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Abstract. Lorentz force velocimetry (LFV) is a contactless technique for the mea-
surement of liquid metal flowrates at high temperature1,2. It consists in measuring the
force acting upon a magnet system, and arising from the interaction between an external
magnetic field and the flow of an electrically conducting fluid. In this preliminary study,
the existing device is improved in order to make the measurement essentially independent
of the fluid electrical conductivity. The present flowmeter consists in two coils placed
around a circular pipe. The forces produced by each coil are recorded in time as the liquid
metal flows through the pipe. It is highlighted that the cross-correlation of these forces can
be used to determine the flowrate of turbulent liquid metal flows. The study is entirely
numerical and uses a second-order finite volume method.
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1 INTRODUCTION

A key feature of electromagnetism is that a force is generated when an electrically
conducting material moves through a magnetic field. If the material is in a fluid state,
this principle can be used to determine its flowrate. At low temperatures, flowrates can
be measured through inductive flowmeters3. By contrast, measurements in metallurgical
flows of liquid metals at high temperatures cannot be carried out using conventional
inductive flowmeters, since electrodes cannot be inserted in the flow. The present work
is devoted to a non-contact electromagnetic flow measurement technique called Lorentz
force velocimetry (LFV)1,2. It is based on measuring the force acting upon a magnet
system that interacts with the flow of an electrically conducting fluid.

More precisely, the purpose of the present study is to improve the existing device, in
order to make the measurement essentially independent of the fluid electrical conductivity.
This is highly desirable in metallurgy, where the temperature and composition of the alloy
can vary significantly in time and space. In turn, these variations bring uncertainties
on the value of the fluid electrical conductivity. The proposed Lorentz force flowmeter
(LFF) is based on temporal correlations, taken from force measurements at two locations.
The feasibility of this novel version of Lorentz force velocimetry is demonstrated entirely
numerically.

2 BASIC PRINCIPLE

A Lorentz force flowmeter (LFF) measures the integrated Lorentz force, resulting from
the interaction between a liquid metal in motion and an applied magnetic field. In
the present manuscript, the magnet system consists in two current-carrying coils placed
around a circular pipe and generates the so-called primary magnetic field B, given by
Biot–Savart’s law4,

B(r) =
∑
i=1,2

Bi(r) =
∑
i=1,2

µ0Ji
4π

∮ dl× (r− r′)

|r− r′|3
, (1)

where Ji is the magnitude of the primary electric current circulating in the ith coil, µ0 =
4π10−7H/m is the vacuum permeability, dl is a length element of the coil, r′ is the position
of the coil and r denotes the location where the magnetic field is evaluated. The magnetic
field lines are sketched in figure 1 for a pipe of length L and two coils separated by
a distance ∆. The currents flowing through the coils have same signs (left figure) or
opposite signs (right figure). Since the magnetic field interacts with the flow velocity
u, eddy currents, also called secondary currents, are induced in the liquid metal. These
in turn create an induced magnetic field b, referred to as the secondary magnetic field.
In this work, the magnetic diffusion time is assumed much smaller than the timescale
of large eddies. Therefore, the secondary magnetic field becomes negligible with respect
to the primary magnetic field, namely |b| � |B|. This is referred to as the quasi-static
approximation5. In this framework, eddy currents are described by a simplified Ohm’s
law, for moving electrically conducting fluids, and has the form
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j = σ(−∇φ+ u×B). (2)

The fluid electrical conductivity is denoted σ and the electric field is assumed to be the
gradient of the electrical potential φ. According to the conservation of electric charge,
eddy currents are divergence-free. Hence, the electrical potential satisfies the Poisson
equation, ∇2φ = ∇ · (u ×B). In addition, eddy currents are maximum where the angle
between u and B is large, see figure 1.
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Figure 1: Principle of Lorentz force velocimetry. Two current-carrying coils produce the primary magnetic
field B, which interacts with the flow u of an electrically conducting fluid and induces eddy currents j.
The coil currents have either same (left) or opposite (right) signs. The force acting upon the coils is equal
in magnitude (but opposite in direction) to the sum of the Lorentz forces F1 and F2 acting on the flow.

