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Abstract. In typical simulation models for subsurface flow in oil and gas reservoirs many

geological parameters are uncertain. Their estimated values can sometimes be improved by using

surface and downhole production data in a process called history matching. History matching can

be performed very efficiently by gradient-based algorithms. Those methods require, however, the

implementation of an adjoint method. In reservoir models, the Jacobian matrices of the model

with respect to state variables are usually available. Nevertheless the implementation of the

adjoint method is an immense programming effort because of the need to derive the Jacobians

of the model with respect to the parameters, which are required for the gradient computation.

We propose a gradient-based history matching algorithm which is based on model reduction,

where the original (nonlinear and high-order) forward model is replaced by a linear reduced-

order forward model. Consequently, the adjoint of the tangent linear model is replaced by the

adjoint of a linear reduced-order forward model. Due to the linear character of the reduced-order

model, the corresponding adjoint model is easily obtained. The gradient of the objective function

is approximated and the minimization problem is solved in the reduced space; the procedure is

iterated with the updated estimate of the parameters if necessary. The reduced-order model is

constructed with the aid of the conventional proper orthogonal decomposition (POD) method

and the balanced POD method. The conventional POD-based approach is adjoint-free and can be

used with any reservoir simulator. The balanced POD-based method requires the adjoint states

but it is free from the Jacobians with respect to parameters. The methods were evaluated for

a waterflooded reservoir with uncertain permeability field. A comparison with an adjoint-based

approach shows that the model-reduced approaches give comparable quality of history matches

and predictions. Their computational efficiencies are lower than of an adjoint-based approach

but higher than of an approach where the gradients are obtained with simple finite differences.
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1 INTRODUCTION

To design optimal recovery strategies for subsurface oil and gas reservoirs frequent
use is made of large-scale numerical simulation methods for flow through heterogeneous
porous media. Such reservoir models consist of time-and space-discretized systems of
nonlinear partial differential equations to describe the time evolution of the state vari-
ables, i.e. the spatially varying pressures and water and hydrocarbon accumulations, over
the producing life of the reservoir. Typical reservoir models contain up to millions of grid
blocks with strongly varying parameter values representing porosity and permeability (i.e.
inverse flow resistance) of the subsurface. Simulation is normally performed with fully
implicit time stepping schemes in combination with Newton-Raphson iteration to solve
the nonlinear equations at every time step. The values of the gridblock parameters, and
of other model parameters representing geological features, are usually only known in the
neighbourhood of the wells but very uncertain otherwise. However, during the produc-
ing life of a reservoir it is sometimes possible to improve the estimate of the parameter
values by comparison of measured production data (pressures and oil, water and gas flow
rates in the wells) with their model predictions, a process known as history matching.
History matching identifies the parameter values that minimize an objective function that
represents the mismatch between modeled and observed production data.1 Usually the
objective function is defined as a sum of weighted squared differences between observed
and modeled outputs of the system, and gradient-based routines are used for iterative
minimization of its value. A numerically efficient way to calculate the gradients of the
objective function with respect to the parameters is the adjoint method. Full implemen-
tation of the adjoint method requires the availability of Jacobians matrices of the model
with respect to the state variables and the parameters. Usually, in reservoir models, the
Jacobians of the system with respect to the states are readily available because they are
used in the Newton-Raphson iterations during the forward simulation. Even so, the imple-
mentation of the adjoint method to compute the gradients with respect to the parameters
is an immense programming effort. This is caused by the need for Jacobians of the system
with respect to parameters, which are difficult to derive because of the nonlinear nature of
the equations and which are therefore often not available. Moreover, in some simulators
there is an adjoint model available for history matching and the gradients for a selected
group of parameters, but not necessarily for all. In an earlier publication we proposed
a model-reduced gradient-based history matching method where a reduced-order model
is constructed with the aid of the proper orthogonal decomposition (POD) method,2.3

Here we extend this approach to the use of a balanced POD method. In general, model
reduction techniques aim to obtain a low-order approximation to a high-order dynamical
system. Depending on the application, the reduced-order model should preserve relevant
features of the original model regarding the application. Both proposed reduction meth-
ods in our application are data-driven projection-based methods. The POD method is
also known as the Karhunen-Loève method, principal component analysis or the method
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of empirical orthogonal functions. It was introduced independently by Karhunen4 and
Loève5 as a statistical tool to analyze random process data. The method was called for
the first time the POD by Lumley,6 when it was used for the study of turbulent flow.
In the POD method a low-order projection subspace is determined by processing data
obtained from numerical simulations of the high-order model, which are expected to pro-
vide the essential information about the dynamic behavior of the system. The high-order
equations are projected on the low-order subspace resulting in a low-order model. The
balanced POD approach is a combination of the POD method and another well-known
reduced order technique called balanced truncation (BT). The concept of balancing was
first time presented in the work of Mullis and Roberts7 on the design of digital filters.
Subsequently, balanced truncation was introduced by Moore8 in the control theory com-
munity for stable, linear, input-output systems. It has been extended to nonlinear systems
by Lall et al.9 and Scherpen.10 The POD and balanced truncation have been combined
by Moore,8 Lall et al9 and Rowley.11 Here we use the method proposed by Rowley11

