar surface (b).

(
0,±

√
2

2
,
√

2
2

)
,
(
0,
√

2
2
,±

√
2

2

)
. 450-Planar surfaces are identified by SURFACE cells

that possess only two adjacent faces contiguous with EMPTY cell faces (figure 3(b)
displays one example of 450-Planar surfaces).

600 -Planar surfaces: these surfaces are defined to have the outward unit normal
vector making an angle of 600 with the coordinate axes (see figure 4). On these

surfaces the outward normal vector takes the form
(
±

√
3

3
,±

√
3

3
,±

√
3

3

)
. They are

regonized by SURFACE cells that have only three adjacent faces in contact with
EMPTY cell faces.

S

E

E

E

Figure 4: Example of a 600-Planar surface.

It can be seen that in total there are 6 types of 00-Planar surfaces, 12 kinds of 450-
Planar surfaces and 8 different categories of 600-Planar surfaces. In this work we
approximate equations (20)–(22) according to each case of planar surfaces. These approx-
imations are the same employed by an Oldroyd-B fluid and the finite difference equations
involved are presented by Tomé et al. [22]. Details on how the finite difference equations

11
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are solved for each case of planar surface can be found in [24]. For lack of space they are
not presented here.

5 Time step procedure

A procedure to optimize the time step size used in every calculation cycle is employed.
The time-step is calculated according to the following restrictions:

(a) A fluid particle can not cross more than one cell during a calculational cycle. This
leads to the restriction

δt <
h

|u|
(componentwise) , where h = min{δx, δy, δz}. (36)

(b) Due to the explicit calculation of the intermediate velocity ũ, the following stability
restriction is imposed {

δt = 0.25Reh2, if Re < 1 ,
δt = 0.25h2, otherwise.

To satisfy (36) it is sufficient that

δt <
h

|Umax|
, (37)

where Umax represents the maximum of the velocity u everywhere.
These restrictions are the same employed for Newtonian fluids so the implementation

used is the same presented by Tomé et al. GENSMAC3D [14].

6 Validation results

To simulate three-dimensional flows governed by the Second Order Constitutive equa-
tion the finite difference equations presented in Section 4 were implemented into the
Freeflow3D code [12]. Validation and convergence results are given next.

6.1 Fully developed flow of a second order fluid

As for Second Order Fluids the extra-stress tensor is obtained explicitly as a function
of the velocity field then, if we consider fully developed flow in a tube (see figure 5) we
can find an analytic solution for the non-Newtonian tensor Φ according to equation (6).
Indeed, if we suppose fully developed flow given by

∂p

∂z
= P (constante), u = (0, 0, w(x, y)), with w(x, y) = A

(
x2+y2

)
+B, A,B ∈ R (38)

then it can be verified that the components of Φ are given by (see Revoredo [24])

Φxx = 4κA2 x2 , Φxy = 4κA2 x y , Φxz = 0 ,

Φyy = 4κA2 y2 , Φyz = 0 , Φzz = 4 (κ− 2De)A2
[
x2 + y2

]
.

(39)

12
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Figure 5: Flow in a tube: representation of flow domain

We point out that, under steady state, the analytic solutions given by equation (39) are
valid in any cross-section of the tube.

To validate the numerical method presented in this work we simulated the flow in a tube
(see figure 5) until steady state was stablished and we compared the numerical solutions
with the respective analytic solutions given in equation (39). The input data employed
were: R = 1, U = 1, Re = 1, De = 0.4, κ = 0.4, g = 0 (gravity was neglected). To verify
the convergence of the numerical method, tube flow was simulated in three meshes:

• Mesh M0 - δx = δy = δz = 0.16666667 (12 × 12 × 60 computational cells);

• Mesh M1 - δx = δy = δz = 0.125 (16 × 16 × 80 computational cells);

• Mesh M2 - δx = δy = δz = 0.1 (20 × 20 × 100 computational cells).

On the walls of the tube the no-slip condition was imposed while at the tube entrance the
fluid was injected until the tube was completely filed. At the tube entrance, a parabolic
flow given by u = v = 0, w(x, y) = 2U

R2 [R2 − (x2 + y2)] was employed while at the tube
exit the homogeneous Neumann condition was imposed. At the begining there was a
free surface where the boundary conditions were those presented in Section 4.2. The
simulations started with the tube empty (t = 0) and ended at time t = 50. Figure
6 displays the variation of the velocity w at a cross section at the middle of the tube
(z = 5R) as well as the velocity w along the plane xz passing on the centre of the tube
(y = 0). We can see in figure 6 that the isolines are parallel indicating that steady state
has established. To verify the correctness of the code and to show the convergence of
the numerical method for solving the Second Order Fluid equations, we compared the
numerical solutions with the respective analytic solutions given by equation (39) at the
cross section z = 5R. Indeed, figure 7 displays the numerical solutions together with
the analytic solutions on the three meshes. We can see that the numerical solutions
approximate well the analytic solutions on the three meshes. To quantify this fact, we
calculated the relative errors between the analytic and the numerical solutions by

E(SolNum) =

√
Σi,j(SolEx − SolNum)2

Σi,j(SolEx)2
. (40)
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Table 1 shows the errors obtained on the three meshes while figure 8 illustrates the
decay of the errors as a function of the mesh spacing. We can see in Table 1 that the
errors decrease when the mesh refined. This result demonstrates the convergence of the
numerical method presented in this work.