The interaction between the primary magnetic field Bi, generated by the ith coil, and
the eddy current j, induced by all coils, yields a Lorentz force,

FLi = j×Bi, (3)

which globally brakes the flow. Furthermore, the secondary magnetic field magnetic field
b interacts with the primary current and induces a reaction force, acting on the ith coil.
By virtue of the reciprocity principle2, the following integrated Lorentz force,

Fi =
1

V

∫
FLidV = −F r

i , (4)

is equal in magnitude but opposite in direction to the reaction force F r
i acting upon the

ith coil. In addition, Fi is proportional to the mean velocity of the flow and the electrical
conductivity of the fluid. Previous works have shown that Fi, or equivalently F r

i , can
be used to determine the mean flowrate assuming the fluid conductivity is known1,2.
However, the electrical conductivity of the fluid is often unknown or fluctuates in time.
It is therefore desirable to develop Lorentz force flowmeters which operate independently
of the electrical conductivity of the fluid.
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To remove this dependency, a variant of flowmeter is investigated. It focuses on the time
evolutions of the Lorentz forces, which are cross-correlated. By definition, the location of
the maximum correlation gives the time shift for which the two forces are most similar.
Therefore, information about the mean flowrate can be obtained. The main advantage of
this technique is that the resulting flowrate is indenpendent on the fluid properties. In
the present application, the challenge stands in using the coils as sensors.

The quality of the measurement is assessed in two ways. First, its reliability is analysed
by quantifying the amplitude of the correlation peak. Second, the measured time shift is
compared to its exact value, in order to determine the calibration factor. The investiga-
tion is performed for different coil radii rm, separations ∆ and signs of the coil-carrying
currents.

3 GOVERNING EQUATIONS AND NUMERICAL METHOD

In the proposed device, cross-correlations are performed between the Lorentz forces due
to each coil. Since the Lorentz forces depend on the electric potential and the velocity
field, these quantities are needed at each time step. In this manuscript, we assume that the
flow is unaffected by the Lorentz force. For the parameters considered here, the maximum
streamwise Lorentz force is indeed less than 5% of the driving force. It is thus expected
to have a weak influence on the flow. With this assumption, the incompressible flow
dynamics are governed by the Navier–Stokes equations, as in classical hydrodynamics.
The equations of motion are thus given by

∂u

∂t
+ (u ·∇)u = −∇p+ ν∇2u, (5)

∇ · u = 0,

p being the kinematic pressure (i.e. divided by the fluid density) and ν the fluid kinematic
viscosity. These equations are discretised spatially using an unstructured finite volume
method based on a collocated formulation. The method is analogue to that used in
previous studies2,6, and it is thus not detailed here. Briefly, the velocity and pressure
fields at time n + 1 are computed using a fractional-step method. First, Eq. 5 is solved
for the velocity field at an intermediate time step u(?). Then, the pressure field p(n+1) at
time n+ 1 is computed through the following Poisson system,

∇2p(n+1) = ∇ · u(?), (6)

so as to ensure that u(n+1) is divergence-free. The velocity field u(n+1) is finally obtained
as u(n+1) = u(?) − ∆t∇p(n+1), ∆t being the time step. The electrical potential satisfies
the following Poisson equation

∇2φ = ∇ · (u×B), (7)

and it is computed explicitely using u(n+1).
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The computational domain consists in a circular pipe, characterised by no-slip and
insulating walls located at r = R, which yields

u|r=R = 0, (8)

(j · n)r=R = 0,

∂φ

∂n

∣∣∣∣∣
r=R

= 0,

where n is the unit vector normal to the wall. Moreover, periodic boundary conditions
are applied at the inlet and outlet. In order to solve the Poisson system for the potential,
the following boundary conditions are applied,

φ|r=0 = 0, (9)

∂φ

∂r

∣∣∣∣∣
r=R

= 0.

4 SIMULATION SETTINGS

The input parameters for the flowmeter are the coil radius rm (both coils being assumed
to be equal in size), the coil separation ∆ and the currents J1 and J2 flowing through
each coil. Both same-sign currents (J1 = J2) and opposite-sign currents J1 = −J2 are
considered, see figure 1. The primary magnetic field is computed through Biot–Savart’s
law, see Eq. 1, by discretising each coil in 1,000 segments. The coil radii and separations
equal twice the pipe radius, namely rm = ∆ = 2R.

The pipe is ten times longer than its radius, i.e. L = 10R, and it is discretised with
65 points in the streamwise direction. The mesh resolution in the radial and azimuthal
directions vary with the azimuthal angle since the mesh is unstructured. However, the
pipe wall is discretised with 64 points in the azimuthal direction and the numbers of
points along the pipe diameter is approximately 50.

