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Abstract. The numerical simulation of interfacial and free surface flows is a vast and
interesting topic in the areas of engineering and fundamental physics, such as the study
of liquid-gas interfaces, formation of droplets, bubbles and sprays, combustion problems
with liquid and gas reagents, study of wave motion and others.

One of the most powerful and robust methods for interface simulation in fixed grids is
the Volume-of-Fluid (VOF). In this method, the fluids are represented by a scalar field Ck,
known as volume fraction, that represents the portion of volume filled with fluid k. Given
a velocity field, interfaces are then tracked by evolving fluid volumes in time. At any time
in the solution, an exact interface location is not known. Interface geometry is instead
inferred (based on assumptions of the particular algorithm) and its location is reconstructed
from local volume fraction data (Interface Reconstruction). The reconstructed interface is
then used to compute the volume fluxes necessary for the convective terms in the volume
evolution equation (Advection).

The objective of this work is to implement a fast, accurate and parallelizable VOF
method well suited to 3D unstructured meshes. The selected interface reconstruction algo-
rithms will be the Youngs’ (first order) and the LVIRA (second order). In the other hand,
the advection step will be computed by the means of an unsplit-advection volume tracking
algorithm.

In the paper, the VOF method will be tested for different test problems. First, a study
of reconstruction accuracy, it is most easily assessed by analyzing the reconstruction of
known geometries, such as a hollowed sphere. Second, a rotation test, where a velocity
field is imposed and the advection algorithm is tested.
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1 INTRODUCTION

The contact of immiscible fluids or phases in motion, produces a thin region that
separates them called interface. This kind of flows are called free surface or interfacial
flows and are found in fields as varied as engineering, fundamental physics, geophysics
and others. Typical examples of this phenomena are bubbles, drops, sprays, jets, waves,
clouds, etc.

In the last decades, due to continuous improvement of computational power, numerical
techniques are becoming more important to study interface phenomena and understand
the physics of such flows1. Computational fluid dynamics makes feasible to study bubble
formation, droplet collision, interfacial instabilities and heat transfer, wave motion, etc.

1.1 Resolution of interfacial flow methods

There are different methods for interface tracking, developed over the decades for
specific problems, but they are classified in three main classes:

- fixed-grid: interface cuts across the fixed grid. Continuum Advection2; Level Set3;
Volume Tracking (Volume-of-Fluid) methods4,5,6,7.

- moving-grid: interface is a boundary between two subdomains of the moving grid.
Lagrangian8; Free Lagrangian9.

- grid-free: no grid is needed. Particles10; Marker methods11,12,13.

Among the different methods, the Volume-of-Fluid (VOF) is one of the most widely
used and successful in computational fluid dynamics simulation of interfacial and free
surface flows. The VOF method preserves mass in a natural way, presents no problem for
reconnection or breakup of the interface and it works well in parallel computers1.

1.2 Survey of documented volume tracking methods

The first Volume-of-Fluid methods were introduced in the 1970s. Three of the most
important implementations were DeBar4, Noh and Woodward14 and Hirt and Nichols5.
Each of these methods chose a different reconstructed interface geometry: the DeBar
algorithm used a piecewise linear approximation, Noh method used a piecewise con-
stant approximation and the Hirt algorithm used a piecewise constant/stair-stepped
approximation. They all used an operator split advection for time integration.

The following implementations were based on the DeBar’s piecewise linear approximation
and introduced several improvements in interface reconstruction and in time integration.
The Youngs’15 method was first-order accurate for interface reconstruction and Rider and
Kothe16,17 introduced a formulation for general 2D meshes and unsplit advection for time
integration. Improvements were made to accomplish second-order accurate approximation
to the interface by Puckett18 and Pilliod19.
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Llúıs Jofre, Oriol Lehmkuhl, Jesús Castro and Assensi Oliva

In recent years, improvements on second-order accuracy interface reconstruction, un-
split time integration and computational costs have been accomplished for 3D interfacial
flows. Liovic et al.20 and Hernández et al.21 proposed two interesting unsplit 3D advec-
tion algorithms and Miller and Colella22 introduced a second-order efficient 3D interface
reconstruction method on structured meshes.

2 VOLUME OF FLUID METHOD

The colour function Ck(~x) of fluid k is defined as an identity function

Ck(~x) =

{
1 if there is fluid k
0 otherwise

(1)

Then, the discrete volume fraction Ck associated to the characteristic function of the kth
fluid for a general volume is calculated as

Ck =

∫
Ck(~x)dV∫
dV

(2)

where Ck ranges from 0 to 1 and its sum over all k is unity. The volume of the kth fluid
Vk and the total volume V are given by

Vk = CkV ; V =
∑
k

Vk (3)

The Volume-of-Fluid mathematical formulation starts from the mass conservation
equation

∂ρ

∂t
+∇· (ρ~u) = 0 (4)

where ρ is the fluid density and ~u is the fluid velocity. Introducing the definition ρ =∑
k Ckρk, assuming that ~uk = ~u, and substituting these definitions into Eq. (4), an evolu-

tion equation is obtained for each volume fraction Ck:

∂Ck

∂t
+∇· (Ck~u) = 0 (5)

Integrating Eq. (5) over cell volume, Vc, and using a first-order time discretization gives

V n+1
k − V n

k + δt
∫

Vc

∇· (Ck~u)dV = 0 (6)

where superscript n refers to discrete time level and δt is the time step. Invoking Gauss’s
theorem and assuming incompressible fluid, ∇· ~u = 0, Eq. (6) can be approximated dis-
cretely as

