
V European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2010

J. C. F. Pereira and A. Sequeira (Eds)
Lisbon, Portugal,14-17 June 2010

EFFICIENT COMPUTATION OF DYNAMIC STABILITY DATA
WITH A LINEARIZED FREQUENCY DOMAIN SOLVER

M. Widhalm∗, R. P. Dwight∗1, R. Thormann† and A. Hübner††
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Abstract. Determination of aeroelastic stability boundaries for full aircraft configu-
rations by solving the time-accurate unsteady Reynolds-averaged Navier-Stokes (RANS)
equations is recognized as extremely computationally expensive or impractical. This is due
to the wide range of flight conditions, frequencies, and structural deformation mode shapes
that must be examined to ensure a configuration is free from flutter. Nonetheless there
is an increasing demand within the aerospace industry for accurate flutter analysis in the
transonic regime, which can only be satisfied with the use of high-fidelity RANS codes.
Hence we are motivated to seek a more efficient numerical method. By assuming that
perturbations to the flow are small and harmonic, we can derive an efficient alternative
method by linearization of the RANS equations, a linearized frequency domain (LFD)
solver. With this approach the unsteady simulation reduces to a single non-linear steady
computation followed by a single linear simulation in the frequency-domain. This method
is not new, but has principally been applied to turbomachinery so far. The contribution
of this paper twofold: firstly to show that LFD is sufficiently accurate and reliable for
applications to aeroelastic problems that occur in external aerodynamics, and secondly to
demonstrate the speed-up that can be expected over full unsteady computations. Viscous
transonic analysis is carried out on complex geometries in three-dimensions. The results
show good agreement with full unsteady simulation and experiment, and a reduction in
computational costs up to one order of magnitude is demonstrated.

1Currently: TU Delft, Faculty of Aerospace, Aerodynamics Group,
r.p.dwight@tudelft.nl.
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1 INTRODUCTION

The design and development of transport aircraft tend towards increasing cruise velocity
and lighter structures, and both together intensifies the influence of aeroelasticity which
is especially important in the transonic flow regime. Flutter is a critical phenomena, and
is defined as the transfer of energy from the flow to the structure in such as way as to
amplify oscillations. It occurs particularly at high speeds and for flexible wings. It has
an important role in aircraft design, and must be taken into account in the early stage of
an aircraft development process, to prevent excessive structural loading and ensure safe
flight operations.

In flutter analysis the main objective is to calculate the point at which the system be-
comes unstable, as function of various parameters, in particular Mach number and alti-
tude. Performing non-linear unsteady simulations (URANS) in the time domain to obtain
the aerodynamic loads is too expensive to cover the large parameter space spanned by
flight conditions of interest, structural mode shapes and reduced frequency range. For
subsonic flows small unsteady perturbations can be calculated independently by the su-
perposition principle, because the governing flow equations are almost linear with respect
to the motion. Thus efficient solvers for unsteady aerodynamics like the Doublet Lattice
Method1,3, 11,19 (DLM) are used.

In the transonic regime the unsteady perturbations depend on the steady state and are
in general neither linear nor harmonic. In addition, the flutter stability limit exhibits
complex behavior (as typified by transonic dip) and can no longer be captured by linear
methods like DLM. However, for small amplitudes the RANS equations can be linearized
about the steady state and transformed into the frequency domain, solving directly for
the first harmonic of the perturbation. The small perturbation assumption is justified by
our principle interest in the linear stability behavior, which will be captured in the limit
of infinitesimal displacements. The harmonic assumption requires that we investigate the
stability of the system for a range of frequencies to eliminate the possibility of flutter at
a given set of conditions, although typically one would investigate the aerodynamics at
the resonant frequencies of the structural model (as the system is weakly coupled), which
are readily available.