which is an approximation to balanced truncation with computational costs similar to
double the costs of the POD method. In this method we aim to build the reduced-order
system with the input-output behavior similar to the original system. We preserve in
the reduced-order model the part of the state that is relevant for the input-output be-
havior of the system. This relevant part of the state can be interpreted in terms of the
system-theoretical concepts observability and controllability. Since in the history match-
ing problems the observed production data are very sparse, we expect that the observable
part of the state is very limited and therefore a significant reduction can be achieved;
see.12 It is suspected that the detailed description of the pressure and saturation in the
reduced-order model may not be important to reconstruct the measurements. In this
work we evaluate if an improvement in the computational efficiency can be achieved by
neglecting those parts of the states.
Typically, balanced truncation is used to reduce the order of the model describing a con-
trollable system, that is, a system in which input variables are changed in order to reach
desirable outputs. The reduced-order model must be capable of reproducing those input-
output dependencies.
Here, we adopt the terminology of the optimal control community, and we apply the idea
of balancing to the parameter estimation problem. The control variables (input variables)
in our problem are the unknown parameters that we want to estimate. Note that this is
unlike in the production optimization problem, where the controls are production settings,
e.g. controllable well pressures or flow rates. In our case, we know the past production
settings with which the reservoir was operated, and we want to find the model that best
represents the measured production data with those settings. The outputs in our problem
are the simulated production data.
The proposed methods require different data and therefore have different limitations. The
balanced POD method requires the adjoint states to be available, but it is free from the
Jacobian of the system with respect to model parameters, and therefore can be used to
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estimate the parameters for which the gradient is not available yet. The POD method
does not require the adjoint model at all and can therefore be used with any simulator.
None of the methods does require access to the simulation code, because we only need to
collect the states of the model at different time instances for different sets of parameters,
and the states of the adjoint model (in case of balanced POD).

2 HISTORY MATCHING AS INVERSE MODELING

The discrete model for a single simulation step of the reservoir system from time ti−1

to time ti can be described by an equation of the form

x(ti) = fi[x(ti−1),θ], i = 1, ..., N, (1)

where x(ti) ∈ X ⊂ R
n denotes the state vector of pressures and saturations at time ti, θ

denotes the vector of uncertain parameters and N denotes the total number of simulation
time steps. The dynamic operator fi : R

n → R
n represents a nonlinear and determin-

istic reservoir simulator. Another operator, hi : R
n → R

m, describes the relationship
between measured production data y(ti) and state variables x(ti) (see e.g.13 for further
details). If we assume that observations are imperfect, then the simulated measurements
are described by

y(ti) = hi[x(ti),θ] + ηi, i = 1, ..., No, (2)

where ηi is the observation error and No is the number of time steps where the observations
are taken. The uncertain parameters in the model can be estimated by minimizing an
objective function that measures the difference between simulated data y and observed
data d. In the case of assimilation of production data, the data are sparse and therefore
this information is not sufficient to correctly estimate all parameters. The parameter-
estimation problem is ill-posed. One way to make the history matching problem well-
posed is to rely on some additional information in the form of a prior estimate of the
model parameters θb

init and their uncertainty R−1
b , see.14 The objective function then

consists of a prior (background) term and an observation term:

J(θ) =
1

2
(θ − θb

init)
TR−1

b (θ − θb
init) + (3)

+
1

2

No
∑

i=1

[d(ti) − hi[x(ti),θ]]T R−1
i [d(ti) − hi[x(ti),θ]] ,

where Ri is the covariance matrix of the observation errors at time ti. By minimizing ob-
jective function (3) we find a model that is close to the prior model, while it simultaneously
minimizes the misfit between the modeled and observed data.

