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Abstract. This paper describes the resent development of a virtual flur method for
simulating fluid-structure interaction problems. The virtual flux method is one of the sharp
interface Cartesian grid methods. The numerical flux across the interface is replaced with
the virtual flux so that proper interface conditions must be satisfied there. In this study,
the virtual flux method is applied to numerical flow simulations about reciprocating engines
and compressors. In the reciprocating engine simulation, the compressible Navier-Stokes
equations are coupled with the equation of motion of the piston, connecting rod, and crank
system. Intake and exhaust valves are lifted up and down according with the crank angle in
the intake and exhaust strokes. Instead of modeling the complex fuel combustion process,
a proper amount of enerqy is added to the Navier-Stokes equation at the beginning of each
expansion stroke, to retain the four stroke engine cycle at a constant revolution rate. The
engine comes to work at the revolution rate intended after some initial transition cycles.
On the other hand, the intake and exhaust valves of the reciprocating compressors are
driven with fluttering by the pressure force acting on them, while the piston is driven at
a constant rate. Numerical simulation indicates the compressor comes to work at almost
constant flow ate, after the first transition cycle. It is confirmed that the virtual flux
method is easily applicable to the simulation of fluid-structure interaction problems



Koji Morinishi and Tomohiro Fukui

1 INTRODUCTION

Numerical simulation of fluid-structure interaction problems is a current topics in the
computational fluid dynamics. Using the arbitrary Lagrangian Fulerian (ALE) method!*?
is a straightforward strategy for simulating the fluid-structure interaction problems. The
ALE method may be accurate, since the fluid-structure interface is conformed to a moving
boundary of computational grid. Conforming the grid boundary to the moving interface is
generally difficult and time-consuming especially for the interface under large deformation.

Cartesian grid methods®* are another strategy fit for simulating the fluid-structure
interaction problems. The methods need no grid reconstruction even if large deformation
of fluid-structure interface takes place. One drawback of the Cartesian grid methods,
however, is that most of the methods may smear the interface over several mesh spacing.
Thus a sharp interface Cartesian grid method®® is preferable for simulation of fluid-
structure interaction problems.

The virtual flux method” is one of the sharp interface Cartesian grid methods. The
numerical flux of the Navier-Stokes equations across the interface is replaced with the
virtual flux so that proper interface conditions must be satisfied there. In this study,
the applicability of the virtual flux method to the fluid-structure interaction problems is
demonstrated in numerical flow simulations about reciprocating engines and compressors.

In the following, the governing equations are described in Section 2, and Section 3
provides the numerical procedure. The virtual flux method is applied to the reciprocating
engines in Section 4 and to the reciprocating compressors in Section 5. The results of this
study are summarized in Section 6.

2 GOVERNING EQUATIONS

Fluid flows in the reciprocating compressors and engines may be described by the
compressible Navier-Stokes equations, which can be written in the following form.
dq
—+V-F=V-S§ 1
o @
where q is the conservative vector, F the convective flux vector, and S the viscous flux
vector. The conservative vector and the flux vectors are given with:

P pu 0
g=| u , F=| puu+pl , S= T (2)
e u(e + p) u-7—h

where p is the density, u the velocity vector, p the pressure, e the total energy per unit
volume, 7 the viscous stress tensor, and h the heat flux vector. The total energy e is

defined for a perfect gas as:

P 1 2
= - 3
e 5 1—|—2,0u ()
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Figure 1: Stencil about a regular point.

where v is the ratio of specific heats.
The components of the viscous stress tensor and the heat flux vector, for example, 7.,
Tuy, and hy,, may be written as:

_ a_u _ g a_u + @ + a_w (4)
Toe =25 T 31\ Be dy 0z
ou  Ov
oT

where u, v, and w are the velocity components, 7" is the temperature, u the viscosity and
k the thermal conductivity. In this study Smagorinsky’s eddy viscosity model is used for
practical turbulent flow simulations,

3 NUMERICAL PROCEDURE

Obtaining numerical solution of the compressible Navier-Stokes equations for flows
about complex geometries on a Cartesian grid, the virtual flux method is introduced in
conventional spatial discretizing methods.

3.1 Spatial discretizing method

The convective terms of the compressible Navier-Stokes equations can be evaluated
simply at a regular point on the Cartesian grid, for example, as:

an - Fx(él;:_l/z, 612'_4_1/2) - Fl’(él;'l——l/zv 612'_—1/2) (7)
oz ). B Ax

where q is the primitive variable, Az denotes the mesh spacing, and ¢ the cell index as
shown in Fig. 1. The numerical flux at the cell surface is obtained as:

. . 1 . P . .
Fﬂv(q;’:-l/zv qi—l—l/?) = 5 {Fl’(q;':-l/z) + Fx(qi+1/2) - |Ax|(q;'l—+1/2 - qi—|—1/2)} (8)

where |A,| is defined as:
As] = Re AR (9)

3
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Here A, and R, are, respectively, the eigenvalue matrix and the right eigenvector matrix
of the flux Jacobian matrix A, which is defined as:
OF .
Aac = ~

dq

(10)

The third order method may be obtained, for example, if q are evaluated with the

8

i+1/2
following reconstruction.