Of course there is an associated loss of generality and accuracy in using a linearized method
to approximate finite motion as we do here. This effect will be examined for the particular
case of unstructured finite volume codes. The assumption of linearity means that the
results are only valid for small perturbations of the geometry, and any non-linear effects
of the flow that cause, for example, shifts in frequency or harmonic modes, will not be
modeled. Nonetheless, there is a growing body of evidence that indicates that linear Euler
and Navier-Stokes calculations are adequate for a wide range of applications,12,20,22,28

although up until now predominantly in problems in turbo machinery.5,15–17,21 We add
to this evidence in this paper.
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In algorithmic terms we contribute the result that an entire frequency domain calculation
may cost only the equivalent of 3 RANS calculations. This is an substantial gain over full
unsteady analysis, which might require the equivalent of 50 − 100 steady flow computa-
tions, when the requirements of deformation of the mesh at each time-step, damping of
initial transient motion and post-processing are taken into account.

The following Section describes the Fourier transform procedure applied to a general
PDE discretized in space. We consider implementational issues on the example of an
unstructured finite volume compressible RANS code, the DLR TAU-code, in particular
with reference to linearization and linear solution methods. The LFD method is then
verfied against URANS results, computed with the full non-linear version of the same
solver. We therefore expect to see identical results in the limit of small perturbations.
The accuracy of the linearization is then examined for a variety of test cases: a subsonic,
inviscid flow around a NACA 0012 aerofoil and for three viscous cases, the NACA 64A010
aerofoil, the AGARD LANN wing and the DLR-F12. In all these cases the accuracy of
the LFD solver is demonstrated, and we can conclude that the approach is suitable for
the aeroelastic analysis of transonic airplane flows.

2 THE LINEARIZED FREQUENCY DOMAIN SOLVER

2.1 Fourier Transformation of the Discretized System

The unsteady governing equations of a fluid, discretized in space with an arbitrary method
be written in a semi-discrete form:

du

dt
+R(u, x, ẋ) = 0, (1)

where R is termed the residual, and is a function of the flow solution u, the grid x and the
grid velocities ẋ. The movement of the grid, characterized by x(t) is taken to be known,
and (1) must be solved for u(t). In the following discussion the equations discretized by R,
and the particular form of the discretization is not important. In later sections however
we will apply this general theory to finite volume discretizations on unstructured grids
of the the compressible Euler equations (inviscid) and the compressible Navier-Stokes
equations.
By assuming the unsteady motion has a small amplitude it is possible to separate the
unsteady terms above in terms of a steady mean state and a small perturbation:

u(t) = ū+ ũ(t), ‖ũ‖ � ‖ū‖
x(t) = x̄+ x̃(t), ‖x̃‖ � ‖x̄‖

whereby
ẋ(t) = ˙̃x(t)
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and where ū indicates the mean state and ũ the perturbation. Substituting this into (1)
and linearizing about the steady mean state results in

dũ

dt
+
∂R

∂u

∣∣∣∣
ū,x̄

ũ+
∂R

∂x

∣∣∣∣
ū,x̄

x̃+
∂R

∂ẋ

∣∣∣∣
ū,x̄

˙̃x = 0, (2)

which is a time-dependent linear equation for the flow perturbation.
Additionally, the motion and the flow solution are assumed to be periodic, so that it can
be written as a Fourier series

x(t) = x̄+ x̃(t) = x̄+
∑
k

R(x̂ke
ikωt) (3)

u(t) = ū+ ũ(t) = ū+
∑
k

R(ûke
ikωt) (4)

where x̂k and ûk are complex Fourier coefficients of the motion and ω is the base frequency
with k the mode.
Neglecting the real-part operator and substituting into (2) we obtain an equation for each
mode k {

ikωI +
∂R

∂u

}
ûk = −∂R

∂x
x̂k − ikω

∂R

∂ẋ
x̂k, (5)

which are decoupled due to linearity. Therefore given a small periodic deformation of the
grid represented by x̂k, the Fourier coefficient of the fluid motion may be found by solving
(5) individually for each mode. The accuracy of the result will depend on the degree to
which the dual assumptions of small perturbations and linearity are satisfied.

From this point we assume that we are interested only in perturbations of the system
that are harmonic in time. Therefore we take the convention that k = 1, and we will
only need to solve (5) once. Hence an real time-dependent non-linear system has been
reduced to a single complex linear system using the assumptions of small perturbations
and periodicity. In the following we discuss the solution of this linear system.