3 METHODOLOGY

Here we use the methodology proposed for the first time by Vermeulen and Heemink15

and then applied to the history matching problem in,2.3 It is a gradient-based procedure
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which is based on model reduction, where the original (nonlinear and high-order) forward
model is replaced by a linear reduced-order forward model. Consequently, the adjoint of
the tangent linear approximation of the original forward model is replaced by the adjoint
of a linear reduced-order forward model. Due to the linear character of the reduced-order
model, the corresponding adjoint model is easily obtained. The gradient of the objective
function is approximated and the minimization problem is solved in the reduced space;
the procedure is iterated with the updated estimate of the parameters if necessary.
The history matching procedure turns into a scheme that consists of two loops: an inner
loop, which finds the minimum of the approximate objective function by using the low-
order tangent linear model and an outer loop, where the original model is used to calculate
the original objective function and to build the reduced-order model. It iterates until
some predefined convergence criteria are met, and can be classified as an incremental
approach.16 The advantage of the proposed method is that we do not need to acquire
a tangent linear model or a simplified model, because we construct the reduced-order
tangent linear model by using information from perturbations of the original model. To
construct the reduced-order model we need to collect data to build the projection matrices
and approximate the Jacobians of the reduced-order model along the projection vectors.
When the reduced-order model is available, we derive the reduced-order adjoint model
and we improve the parameters in reduced space. The minimization is performed using a
quasi-Newton optimization method where the Hessian of the objective function is updated
using the Broyden Fletcher Goldfarb Shanno (BFGS) method. The solution of the inner
loop is an optimum for the reduced-order linearized system but not necessarily for the
original one. Therefore, we check the value of the original objective function for the new
parameters. The described methodology is depicted by the following chart in Figure 1.
For further details see,2,3 where this approach, using the POD method, has been applied
to the history matching problem.

4 REDUCED ORDER METHODS

The balanced POD method and the POD method fall in the category of projection
methods. They involve the projection of the dynamic equations onto a subspace of the
original model space. If we define the projection as Π = ΦΨT , where Φ,Ψ ∈ R

n×k,
ΨTΦ = Ik, then the system described by Equations (1) and (2) is approximated by the
reduced-order system in the following form

z(ti) = ΨT fi(Φz(ti−1),θ) (4)

y(ti) = hi(Φz(ti),θ). (5)

In the used methodology we reduce the order of the tangent linear approximation of the
original model derived around the background trajectory xb(ti) corresponding to the best
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Figure 1: Model-reduced gradient-based history matching algorithm.

current estimate θb. In this case the reduced-order system is

z̄(ti) = ΨT ∂fi[θ
b,xb(ti)]

∂x(ti−1)
Φz̄(ti−1) + ΨT ∂fi[θ

b,xb(ti)]

∂θ
∆θ (6)

y(ti) = hi[x
b(ti),θ

b] +
∂hi[θ

b,xb(ti)]

∂x(ti)
Φz̄(ti) +

∂hi[θ
b,xb(ti)]

∂θ
θ. (7)

The difference between POD and balanced POD is in the way how those projection
matrices Φ and Ψ are constructed and the kind of data that is used to find them.

4.1 PROPER ORTHOGONAL DECOMPOSITION

The data required for POD is built from the selected state vectors of a forward simula-
tion of the large-scale numerical model, called snapshots. Since the reduced-order model
is used for parameter estimation, the snapshots should be able to represent the behav-
ior of the system for modified parameter values. Therefore snapshots are created in the
following way:

xj(ti) = fi[x
b(ti−1),θ

b + ij∆θj] − fi[x
b(ti−1),θ

b], (8)

where ij is a zero vector with 1 on the jth coordinate. Then snapshots are put as columns
in matrix

X = {x1(t1), ...,x1(tN), ...,xp(t1), ...,xp(tN)} (9)

of size n × s, where s is the total number of snapshots and since typically s ≪ n the
reduced eigenvalue problem

(XTX)vi = γivi; i ∈ {1, ..., s} (10)
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is solved. This results in s non-negative eigenvalues γi and s corresponding eigenvectors
vi which are transformed into eigenvectors φi of XXT by XVΛ− 1

2 , where Λ is a matrix
with eigenvalues γi on the main diagonal and V is the matrix consisting of all eigenvectors
vi. The projection Π = ηΦT is defined as Galerkin projection that is Φ = η, where Φ

consist of φi corresponding to the leading eigenvalues. The reduced-order system is then
described by

z̄(ti) = ΦT ∂fi[θ
b,xb(ti)]

∂x(ti−1)
Φz̄(ti−1) + ΦT ∂fi[θ

b,xb(ti)]

∂θ
∆θ (11)

y(ti) = hi[θ
b,xb(ti)] +

∂hi[θ
b,xb(ti)]

∂x(ti)
Φz̄(ti) +

∂hi[θ
b,xb(ti)]

∂θ
θ. (12)

This reduced-order system preserves the states which are evident in the set of snapshots.