The flow is initialised with the following turbulent-like velocity profile on which random
perturbations are superposed2,

ux = Ucβ(α) ln

[
1 + α

(
1− r2

R2

)]
(10)

ur = uθ = 0,

where

β(α) =
α

(1 + α) ln (1 + α)− α
, (11)

and α = 1000. Furthermore, the flow is driven by a constant pressure gradient such that
the bulk Reynolds number fluctuates around Reb = 2UbR/ν ≈ 3600, Ub = 1/V

∫
udV =

2/R2
∫ R
0 〈ux〉rdr being the bulk velocity, V the pipe volume, and 〈ux〉 the mean streamwise

velocity profile in the radial direction. The mean value of the bulk velocity is fixed through
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U2
b =

4R

ρf

(
∂p

∂x

)
, (12)

where f is the friction factor7.

5 RESULTS

The integrated forces produced by each coil and acting upon the flow in the streamwise
direction, F̃1x and F̃2x, are non-dimensionalised by removing their mean and dividing by
their root-mean-square. Their evolutions in time are shown by figure 2, for same-sign
currents (left) and opposite-sign currents (right) flowing through the coils. For clarity,
the time history is limited to three crossing of the mean flow through the pipe. Since the
flow is turbulent, the forces exhibit several fluctuations and they are statistically shifted
in time.
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Figure 2: Time evolutions of the integrated forces produced by each coil when a turbulent flow moves
through the flowmeter: same-sign currents (left) and opposite-sign currents (right). Times are non-
dimensionalised by the crossing time of the mean flow through the pipe, τb = L/Ub, where Ub is the bulk
velocity.

The cross-correlations of the forces produced by each coil are illustrated by figure 3.
Two characteristics of the correlations are of particular interest: the time shift Tp asso-
ciated to their main peak, and the peak magnitude CM , which indicates the reliability
of the measurement. The time Tp is compared to the time needed for the mean flow to
travel from the upstream to the downstream coil, namely

Tb =
∆

Ub
. (13)

The ratio Tp/Tb is defined as the calibration factor of the measurement. In turn, the
flowrate measured by the Lorentz force flowmeter (LFF) is given by
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Figure 3: Cross-correlations of the integrated forces produced by each coil when a turbulent flow moves
through the flowmeter: same-sign currents (left) and opposite-sign currents (right). The time shifts T
are non-dimensionalised by the crossing time of the mean flow through the pipe, τb = L/Ub, where Ub is
the bulk velocity.

ULFF =
Tb
Tp
Ub, (14)

where Ub is the exact flowrate. The results are presented in table 1. In both cases,
the main peak of the correlation is well distinguishable from the secondary oscillations.
Moreover, it is slightly larger and sharper with same-sign currents than with currents
of opposite sign. Remarkably, the calibration factor Tp/Tb is almost independent of the
current signs.

Sign of (J1, J2) CM Tp/Tb ULFF/Ub
Same 0.79 0.87 1.15

Opposite 0.71 0.84 1.20

Table 1: Results of the cross-correlations between the forces produced by each coil when a turbulent
flow moves through the flowmeter. CM is the magnitude of the correlation peak and Tp/Tb is the ratio
between the time shift associated to the peak and the time-of-flight of the mean flow between the coils.
The ratio of the measured to the exact flowrate is ULFF /Ub.

6 CONCLUSIONS

This preliminary study demonstrated numerically the feasibility of a two-coil flowme-
ter, based on time-correlations of the Lorentz forces produced by each coil. The proposed
technique was validated with coil radii and separation equal to twice the pipe radius.
Particular attention was given to the magnitude of the correlation peak and its associ-
ated time. Currents of same- and opposite-sign, flowing through the coils, were investi-
gated. In both cases, the flowrate of a three-dimensional turbulent flow can be successfully
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measured. More precisely, the determination of the correlation peak is reliable and the
calibration factor is almost insensitive to the sign of the currents.

Future works will aim at analysing systematically the reliability and calibration factor
of the measurement for a wide range of coil parameters. The region of maximum sensitivity
of the flowmeter should also be identified. Finally, the effect of the magnetic field on the
flow will be quantified through dynamic simulations, in which the momentum balance
accounts for the Lorentz force as an explicit source term.
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