2.2 Implementation of the Linearized Equations

Instead of solving the complex system (5) it is split into two coupled real systems by
taking real and imaginary parts. This results in:

−ωûIm +
∂R

∂u
ûRe = −∂R

∂x
x̂Re + ω

∂R

∂ẋ
x̂Im, (6)

ωûRe +
∂R

∂u
ûIm = −∂R

∂x
x̂Im − ω

∂R

∂ẋ
x̂Re, (7)

where û = ûRe + iûIm etc. This may then be written in explicitly as a single linear system,

Ax = b, (8)
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where the system matrix is

A =

[
∂R
∂u
−ωI

ωI ∂R
∂u

]
, (9)

and where I is the identity matrix of the same dimensions as the Jacobian.
The Jacobian ∂R/∂u has been obtained previously in the context of the discrete adjoint
method by hand-differentiating the code and is available in the TAU solver.9 Considerable
attention has been given to ensure that the evaluation of the Jacobian and matrix-vector
products involving the Jacobian are efficient in terms of memory and time. In partic-
ular the (time-domain) linearized code requires no more than four times the memory
requirements of the non-linear code, and a single residual evaluation is 60%-80% the
cost of the non-linear residual evaluation in terms of CPU time.8 The frequency domain
residual however requires two products of a vector with the Jacobian, and hence a single
evaluation is approximately 120%-140% the cost of a non-linear residual on the same case.

Finally the right-hand side terms ∂R/∂x and ∂R/∂ẋ are needed, which are evaluated
using central finite differences:

∂R

∂x
x̂ ≈ R(ū, x̄+ εx̂, 0)−R(ū, x̄− εx̂, 0)

2ε
, (10)

∂R

∂ẋ
x̂ ≈ R(ū, x̄, εx̂)−R(ū, x̄,−εx̂)

2ε
, (11)

where ε > 0 is the finite difference step size chosen small enough to avoid errors due to
higher-order terms, while large enough to avoid errors arising from the limited accuracy
of the residual. In particular for Navier-Stokes calculations it can be difficult to find a
suitable ε, and a parameter study must be performed to obtain a reliable value. This is
an expensive process, and it would be desirable to have these partial derivatives available
in a hand-differentiated, or automatically differentiated (AD)14 form.

2.3 Iterative Solution Method

Usually the solution method is the most critical algorithm for solver efficiency – as such
significant effort has been expended in developing solution methods for the steady non-
linear problem. Given the close relationship of the linear and steady non-linear problem,
it is reasonable to expect a correspondence in performance to a method applied to the
two systems. Specifically, in the context of adjoint methods, it has been shown that
fixed-point iterations developed for the non-linear system (for example Runge-Kutta with
multigrid), can be applied to the linear system in such a manner as to guarantee the
convergence of the linear iteration given the asymptotic convergence of the non-linear
iteration.7,9 Furthermore it can be shown that the asymptotic rate of convergence of the
two cases must be identical.
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However, such a precise statement is not possible in the case of the LFD solver, as (5)
is not a simple linearization of the non-linear equation, but involves additional ωI terms
on the diagonal. Nonetheless the system is predominantly characterized by the Jacobian,
and the fixed-point iterations for the non-linear system may therefore be appropriate. In
the case of implicit methods7 the implicit system matrix can be relatively easily modified
to admit the additional ω term, after which the performance of the modified and original
explicit schemes might be expected to be comparable. This has been performed for the
LU-SGS scheme in TAU.

Demonstration of the similar convergence behavior of the non-linear and LFD versions
of multigrid damped LU-SGS is shown in Figure 1. A NACA0012 aerofoil at Mach 0.4
and an angle-of-attack of 4◦ undergoes pitching oscillation with an amplitude of 1◦ and
several reduced frequencies. First the steady flow is computed and after 500 iterations the
resulting solution is taken as the steady mean flow for the frequency domain calculations.
All calculations use the same CFL number and multigrid cycle. On the left of Figure 1 the
convergence for a reduced frequency of 0.1 is compared with non-linear convergence. As
is immediately apparent the residuals drop at the similar rates, and the force coefficients
also show similar rates of convergence. On the right-hand side the independence of the
convergence for a wide range of frequencies is demonstrated.
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Figure 1: Convergence of the non-linear solver and the frequency domain solver restarted from a mean
flow field achieved after 500 iterations. The convergence of CL and the amplitude of the CL oscillation
respectively are also shown. On the right convergence for a range of reduced frequencies is shown.