4.2 BALANCED PROPER ORTHOGONAL DECOMPOSITION

The controllability and observability of a dynamic system reflect to what extent the
input influences the states, and to what extent the states influence the output. We can
express controllability and observability of a linear dynamic system with the aid of Grami-
ans, which are square and symmetric matrices defined in terms of the systme properties
only see e.g.17 Balancing is a technique to combine the controllability and observabil-
ity properties of a system by finding a linear combination of the states that produces
an equivalent model with equal and diagonal controllability and observability Gramians.
The equality of the Gramians implies that combinations of states that are difficult to
reach are simultaneously difficult to observe. The equality of the Gramians implies that
combinations of states that are difficult to reach are simultaneously difficult to observe.
The diagonal entries of the balanced Gramians, known as Hankel singular values, reflect
the combined controllability and observability of individual linear combinations of states
in the system. Accordingly, they give a measure of the energy of each individual combina-
tion, or its contribution to the input-output behavior. Therefore, Hankel singular values
can be used to identify those combinations of the states that represent the most impor-
tant input-output characteristics of the system. A reduced-order system representation,
known as balanced truncation, can therefore be obtained by expressing the system dy-
namics in terms of a limited number of linear combinations of the states (Hankel singular
vectors) corresponding to the leading Hankel singular values. Unfortunately, computa-
tion of the Gramians for large systems is computationally very demanding, if possible
at all. Balanced POD aims to obtain an approximation to balanced truncation which
is computationally feasible for large systems. In linear systems the Gramians are com-
puted by solving Lyapunov equations or they are computed from the data from numerical
simulations. When the balanced truncation is generalized to nonlinear systems empirical
Gramians may be used. Empirical Gramians were proposed by Moore8 and were used by
Lall et al.18 Here, however, we follow the approach of Rowley,11 and we compute the bal-
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ancing transformation directly from snapshots of empirical Gramians, without computing
the Gramians themselves. Similar approaches were used by19 and17 (Section 9.1).

• Controllability Gramian using snapshots

To compute the empirical controllability Gramian for a system with p parameters,
the state responses to the perturbation of the parameters are collected according to

xj(ti) = fi[x
b(ti−1),θ

b + ij∆θj] − fi[x
b(ti−1),θ

b], (13)

where ij is a zero vector with 1 on the jth coordinate, and are put as columns in
matrix

X = {x1(t1), ...,x1(tN), ...,xp(t1), ...,xp(tN)} (14)

of size n× s, where s is the total number of snapshots. We will show later that the
controllability Gramian can be approximated by

Wc = XXT . (15)

This implies that the POD patterns for the dataset of perturbation responses are the
eigenvectors of Wc corresponding to the largest eigenvalues. I.e., the POD patterns
are the most controllable patterns for the given set of parameter perturbations.

• Observability Gramian using snapshots

To compute the empirical observability Gramian we compute the impulse responses
of the adjoint model

λ(ti) =

(

∂fi+1[x(ti),θ]

∂x(ti)

)T

λ(ti+1) + (16)

(

∂hi[x(ti),θ]

∂x(ti)

)T

R−1
i

[

dj(ti) − h
j
i [x(ti),θ]

]

for i = N, ..., 1 with an end condition λ(tN+1) = 0 and we put as columns in matrix

Y = {λ(t1), ...,λ1(tN), ...,λp(t1), ...,λp(tN)}. (17)

Then the empirical observability Gramian is approximated by

Wc = YYT . (18)

The adjoint variable defined by (16) can be interpreted as a multiplier which informs
us about the relevance of each state in the calculation of the objective function. The
objective function is simply a weighted square of the outputs of the system. I.e. the
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adjoint variables also inform us which states are relevant in the calculation of the
outputs. If we call vi = R−1

i

[

dj(ti) − h
j
i [x(ti),θ]

]

then

λ(ti) =

(

∂fi+1[x(ti),θ]

∂x(ti)

)T

λ(ti+1) +

(

∂hi[x(ti),θ]

∂x(ti)