. . 1 . .
Qip1/2 = i + 5 (woqu'+1/2 + WlAqi—1/2) (11)
Here Ag;y1/2 are obtained with:
AQiy1/2 = Qit1 — Qi (12)

The weights wy and wy for the third order linear method are:

2 1
szg, wlzg. (13)
The weights wy and wy are defined for a nonlinear method as:
20[0 aq
_ S - 14
o 200 + ay i 200 + oy (14)
where o and «; are obtained as:
1 1
pg=——""", W=——— 15
’ AGiy1/2 + € ! Agi—1j2+ ¢ (15)

Here € is a small number which prevents null division in smooth flow regions.
The viscous terms of the Navier-Stokes equations are evaluated simply with the second
order central difference approximation. For example,

(asx) Sa(Qis Qit1) — Su(Qim1, Qi)

dx /. - Ax (16)

3.2 Virtual lux method

If an immersed solid boundary is located between the points ¢ and ¢« + 1 as shown in
Fig. 2, the numerical fluxes of Eq.(7) must be modified so that no-slip and no-penetration
velocity boundary conditions are satisfied on the solid boundary.

5t T «t o
(an) - F.(q i+1/2> 9 i+1/2) —F.(q i—1/27qi—1/2)

Ox Ax (17)
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Figure 2: Stencil about a interfacial point.
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Figure 3: Stencil for a one-sided exterpolation.

where CI*;:_I/Q, (:I*i_—|—1/27 and (i*j__l/z are reconstructed with considering the immersed solid
boundary conditions. For example,

. N 1 ~ N
Qip12 = i + 5 (wOAq*H—l/Q + Wlqu'—uz) (18)

where AOI*Z»_H/Q are calculated with:
A(i*i-l—l/Z = (:I*i+1 - 612 (19)
Here OI*H_l are obtained with one-sided first or second order exterpolating operators L as

shown in Fig. 3:

a4 = L[qi-1, i, ars] (20)

. . . [0q
1 0x ) g

where ;5 and (2—2) 1 Are Dirichlet and Neumann boundary conditions at the immersed

or

boundary, respectively.
The numerical viscous fluxes of Eq.(16) must be also modified so that no-slip and
no-penetration velocity boundary condistions are satisfied on the solid boundary as:

(asx) . Sl’(élivci*ﬂ—l) - Sl’(qi—hqi)

oxr |. Ax (22)



Koji Morinishi and Tomohiro Fukui

exhaust
valve
D Py el
intake
valve
¢
stroke H
Figure 4: Schematic model of a reciprocating engine.
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Figure 5: Valve lift history as a function of crank Figure 6: Intake and exhaust mass flux.
angle.

3.3 Time stepping method

After discretizing the spatial derivatives, the Navier-Stokes equations can be written
in the form:

dq
1 23
5 = Qa) (23)
The second order Runge-Kutta method is used for solving the equation as:
1
q = q" + SAQ(") (24)
q"*! = q" +AQ(g" ) (25)

where the superscript n denotes the time index and At the time step size.
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4 APPLICATION TO RECIPROCATING ENGINE

In this section, a fluid-structure coupling simulation is carried out to reproduce the
four strokes of a reciprocating engine. At the beginning of the expansion stroke, a proper
amount of energy is added to the Navier-Stokes equation, instead of modeling the complex
fuel combustion process, to retain the engine cycle.

4.1 Reciprocating engine model

The computational reciprocating engine model is schematically drawn in Fig. 4. The
revolution of crank shaft is described with the following equation of motion.

4?0 1dI(0) (do\*
[(0)— +-—"|—)| =M 2
TR (dt) (26)

where 6 is the crank angel and M the moment of force acting on the crank shaft. The
total inertia moment of piston, connecting rod, and crank () is defined as

0\’ r\ 2 cos?0
1(6) = 1, o )r2sin20 (14 252 [c,,<—) «0 2
0 =ttt (14590 ) o (1) 250 ey

Here m, and m,, are the mass of the piston and connecting rod, and /. and I, are the
inertia moment of the crank and connecting rod, respectively. Between the radius of the

crank r, the length of the connecting rod [ , and its slope angle ¢, the following equations
are obtained from Fig. 4.

sing = " sind (28)

[
cosp = ¢1 — (%)2 sin?0 (29)

For the moment of force acting on the crank shaft, the moment of pressure force M,
acting on the piston head and the moment of load M; acting on the crank shaft are

considered and assumed as:

M, = Pscos¢ sin(6 + ¢) (30)
df| do

where P4 is the pressure force acting on the piston head and ( a proper constant.