As a consequence, the number of iterations required for the frequency domain code should
be of the same order as that of the non-linear code, and hence the total CPU time require-
ment is only about 20%-60% greater than the corresponding stationary flow solution.
For viscous and turbulent flows the same idea applies in principle , but in practice it
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is often necessary to use some additional stabilization technique, such as the Recursive
Projection Method (RPM)13,25 or other Krylov methods.4 This is due to the fact that
in the majority of cases some part of the solution fails to converge asymptotically in the
non-linear problem, often seen as stalling in the residual convergence. This is not a seri-
ous issue provided the non-linear residual is small enough – however since the non-linear
iteration is asymptotically unstable, it can not be expected that the iteration on the linear
system converges. In this work we apply the well-known Generalized Minimum Residual
(GMRes) Krylov method in a restarted variant.23,24 The size of the restart vector was
20, which was sufficient to stabilize the iteration in all the cases examined here.

2.4 Simulation Process

All steps involved in the computation of the frequency response are described to give a
clear overview of the method.

1. Compute a steady flow solution ū at the mean state x̄, by solving the non-linear
system R(ū, x̄) = 0.

2. Compute the right-hand side terms in (5), using the state ū, x̄. If this is performed
with finite differences it will involve application of (10) and (11), which involve
several deformations of the computational mesh x̄→ x̄± εx̂.

3. Solve the linear system (5) to obtain û, the Fourier coefficients for the solver degrees
of freedom (DoFs).

4. Calculate the Fourier coefficients of the quantities of interest. These are seldom the
DoFs themselves – for example in our context the DoFs are conservative variables,
but the pressure is the aerodynamically interesting quantity. In this case use p̂ =
∂p
∂u
û, and similarly for forces (CL, etc.) and moments (CMy, etc.)

3 NUMERICAL METHOD

The unsteady DLR TAU-Code10,26 solves the compressible, three-dimensional Reynolds-
Averaged Navier-Stokes equations using a finite volume formulation. TAU is based on a
hybrid unstructured-grid approach, which makes use of the advantages of semi-structured
prismatic grids in the viscous shear layers near walls, and the flexibility in grid generation
offered by tetrahedral grids in the surrounding flow volume. A dual-grid approach is used
in order to make the flow solver independent from the cell types used in the initial grid.
The TAU-Code consists of several different modules, including:

• The Preprocessor module, which uses the information from the initial grid to create
a dual-grid and secondly coarser grids for multi-grid.
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• The Solver module, which performs the flow calculations on the dual-grid.

• The Linear Solver module, which solves the complex valued linear system of equa-
tions subsequently on the same dual-grid.

• The Deformation module, which propagates the deformation of surface grid points
to the surrounding volume grid.

• The Postprocessing module, which is used to convert result-files to formats usable
by popular visualization tools.

The mentioned modules are available through Python-scripting. This approach makes
them available inside the main TAU workflow by minimizing file I-O, easing parallel set
up and easily simplifies looping processes.
Turbulent flow computations were performed with the one equation turbulence model
established by Spalart-Allmaras.27 The linear solver underlies some restrictions in the
completeness of a fully hand-differentiated code. The viscous effects are kept constant for
the Matrix ∂R

∂u
and turbulent effects are neglected completely.

4 VALIDATION RESULTS

Four representative test cases were chosen to show the capability of the linearized fre-
quency domain (LFD) solver and validity in comparison to fully unsteady (URANS)
computations. The first case is a NACA 0012 aerofoil in subsonic, inviscid flow under-
going heave motion to point out the range of applicability between linear and non-linear
computation. Then a transonic flow around a NACA64A010 aerofoil undergoing peri-
odic pitching movement, generally referred as CT8 case found in AGARD-R-702,6 will
present results from the LFD, unsteady computation and experimental data. Finally two
three-dimensional cases are examined: the AGARD LANN wing with a complex shock
structure, referred as CT5, and the F12 with a more complex geometry, including wing,
horizontal tail plane and fuselage.
In context of dimensionless quantities the reduced frequency k is applied as similarity
parameter for the unsteadiness of the flow field. The reduced frequency k is defined as:

k =
ω lref
U∞

=
2πf lref
U∞

(12)

with the angular velocity ω, the free-stream velocity U∞, frequency f and a reference
length lref . The harmonic motion imposed is described by

pitch: α(τ) = ᾱ + α̃ · sin(k · τ) (13)

heave: h(τ) = h̄+ h̃ · sin(k · τ) (14)

dimensionless time: τ =
U∞t

lref
.
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Throughout the validation section different reduced frequencies k, mean and incident am-
plitude angles are applied.