)T

vi

is the adjoint of the tangent linear model. In theory, we should excite the system
and the adjoint system, with impulses to obtain a best opproximation to the true
Gramians. However, because the measurements have different orders of magnitude,
an impulse response of the adjoint model is not recommended. Moreover, since we
analyze the past data, the outputs of the ’true’ system are known. Therefore, we
excite the adjoint model with the observed data weighted with the measurement
covariance matrix. The reduced-order model is supposed to approximate the be-
havior of the system in the past, where the output data is known. Hence, we do
not need to preserve the part of the state corresponding to the data that were not
observed in that period of time (for example if there was no water production we
do not take it as excitation of the adjoint model). If No is the number of time
instances where the outputs are observed and m is the number of measurement at
each of those time instances then this approach requires No ×m integrations of the
adjoint system. Since observations are sparse we take all measurements available
at a certain point in time together and we integrate the adjoint model once. In
our case the adjoint state takes non-zero values from the time instance at which the
observation is included, and it is integrated backward in time to quantify which part
of the state is relevant in the gradient calculation. We include all time instances at
once as well. Because the system is nonlinear with respect to parameters we collect
snapshots using adjoint models corresponding to the forward models that were used
to collect snapshots for controllability Gramian.

• Balanced POD using the method of snapshots

The controllability and observability Gramians describe the variation in the states
due to changes in the parameter values (inputs) and changes in the observed data
(outputs), respectively. By performing a singular value decomposition (SVD) on
those matrices we obtain the dominant patterns of the controllable and observable
parts of the state. If we write that Wc = XXT and Wo = YYT , then we have
square roots of the Gramians. In the method of snapshots used here, the balancing
patterns are computed by solving the SVD of the matrix YTX, which gives

YTX = WΣVT =
[

W1 W2

]

[

Σ 0

0 0

] [

VT
1

VT
2

]

. (19)

where YTX has dimensions of columns of X times columns of Y, that is, the number
of snapshots collected for controllability Gramian times the number of snapshots
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collected for the observability Gramian. The Gramians themselves never need to be
computed and only a single SVD is needed. Since usually the number of snapshots
is much smaller than the number of states, this is computationally efficient. The
computation time required to build the projection subspace is about twice more
expensive than in the case of the POD method. In this approach we need to generate
snapshots of the adjoint model which is computationally as expensive as generating
snapshots of the forward model.
After the SVD of matrix YTX is computed, the balancing transformation is given
by the matrix:

T = Σ−1/2WT
1 YT (20)

and its inverse is given by:
T−1 = XV1Σ

−1/2. (21)

It can be seen that T−1 is an inverse of T, namely

T−1T = Σ−1/2WT
1 YT · XV1Σ

−1/2 = Σ−1/2VT
1 W1ΣVT

1 V1Σ
−1/2 = I, (22)

because WT
1 W1 = I and VT

1 V1 = I. Next, we have to show now that the derived
transformation results in the balanced representation of the controllability and ob-
servability Gramians, that is:

TWcT
T = T−TWoT

−1 = Σ. (23)

For the controllability Gramian we have

(

Σ−1/2WT
1 YT

)

XXT
(

Σ−1/2WT
1 YT

)T
= Σ−1/2WT

1 (YTX)(YTX)TΦ1Σ
−1/2 = (24)

Σ−1/2WT
1 (WΣVT )(WΣVT )TW1Σ

−1/2 = I.

In similar way we can show that

(

XV1Σ
−1/2

)T
YYT

(

XV1Σ
−1/2

)

= I. (25)

The projection Π = ΨΦT is defined as Petrov-Galerkin projection, where Ψ consists
of the columns of matrix T corresponding to the largest Hankel singular values that
we want to retain, and Φ consists of the first nr rows of T−1. The reduced-order
system is then described by

z̄(ti) = ΨT ∂fi[θ
b,xb(ti)]

∂x(ti−1)
Φz̄(ti−1) + ΨT ∂fi[θ

b,xb(ti)]

∂θ
∆θ (26)

y(ti) = hi[θ
b,xb(ti)] +

∂hi[θ
b,xb(ti)]

∂x(ti)
Φz̄(ti) +

∂hi[θ
b,xb(ti)]

∂θ
θ. (27)

This reduced-order system preserves the states which are easier to control and at
the same time easier to observe.
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• Discussion

If we consider the tangent linear approximation of the original system

∆x̄(ti) =
∂fi[x

b(ti),θ
b]

∂x(ti−1)
∆x̄(ti−1) +

∂fi[x
b(ti),θ

b]

∂θ
∆θ, (28)

then its adjoint model is

λ(ti) =
∂fi+1[x

b(ti),θ
b]

∂x(ti)
λ(ti+1) +

∂h(ti)[x
b(ti),θ

b]

∂x(ti)
v(ti). (29)

Projecting those equations by using Π we obtain a reduced-order linear model

z(ti) = ΨT ∂fi[x
b(ti),θ

b]