Figure 5 shows the valve lift designed as a function of the crank angle. The intake valve
is lifted up and down according with the crank and connecting rod pulling the piston down
from the top dead center (TDC) to the bottom dead center (BDC) in the intake stroke.
The exhaust valve is also lifted up and down according with connecting rod driving the
piston from BDC to TDC in the exhaust stroke.
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Figure 7: Velocity vectors at an instant in intake Figure 8: Velocity vectors at an instant in
stroke. compression stroke.
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Figure 9: Velocity vectors at an instant in Figure 10: Velocity vectors at an instant in
expansion stroke. exhaust stroke.

4.2 Numerical results

The computation is carried out for the cylinder width D of 5.8 ¢m and stroke H
(= 2r) of 5.8 cm. Certain amount of energy is added to the Navier-Stokes equation at
the exapntion stroke to retain the angular velocity of crank at about 1800 rpm.

The intake mass flux and exhaust mass flux are plotted in Fig. 6. After some initial
transition cycles, the engine comes to work at the almost constant rate of 1818 rpm.
Typical velocity vectors, colored by the temperature obtained for the four strokes, are
plotted in Figs. 7 - 8. Fresh gases flow into the cylinder through the intake port (Fig. 7).



Koji Morinishi and Tomohiro Fukui

] |
p exhaust
¢ plenum valve
—_—  Chamber g
D ¢ ;
piston
g.

\I intake

valve

stroke H

Figure 11: Schematic model of a reciprocating compressor.

As connecting rod driving the piston from BDC to TDC, the gases are being compressed
(Fig. 8). The hot gases, heated by energy added, are driving the piston to BDC (Fig. 9),
and the gases flow out through exhaust port (Fig. 10). The four stroke engine cycle is
clearly reproduced in the simulation.

5 APPLICATION TO RECIPROCATING COMPRESSOR

In a reciprocating compressor, the intake and exhaust valves are driven by the pressure
force acting on them, while the piston is driven at a constant rate. Here the fluid-structure
coupling simulation is carried out to reproduce the valve response and gas flows in the
reciprocating compressor.

5.1 Reciprocating compressor model

The computational model of reciprocating compressor considered is schematically drawn
in Fig. 11. The motion of intake valve and exhaust valve is assumed to be described with
the following equation of motion.

d*0
I ) +kO0=M (32)
where 6 is the open angle of intake valve 8; or exhaust valve 8., k the spring stiffness, and
M the moment of force acting on each valve.

5.2 Numerical results

The computation is carried out for the cylinder diameter D of 2.5 ¢cm and stroke H of
2.5 cm. The piston is operated at the constant revolution rate of 3000 rpm. The pressure
ratio of exhaust pressure p. to intake pressure p., is 10.
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Figure 12: Valve angle history as a function of Figure 13: Intake and exhaust mass flux as a
cycle. function of cycle.
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Figure 14: Velocity vectors at an instant in Figure 15: Velocity vectors at an instant in
intake stroke. exhaust stroke.

Figure 12 shows the history of valve angle as a function of the cycle. Valve fluttering is
observed. Corresponding intake mass flux and exhaust mass flux are plotted in Fig. 13.
After the first transition cycle, the compressor comes to work at an almost constant flow
rate. Typical velocity vectors, colored by the pressure obtained for intake and exhaust
strokes, are plotted in Figs. 14 and 15, respectively. Fresh gases flow into the cylinder
through the intake port (Fig. 14), and the gases are compressed and driven out through

exhaust port (Fig. 15). The work of reciprocating compressor is clearly reproduced in
the simulation.
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6 CONCLUSIONS

The virtual flux method has been developed for simulating fluid-structure interaction
problems. The numerical flux across the fluid-structure interface is successfully replaced
with the virtual flux, so that proper interface conditions are satisfied there. In this
study, the virtual flux method is applied to numerical flow simulations about reciprocating
engines and compressors. In the reciprocating engine simulation, in order to retain the
four stroke engine cycle, a proper amount of energy is added to the Navier-Stokes equation
at the beginning of the expasion stroke, instead of modeling the complex fuel combustion
process. After some initial transition cycles, the engine comes to work at the constant
revolution rate intended. On the other hand, the valves of reciprocating compressor are
driven with fluttering by the pressure force acting on them. After the first transition
cycle, the compressor comes to work at almost constant flow rate.
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