Another usual description in aeroelastic means is the real and imaginary part of the
surface pressure distribution Cp. The aerodynamic description of Cp is :

Cp =
p− p∞
1
2
ρ∞U∞

= C̄p + C∗p−real sin(kτ) + C∗p−imag cos(kτ) (15)

with∞ values at free-stream conditions and p as the static pressure at measurement. The
real and imaginary part of Cp are normalized with the amplitude of the forcing motion.

C∗p−real =
Cp−real · 180o

α̃ · π
and C∗p−imag =

Cp−imag · 180o

α̃ · π
(16)

to represent the pressure distribution independent of imposed incident amplitude α̃ or h̃.
Table 1 gives an overview of the relation between frequency f and reduced frequency k

Test case k [1] Mach number [1] α̃ [◦] or h̃[m] f [Hz] lref [m]
NACA 0012-heave 1e-5 0.5 0.1 0.00027 1
NACA 0012-heave 0.1 0.5 0.1 2.7 1
NACA 0012-heave 1 0.5 0.1 27 1

NACA 64A010-pitch 0.2 0.8 0.5 4.3 1
AGARD LANN-pitch 0.204 0.82 0.25 8.82 1

DLR F12-pitch 0.068 0.205 4.52 3 0.253

Table 1: Distinct motion data for the test cases chosen.

with Mach number in use for the test cases in that section. A real aircraft has a typical
lowest, elastic, structural frequency about 1 Hertz.

4.1 NACA0012 Heave Oscillations - inviscid subsonic flow

The NACA0012 is a symmetrical aerofoil that performs a heave oscillation. The flow
conditions are a subsonic free-stream Mach number of 0.5 with an angle of attack ᾱ of
0.16◦ and an incidence amplitude α̃ of 0.1◦ with a reduced frequency range from 10−5 up
to 10. A fine grid with about 17.000 mesh points was chosen to capture flow physics at
higher frequencies.
Further it should be mentioned that the number of time-steps per period and inner pseudo
time multigrid cycles for the dual time stepping varied over the frequencies. Lower fre-
quencies needed a much higher resolution per period while the inner pseudo time steps
increased with higher frequencies. To provide the appropriate accuracy for the solutions
a convergence criterion for the inner cycles was set to the global lift and drag coefficients,
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for changing relatively less than 10−6 the inner pseudo time-stepping had finished. The
steady state solutions and the LFD convergence have been performed until machine ac-
curacy, while the density residual was used for the flow simulation and the first entry of
real and imaginary solution vector for the LFD, respectively.
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Figure 2: NACA 0012 undergoing harmonic heave movement for a incidence amplitude h̃ of 0.1m over a
wide range of reduced frequencies showing the amplitude and phase behavior for lift and pitching moment
for the LFD in comparison to unsteady simulations.

Figure 2 is a compact presentation of the frequency response of lift (a) CL and pitch-
ing moment (b) CMy in amplitude and phase from the LFD in comparison to unsteady
simulations. Analogous to the pressure coefficient, the amplitude of the lift and moment
coefficient is normalized with the amplitude of the forcing motion.
Because the profile performs a heaving motion, the effective pitching amplitude, which
governs the flow physics, is h̃ ·k and so the amplitude is linearly dependent on the reduced
frequency. For lower reduced frequencies (k ≤ 1) the amplitudes of lift and pitching mo-
ment are linear with respect to the frequency and the LFD and URANS results agree very
well. For the limit of k → 0 the lift and moment amplitudes will approach zero too, and
the phase is 90◦ for the lift and -90◦ for the pitching moment. With increasing reduced
frequency the effective amplitude of the angle of attack increases as well. Non-linear ef-
fects, here a transonic region that appears and disappears over one period (see Figure 3),
are occurring and cannot be captured by the time-linearized solver anymore.
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Figure 3: Mach number contours at four stages of a period for NACA 0012 undergoing harmonic heave
movement for a incidence amplitude α̃ of 0.1◦and reduced frequency k = 2.
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4.2 NACA64A010 Pitch Oscillations - transonic viscous