∂x(ti−1)
Φz(ti−1) + ΨT ∂fi[x

b(ti),θ
b]

∂θ
∆θ. (30)

Then, the adjoint model of the reduced-order linearized model has the following
form

γ(ti) =

(

ΨT ∂fi+1[x
b(ti),θ

b]

∂x(ti)
Φ

)T

γ(ti+1) +

(

∂h(ti)[x
b(ti),θ

b]

∂x(ti)
ΦT

)T

Ψ(ti). (31)

One can notice that if we assume that λ ≈ Ψγ, then the projection of the original
adjoint model corresponds to the adjoint of the reduced-order model. This does not
have to be true if the external projection Ψ is chosen only based on the reconstruc-
tion of the forward model. Patterns that accurately represent the original state do
not necessary accurately represent the adjoint state. Therefore, we should aim to
find a projection that represents both the original forward model and the adjoint
model with acceptable accuracy. This is exactly what is done in balanced POD
where we reduce the model by constructing the projection matrix Π using both the
forward and the adjoint states.

5 NUMERICAL EXPERIMENTS

In this experiment the two methods introduced above are used to estimate the param-
eters of a simple 2D reservoir model, which describes iso-thermal slightly compressible
two-phase (oil-water) flow in a five-spot configuration.

• Model assumptions:

We assume that reservoir operates under water flooding condition. During that
process the dispersive effect of geological heterogeneities and the diffusive effect
of capillary pressure take place. Additionally to diffusion and dispersion caused
by physical phenomena, diffusion caused by the numerical errors of the discretiza-
tion occurs. Since in many cases this numerical diffusion is of the same order of
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Figure 2: The reservoir permeability field with well locations used for Experiment 1 (left) and Experiment
2 (right). The red dots correspond to the production wells and the blue dot to the injection well.

magnitude as the physical diffusion and dispersion, we neglect the capillary forces
and dispersion. We assume that the effects of gravity can be neglected, that the
permeability is isotropic, and that porosity, density, viscosity and permeability are
pressure-independent.

• Fluids properties:

The relative permeabilities which represent the additional resistance to flow of a
phase caused by the presence of the other phase is described with a Corey model.
Corey exponents for oil and water are equal to 2, the end point relative permeabili-
ties for oil and water equal 0.9 and 0.6, respectively, and the residual oil saturation
and connate water saturation are both equal to 0.2. The oil and water viscosi-
ties equal 0.5e − 3 [Pas] and 1.0e−3 [Pas], respectively. The water, oil and rock
compressibilities equal 1.0e−9 [1/Pa].

• Reservoir geometry:

The total size of the reservoir is 700m×700m×2m and it is divided into 21×21×1
uniform Cartesian grid blocks.

• Reservoir properties:

The porosity is assumed to be uniform and equals 0.3. The ’true’ permeability field
on a natural log scale in [m2] is shown in Figure 2.

• Initial conditions:

The initial reservoir pressures is 30 · 106Pa and the initial water saturation is taken
as connate water saturation.

• Well locations and constraints:

Water is injected at a rate of 0.003 m3/s in a vertical injector placed in the middle of
the reservoir, while four vertical producers at the corners are operated at constant
pressures of 25 · 106Pa. The well configuration consists of four producers in the
corners and one central water injector, and is depicted in Figure 2.
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5.1 Data assimilation settings

All assimilation processes are performed with the same settings. The assimilation
period is 250 days and observations are taken from the four production wells and the
injector well after 60, 120, 180 and 240 days of reservoir life, resulting in 20 observations.
During this period no water is observed in the production wells. The observations are
generated from the model with the ’true’ permeability field. In the injection well the
bottom hole pressure is measured and is assumed to have 10% error. In the production
wells the total production rates are measured and they are assumed to have 5% error. The
errors are generated from normal distributions with zero mean and a standard deviation
equal to 10% and 5% of actual data in the injection and production wells, respectively. We
assume that distinct observations are affected by physically independent noise, resulting
in a diagonal covariance matrix for the observation errors. The ’true’ permeability field is
chosen from an ensemble of 1000 permeability fields and the remaining ensemble members
are used to create the prior permeability θb and to estimate the prior covariance matrix.

5.2 Model-reduced settings

Additional settings are required for the model-reduced approach related to the number
of snapshots and patterns. We need to be aware that, to cover the dynamic behavior of the
system, snapshots should be taken during all the assimilation times at each model step.
Therefore we collect snapshots at each step of the model. The number of eigenvectors
chosen for the projection matrix corresponds to 99% of the total eigenvalues. We estimate
20 parameters (after parameter reduction, see,23 for further details).