Figure 6: Isolines of w(x, y) at a cross section z = 5R and along the plane xz passing at the centre of the
tube (y = 0). Result shown at time t = 50 and Mesh M2.

Table 1: Errors obtained on the three meshs.

Mesh M0 M1 M2

E(w(x, y)) 4.956× 10−3 2.696× 10−3 1.548× 10−3

E(Φxx(x, y)) 2.309× 10−2 1.099× 10−2 7.166× 10−3

E(Φxy(x, y)) 2.275× 10−2 1.082× 10−2 6.336× 10−3

E(Φyy(x, y)) 2.321× 10−2 1.078× 10−2 7.704× 10−3

E(Φzz(x, y)) 2.320× 10−2 1.037× 10−2 6.678× 10−3

7 Numerical simulation of the time-dependent extrudate swell

We applied the numerical method developed in this work to simulate the extrudate
swell of a Second Order Fluid. In this problem, a viscous jet flows inside a tube of
diameter D and length L until the jet reaches the tube exit from where it is extruded
into the atmosphere where, under certain conditions, its diameter increases and attains a
maximum value Dmax. It is known that the higher is the elasticity of the fluid (represented
by the Deborah number De) the greater is the extrudate rate defined by Sr = Dmax/D.
This phenomenon appears in many industrial applications so that many researchers have
been studying this problem both experimentally and numerically (see for example the
works [15],[22]-[27]).

To show that the numerical method described in this work is capable of simulating
viscoelastic flows governed by the Second Order Fluid constitutive equation we simulated
the time-dependent extrudate swell of a SOF jet. We considered an axisymmetric jet

14
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Figure 7: Comparison between the numerical and analytic solutions of w(x, y), Φxx, Φxy, Φyy, Φzz on the
three meshes. Left column: Mesh M0; Middle column: Mesh M1; Right column: Mesh M2.
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flowing inside a tube with R = 1 and lenght L = 5. At the tube entrance, a Poiseuille
flow with velocity w(x, y) given by equation (38) with U = 1ms−1, A = −2U

R2 , B = 2U . The
simulations started with the tube empty and the fluid was injected at the tube entrance
until it filled the tube and reached the tube exit from where it was extruded into the
atmosphere where it was expected that the jet would swell. An outflow boundary was
positioned at a distance 2L far from the tube exit. A mesh with 32 × 32 × 120 cells
(δx = δy = δz = 0.125) was employed. We fixed the value of the Reynolds number and
performed simulations for three values of De and κ as shown in Table 2. These simulations
were performed from t = 0 until t = 15. Figure 9 displays a three-dimensional view of the
fluid flow configuration at selected times. We can observe in figure 9 that as the Deborah
number increases the swell becomes larger. Indeed, we considered the results obtained
at t = 15 and computed the swell rate for each De as shown in Table 2. The extrudate
swell rates obtained were Sr = 1.0734, 1.0800, 1.2260 for De = 0.1, 0.2, 0.15, respectively.
These results are in agreement with the Deborah numbers employed as we expect that
the elasticity of the fluid increases if the Deborah number is increased.

Table 2: Numerical simulation of extrudate swell of Second Order Fluids: extrudate rates obtained.

Re De κ Sr

1.0 0.15 0.075 1.0734
1.0 0.20 0.10 1.0800
1.0 0.30 0.300 1.2260
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De = 0.15, κ = 0.075

De = 0.20, κ = 0.10

De = 0.30, κ = 0.30

Figure 9: Numrical simulation of extrudate swell for various values of De and κ on mesh M1. Fluid flow
configuration at times t = 5, 7.5, 10, 12.5, 15.
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8 CONCLUDING REMARKS

This work presented the developments for obtaining a numerical method for simulating
three-dimensional free surface flows governed by the Second Order Constitutive equation.
The governing equations were presented in details as well as the nondimensionalization
employed. The boundary conditions for the velocity and the free surface stress condi-
tions were fully discussed. The solution of the governing equations by the finite difference
method under the scope of the GENSMAC3D method was presented in details. The nu-
merical method presented in this work was an extension of the two-dimensional technique
of Tomé et al. [9] to three-dimensional flows. An analytic solution for tube flow of a
Second Order Fluid was given. By performing mesh refinement on tube flow, the numer-
ical solutions were compared with the respective analytic solutions. The results showed
good agreement between the numerical and analytic solutions. To demonstrate that the
numerical method developed in this work could deal with three-dimensional viscoelastic
flows governed by the Second Order Constitutive equation we simulated the extrudate
swell problem for various values of the material constants λ2 and λ4. Numerical results
were obtained for Deborah number De ≤ 0.3.

Although the numerical method proved capable of simulating 3D-free surface flows of
Second Order Fluids, it can be improved in several ways: the momentum equations can
be solved by an implicit technique; the pressure on the free surface can be calculated
implicitly by a second order method.
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