The CT8 case from AGARD-R-7026 is a transonic case with a freestream Mach number
of 0.8, a Reynolds number of 12.5 million and an angle of attack of zero degrees. The
pitching motion is performed at a x-axis of 25% from the chord length and the incidence
amplitude will be α̃ = 0.5◦. The computational grid, left Figure 4, contains 10727 points
with 11630 quadrilaterals for the boundary layer resolution and 4800 triangles for the
remaining flow field and the flow simulation was performed with a LUSGS semi-implicit
time stepping scheme and a 4w multigrid cycle. One period of the URANS simulation
is resolved with 150 steps per period and the same convergence criterion for the inner
multigrid cycles was set as for the heave case at 4.1.
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Figure 4: Computational grid (left) and surface pressure distribution (right) for Ma=0.8, Re=12.5 million
and ᾱ = 0.0◦from the steady state, unsteady mean value and experimental data.

Evaluating the prediction quality of the LFD, the pressure distribution Cp on the aero-
foil contour are shown. The steady state and mean pressure coefficient, Figure 4 (b),
compared with the experimental data shows small deviations in the pre-shock region but
good agreement in the post-shock region. The pressure gradient in the shock region of
the LFD and the steady state differs from the mean value of the URANS simulation due
to nonlinear effects.
Real and imaginary parts of the first harmonic pressure Cp, Figure 5, reveals an excellent
agreement between the LFD compared to unsteady simulation, except for the different
peaks in the shock regions were the real part overestimates and the imaginary part un-
derestimates the peak. So there is an error in phase due to a non-harmonic motion of
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Figure 5: Comparison of real and imaginary part of surface pressure coefficient distribution for
NACA64A010 aerofoil with Ma=0.8, Re=12.5 million, ᾱ=0.0◦, α̂=0.5◦and k=0.2 .

Amplitude

C
-li
ft
am

pl
itu
de

C
-li
ft
ph
as
e

10-5 10-4 10-3 10-2 10-1 100 1010

2

4

6

8

10

-3

-2

-1

0

1

2

3Unsteady amplitude
LFD amplitude
Unsteady phase
LFD phase

(a) Lift

Amplitude

C
-m
y
am

pl
itu
de

C
-m
y
ph
as
e

10-5 10-4 10-3 10-2 10-1 100 1010

0.2

0.4

0.6

-3

-2

-1

0

1

2

3Unsteady amplitude
LFD amplitude
Unsteady phase
LFD phase

(b) Pitching moment

Figure 6: NACA64A010 aerofoil undergoing harmonic pitch oscillation for a range of incidence amplitudes
at k = 0.2 for the lift and pitching moment amplitudes and phase.

the shock. The unsteady simulation is able to resolve at the shock with higher harmon-
ics while the LFD resolves the region first order accurate which can be seen in a phase
shift deviation. The shock range around x=0.5 is nearly the same for both simulations
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and serves as an indication that the amplitudes of the global forces and moments will be
represented accordingly as for the unsteady simulation.

Investigations were conducted to present the influence of increasing incidence amplitudes
by keeping the reduced frequency constant. Starting with α̃ of 10−5 and increasing up
to a value of 2, Figure 6(a) and (b), the amplitudes for lift and pitching moment show
a constant distribution for the LFD which follows from the behavior of the linearization.
The unsteady distribution does not vary up to about α̃ of 1.5◦ but deviates at higher α̃
because of non-linear effects in the flow seen in Figure 6(b) for the amplitude and phase of
the pitching moment. In addition there is not seen any evidence for amplitude dependency
using finite differences for creating vector b (10) for the linear system.

Up to know it is not clear why the phase of the pitching moment is approximately 25◦ off
from the unsteady results, but one extended survey has to estimate for the influences
of the linearized viscous terms and the integration of global forces and moments. All
other distributions are within expected ranges especially lift amplitudes and phases can
be predicted properly up to α̃ values of 2 .