5.3 Experiment 1

In this work our aim is to show that the model-reduced approaches provide results
comparable to those of the adjoint-based approach. We performed parameter estimation
using the adjoint-based approach, the POD-based approach and the balanced POD-based
approach. In all cases we have iterated until the objective function reached comparably
low values.
The results of the first data assimilation experiment for the adjoint-based approach, the
POD-based approach and the balanced POD-based approach are summarized in Table
1, Table 2 and Table 3, respectively . The adjoint-based approach is the most efficient
one, as was to be expected. The balanced POD-based approach is only twice less efficient
than the adjoint-based approach. If we assume that the finite difference approach con-
verges as the presented adjoint-based approach then it would require approximately ten
times as many simulations as the adjoint approach. This means that for this example the
computational effort of the POD-based approach is almost twice as efficient as the finite
difference approach. The balanced POD-based approach is about four times as efficient
as the finite difference approach.
A qualitative measure to compare the results can be obtained by visual inspection of
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Outer loop J(∆θ) RMSE Nr of parameters Nr of sim Total nr of sim

0 784 1.15 20 1 1
1 521 1.12 20 1 × 2 3
2 42 1.04 20 1 × 2 5
10 15 0.80 20 1 × 2 21
12 12 0.77 20 1 × 2 25
15 11.2 0.76 20 1 × 2 31
29 9.65 0.65 20 1 × 2 60

Table 1: Experiment 1. Adjoint-based history matching

Outer loop J(∆θ) RMSE Nr of parameters Nr of sim Total nr of sim

0 784 1.15 20 1 1
1 15.88 0.75 20 70 + 20 + 20 + 1 112
2 10.92 0.73 20 70 + 20 + 20 + 1 + 1 224
3 9.68 0.57 20 59 + 20 + 20 + 1 + 1 325

Table 2: Experiment 1. POD-based history matching

Outer loop J(∆θ) RMSE Nr of parameters Nr of sim Total nr of sim

0 784 1.15 20 1 1
1 70.31 0.86 20 20 + 20 + 20 + 16 + 1 78
1 15.89 0.57 20 5 83
2 9.14 0.54 20 20 + 20 + 20 + 18 + 1 162

Table 3: Experiment 1. Balanced-POD-based history matching
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the estimated permeability fields, see Figure 3 and Figure 4. Those figures depict the
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Figure 3: True and prior permeability fields.
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Figure 4: Estimated permeability fields.

’true’ permeability field, the prior permeability field, the estimates obtained using the
POD-based approach, the balanced POD-based approach and the adjoint approach, re-
spectively. In all the final estimates the high and low permeability channels were detected.
A first quantitative measure to compare the results in the twin experiment is the Root

Mean Squared Error (RMSE) defined as the square root of the mean squared difference
between the ’true’ parameter vector and its estimate. RMSEs are presented in Table 1,
Table 2 and Table 3 and they show that all three estimates are very close to the true
permeability field. Since the objective function derived for this problem contains a prior
term, the true permeability field is not an argument that minimizes the given objective
function, and therefore, RMSE can be only an indication of the quality of the obtained
estimate. As a second quantitative measure to compare the results we used the water

breakthrough time prediction capability. The water breakthrough time is evaluated over
a period of 3 years and is depicted in Figure 5. The curves represent produced water
rates for the ’true’ permeability field (red), the prior permeability field (blue), the per-
meability estimate obtained from the adjoint-based method (pink), the estimate obtained
from the balanced POD-based approach (black) and the the estimate obtained from the
POD-based approach (green). Figure 5 shows that the prediction of water breakthrough
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Figure 5: The prediction of water breakthrough time and produced water flow rates using the ’true’
permeability field (red), the prior estimate (blue) and estimates obtained from three data assimilation
approaches: the adjoint approach (pink), the POD-based approach (green) and the balanced POD-based
approach (black).

time is very good for all the estimates.
Summarizing, we obtained very good results for all three methods. From a computational
point of view the most efficient one is the adjoint-based method. However, the balanced
POD method is still about half as efficiency as the adjoint-based method.