4.3 LANN Wing Pitch Oscillations - transonic viscous

The AGARD LANN wing29 is a trapezoidal 3D wing, typical for transport aircraft flying
in transonic flow regions. The ratio between halfspan width and root chord length is
about 2.77. The wing performs a pitching motion around a x-axis of x = 0.62 with a
freestream Mach number of 0.82, a Reynolds number of 7.3 mill., a mean angle of attack
of ᾱ = 0.6, an amplitude of 0.25◦ and a reduced frequency of k = 0.204. The test case

(a) Cmean
p (b) Creal

p (c) Cimag
p

Figure 7: Cp contour on the upper side of the AGARD LANN wing - case CT5
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provides a more complex shock system, a typical λ shock system on upper side of wing,
see Figure 7 (a).
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Figure 8: Real and imaginary parts of the surface pressure distribution at distinct cut planes from the
LANN Wing.

In Figure Figure 7 (b) and (c) the surface pressure distribution is presented in real and
imaginary part as contour plot and in Figure 8 the local Cp distribution at three spanwise
positions of the LFD is compared to the non-linear time domain solver.
Overall, the LFD and URANS results agree very well except for some differences in the
shock regions. In the inner region of the wing the angular shock is well captured, but the
normal shock behind has a small phase error, see Figure 8 (a) and (d). There are also
some differences in the imaginary part at the weak shock at the lower side of the wing. In
the outer regions, see Figure 8 (b),(c),(e) and (f), of the wing the real and imaginary part
of Cp is overshot in the strong shock region. Here higher harmonics can not be neglected
to describe the shock motion, but a time linear solver can only consider the first harmonic
and so it overshoots the amplitude and the phase is different, too.
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4.4 DLR F12 Pitching Oscillations - transonic viscous

The DLR-F12 wind tunnel model is a generic transport aircraft configuration, designed for
dynamic wind tunnel tests in the DNW-NWB. It has a span of b = 2.036m, a reference
chord of lµ = 0, 253m and a fuselage length of l = 2.238m. It is of modular design,
and made of carbon fiber sandwich construction, having a weight of approximately 12
kgs. and permits the measurement of steady and unsteady forces, moments and pressure
distributions. In order to assess the accuracy of the experimental and numerical methods
used for the prediction of the dynamic derivatives, systematic investigations have been
performed in several wind tunnel tests using this model.

(a) Windtunnel model (b) Computational grid

Figure 9: Testing facilities of the DLR F12 model (left) in the NWB windtunnel at Braunschweig and
right the computational grid for the unsteady and LFD simulations.

The model was mounted with a ventral sting onto NWB’s Model Positioning Mechanism
(MPM). The MPM can be described as a 6-Degree-of-Freedom (DOF) parallel kinematics
system incorporating six struts of constant length whose joints at the wind tunnel fixed
side connect to six electric linear motors. The MPM has been in operation since 2004 and
is located above the test section. The MPM with the F12 model installed is shown in Fig-
ure 9(a). More details concerning the MPM can be found in Ref.2,18 The computational
grid, Figure 9(b), contains 9.6 million points with 12.73 mill. prisms for the boundary
layer resolution and 17.62 mill. tetrahedra for the remaining flow field.

Comparing additionally the surface pressure distributions two representative spanwise
cuts were chosen on the wing at 45% span and on the horizontal tail plane (HTP) at 46%
span. Mean Cp, especially at the wing section in Figure 10 (a) and slightly smoother for
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the HTP in (d) displays a highly visible unsteadiness in the nose region. Irrespectively of
the low frequency of 3 Hertz, the incidence amplitude of 4.5◦ imposes a strong movement
of the suction and pressure region. Furthermore the Figure 10 (b) and (e) for the real
part of Cp show the behavior of spurious oscillations over the HTP, especially seen at the
trailing edge.
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Figure 10: Real and Imaginary part of surface pressure distribution of the wing and at the HTP.

This phenomenon is introduced by the evaluation of the right hand side vector b in (10)
with finite differences. The appropriate ε is difficult to find for this test case because the
pitching axis is near the main wing and the HTP is far off. Either the ε is too small, then
the generated values for the wing are only random noise and the HTP will be modeled
properly, or vice versa finding the proper ε for the wing will lead to oscillations for the
HTP. For this test case five different ε were tested, which are computed in less than a
minute before actually starting the LFD and visualizing the vector b (10) for oscillations.
Up to now, searching for a reliable finite differences ε is a long term engineering process
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but can be reduced by having a differentiated version to evaluate the right hand side
vector b in the near future.

For the imaginary Cp of the wing in Figure 10 (c) the LFD shows a slightly expanded
distribution in comparison to the URANS which is caused by the strong unsteadiness in
the nose region which can not be resolved from the linear solver but in general there is a
good agreement with the URANS simulation.

4.5 Computational Effort

One of the key-issues of the LFD solver is the computational performance in comparison
to unsteady time accurate simulations and during the validation process time measure-
ments were made to emphasize the possible time reduction for Euler and Navier-Stokes
computations. Table 2 presents the time efficiency for the test cases and additionally
the time used for unsteady, together with the number of periods computed, and LFD
is shown with the number of processors for parallel applications. The first two entries
for the NACA 0012 Euler simulations exhibit an improved time reduction factor when
switching from subsonic into transonic flow regimes. However, the number of periods and
inner pseudo time steps performed can drastically increase the unsteady time effort but
usually a reduction factor of about 15 to 20 was observed for Euler test cases.

Test case unsteady LFD # proc. time reduction factor
NACA 0012 Euler Ma=0.5 5146 s (p=3) 441 s 1 ≈ 11.5

NACA 0012 Euler Ma=0.755 13860 s (p=5) 814 s 1 ≈ 17
NACA 64A010 RANS Ma=0.8 7100 s (p=5) 580 s 1 ≈ 12.2
LANN Wing RANS Ma=0.82 833 h (p=3) 58 h 8 ≈ 14.4

DLR F12 Ma=0.205 4128 h (p=2) 256 h 32 ≈ 16.1

Table 2: Computational effort in seconds (s) and hours (h) and time reduction factors for distinct test-
cases were p is the number of periods simulated for URANS.

The last three viscous cases in Table 2 have a generally lower reduction factor of around
10 to 15. In parallel, the LFD’s communication is increased dramatically by solving the
double solution vector and for viscous cases the convergence rate does not behave similarly
to the steady simulation anymore. In fact, the residual drops much less and often flattens
after a certain amount of iterations.

5 CONCLUSIONS

An efficient linear solver for predicting aerodynamic stability data has been shown for
inviscid as well as for viscous flows which can serve as a powerful alternative tool for
aeroelastic applications. The validity of this approach was demonstrated for simple test
cases emphasizing the accuracy for a wide range of frequencies and incidence amplitudes.
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Additionally a test case with a complex shock system and a well-investigated windtunnel
model was used to point out the experience gained through the simulation with the LFD
solver for such a realistic use.

Overall good agreement in the results between the LFD and the time accurate flow solver
as well as experimental data could be presented. Savings in computational time up to an
order of magnitude are shown for all test cases. Future work will focus on the completeness
in the linearization procedure for viscous terms and turbulent equations to investigate
their influence on the results and to consider more complex flows with e.g. shock induced
separations. Furthermore, the development of an hand-differentiated mesh sensitivity tool
for generating the right hand side vector b independently of a finite differences ε is a main
concern to establish the linearized frequency domain solver for complex configurations.
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[18] A. R. Hübner, A. Bergmann, and T. Löser. Experimental and numerical investiga-
tions of unsteady pressure distributions and aerodynamic forces on moving transport
aircraft configurations. In 47th AIAA Aerospace Sciences Meeting, volume AIAA-
2009-0091, Orlando, Florida, 2009.

20



Markus Widhalm, Richard Dwight, Reik Thormann and Andreas Hübner
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[28] C. Weishäupl and B. Laschka. Small disturbance euler-simulations for unsteady flows
of a delta wing due to harmonic oscillations. Journal of Aircraft, 41(4):782–789, 2004.

[29] R. J. Zwaan. Lann wing: Pitching oscillation. data set 9. Technical report, AGARD-
R-702, 1985.

21