5.4 Experiment 2

In the first experiment we concluded that the balanced POD-based approach and adjoint-
based approach are the most efficient. Here, we performed an experiment for a more
complicated ’true’ permeability field which has two low-permeability channels on the
diagonal, see Figure 2. In order to estimate this field from the data a longer assimilation
period is required, namely 500 days. The rest of the setting stayed the same as in the
first experiment.
The results of the second data assimilation experiment for the adjoint-based approach
and the balanced POD-based approach are summarized in Table 4 and 5, respectively.
The obtained parameters are as follows: Similar to the first experiment we compared
two quantitative measures, that is, the RMSEs and water breakthrough time prediction
capability. RMSEs are presented in Table 4 and Table 5 and they show that both estimates
are close to the true permeability field. The low permeable channels are clearly identified.
The water breakthrough time is evaluated over a period of 1200 days and is depicted in
Figure 8. The curves represent produced water rates for the ’true’ permeability field (red),
the prior permeability field (blue), the permeability estimate obtained from the adjoint-
based method (pink), the estimate obtained from the balanced POD-based approach
(black). The prediction of water breakthrough time is much better for both the estimates
than for the prior permeability field.
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Outer loop J(∆θ) RMSE Nr of parameters Nr of sim Total nr of sim

0 154 1.12 20 1 1
1 95.90 1.05 20 1 × 2 3
2 54.01 1.09 20 1 × 2 5
5 50.26 1.06 20 1 × 2 11
14 45.45 0.84 20 1 × 2 29
24 40.34 0.65 20 1 × 2 49
25 39.89 0.65 20 1 × 2 51
26 39.56 0.645 20 1 × 2 53
35 38.45 0.65 20 1 × 2 71

Table 4: Experiment 2. Adjoint-based history matching

Outer loop J(∆θ) RMSE Nr of parameters Nr of sim Total nr of sim

0 154 1.12 20 1 1
1 44.35 0.64 20 19 + 20 + 20 + 20 + 1 81
1 31.57 0.58 20 1 82

Table 5: Experiment 2. Balanced-POD-based history matching
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Figure 6: True and prior permeability fields.
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Figure 7: Estimated permeability fields.
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Figure 8: The prediction of water breakthrough time and produced water flow rates using the ’true’
permeability field (red), the prior estimate (blue) and estimates obtained from two data assimilation
approaches: adjoint approach (pink) and balanced POD-based approach (black).

We did not reach with the adjoint-based method an objective function value as low as with
the balanced POD-based approach. We converged to different local optima. Contrary to
the first experiment, the computational efficiency of the balanced POD-based approach
is almost identical to the adjoint-based approach.

6 CONCLUSIONS

This paper presented initial results of the balanced POD-based gradient-based his-
tory matching algorithm. We have compared the results to the classical adjoint-based
history matching algorithm and to the POD-based gradient-based history matching al-
gorithm. We have obtained very good results for all three methods in the form of very
good matches to the past data, low RMSEs, and good predictions of water production
after breakthrough. The main difference between those methods is in the computational
time. For the small example considered (882 states) our results from the first experiment
indicate that the balanced POD-based approach gives computational improvements com-
pared to the POD-based method. Assuming that the finite-difference approach converges
as the presented adjoint approach both model-reduced approaches are more efficient than
the finite difference approach. The POD-based and the balanced POD-based approach
showed to be about twice and four times as efficient as finite difference approach, re-
spectively. The most efficient is the adjoint-based method, as expected. However, in the
second experiment the balanced POD-based approach has an efficiency very close to that
of the adjoint-based method. In the situation that the adjoint model is available but not
the sensitivity matrices of the system with respect to parameters of interest, the balanced
POD-based method appeared to be a comparable alternative method to the adjoint-based
approach.

18



Malgorzata P. Kaleta, Remus G. Hanea, Arnold W. Heemink and Jan Dirk Jansen

ACKNOWLEDGMENT

The authors acknowledge financial support from the Integrated Systems Approach to
Petroleum Production (ISAPP) program, which is jointly sponsored by Shell International
E&P, TNO, and Delft University of Technology.

REFERENCES

[1] D.S. Oliver, A.C. Reynolds and N. Liu, Inverse theory for petroleum reservoir char-
acterization and history matching. Cambridge University Press, Cambridge (2008)

[2] M. P. Kaleta, R. G. Hanea, J. D. Jansen, A. W. Heemink, Model-reduced variational
data assimilation for reservoir model updating. Proc. 11th European Conference on
the Mathematics of Oil Recovery, Bergen, Norway, 8-11 September 2008

[3] M. P. Kaleta, R. G. Hanea, J. D. Jansen, A. W. Heemink, Model-reduced gradient-
based history matching. Submitted to Computational Geosciences

[4] K. Karhunen, Zur spektral theorie stochasticher prozesse. Annales Academiae Scien-
tiarum Fennicae, Ser. A1, 34, 1-7 (1946)
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