V n+1
k − V n

k +
∑
f

δV n
k,f = 0 (7)
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where subscript f refers to a face cell, the area integral has been converted to a discrete
sum over control volume faces and δVk,f is the kth volume flux across face f . The total
volume flux across face f is given by δVf = ~uf ·~nfAfδt =

∑
k δVk,f ; where ~uf is the

velocity at face f , ~nf is the face unit-outward-facing normal vector and Af is the face
area. Dividing Eq. (7) by the cell volume, Vc, gives the volume fraction evolution equation:

Cn+1
k − Cn

k +
1

Vc

∑
f

δV n
k,f = 0 (8)

Volume-of-Fluid methods essentially solve Eq. (8) for each fluid k. The most impor-
tant aspect is the geometrically-based estimation of the kth fluid volume fluxes, δVk,f ,
calculated by truncating the total volume fluxes, δVf , by an interface reconstruction of
the kth fluid.

Volume tracking algorithms consist of two main steps: Interface Reconstruction and
Interface Advection. The details of each of these steps are presented in Sec. (3) and (4).

3 INTERFACE RECONSTRUCTION

In piece-wise linear interface calculation (PLIC) methods, the interface between two
fluids is represented, for each cell, by a plane

~n · r − d = 0 (9)

where r is a point in the plane, ~n is the unit normal to the plane, and d is the signed
distance from the origin to the plane.

The principal reconstruction constraint is local volume conservation, i.e. the recon-
structed interface must truncate the cell verifying

Ck =
Vk

Vc

(10)

where Ck and Vk are the volume fraction and volume of fluid k of the cell c, and Vc is the
volume of the entire cell.

Since a unique interface configuration does not exist, the interface geometry must
be inferred based on local data and the assumptions of the particular algorithm. PLIC
methods differ in how the normal ~n is computed. For a given normal, d is uniquely defined
from Eq. (10).

3.1 Youngs’ method

In the Youngs interface reconstruction method15, the interface normal, ~n, is computed
by approximating the gradient of the volume fraction function Ck as

~n = −∇ · Ck (11)
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In the case of a 3D unstructured mesh consisting of generalized polyhedra, it is conve-
nient to use a least squares gradient procedure23.

To complete the interface reconstruction, one needs to find the constant d in Eq. (9)
such that intersection of the corresponding half-space and cell c satisfies Eq. (10). This
is accomplished using the Brent’s method24.

3.2 Least squares volume-of-fluid interface reconstruction algorithm

In the LVIRA interface reconstruction method19, the interface normal, ~n, is computed
by minimizing the error functional

E(~n) =

(∑
nb

(Ck,nb
ref − Ck,nb(~n))2

)1/2

(12)

where subscript nb refers to the neighbour cells around cell c, Cref
k,nb is the reference volume

fraction of neighbour nb and Ck,nb(~n) is the actual (reconstructed) volume fraction of
neighbour nb taken by extending the interface of central cell c, under the constraint
that the corresponding plane exactly reproduces the volume fraction in the cell under
consideration, see Fig. (1).

Figure 1: LVIRA error representation on a 2D unstructured mesh. Given a central cell c, its plane interface
reconstruction (boldface line) is extended to the neighbour cells and for each one Ck,nb

ref − Ck,nb(~n) is
calculated (hatched areas) and added to LVIRA error E(~n).

The normal ~n can be described by polar coordinates, therefore, LVIRA implementation
requires an algorithm for the minimization of a non-linear function of two variables, e.g.
the Powell’s method24.
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LVIRA is much more computationally expensive than Youngs, since for every cell c an
error has to be minimized, but it is second-order accurate (reconstructs planar interfaces
exactly) while Youngs is just first-order.

4 INTERFACE ADVECTION

After reconstructing the interface, Sec. (3), volume fractions for the kth fluid are ad-
vected forward in time as described in Eq. (8). There are two main procedures for interface
advection in multiple spatial dimensions: direction-split and unsplit.

Direction-split advection consists on a separated time integration for each dimension
Cn →x C

∗ →y C
∗∗ →z C

n+1. For each step, one-dimensional volume fluxes are generated
by considering individual velocity vector components, then, volume fractions are updated
and interface is reconstructed.

Unsplit advection realizes the time integration in one step Cn →x,y,z C
n+1, taking into

account velocity vector components acting in all directions and updating volume fractions
and reconstructing interfaces just once.

Direction-split volume tracking is easier to implement for 3D flows than unsplit ad-
vection, but generates a direction splitting error17 and requires at least three interface
reconstruction sweeps to complete a volume tracking update. Therefore, unsplit advection
is more accurate and faster than direction-split but its implementation is more difficult.

4.1 A new 3D unsplit advection algorithm

The method proposed starts from the volume fraction evolution equation, Eq. (8), uses
an unsplit advection time integration scheme, and assumes that the interface has been
reconstructed, Sec. (3). The algorithm will be presented step-by-step and is applied to
each cell:

1. Calculate the volume flux through every face of the cell

δVf = ~uf · ~nfAfδt (13)

where ~uf is the velocity at the face, ~nf is the unit normal vector to the face pointing
out of the cell, Af is the face area and δt is the time step.

2. Construct a flux polyhedron of volume δVf at each face of the cell.

3. Truncate the faces’ volume fluxes, δVf , by the reconstructed interfaces to get the
kth fluid volume fluxes across the face, δVk,f .

4. Calculate the new kth fluid volume fraction, Cn+1
k , by evaluating Eq. (8).

Steps 2 and 3 are the basic and most important steps of the algorithm, they are
described in detail in Sec. (4.1.1) and (4.1.2), respectively.
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4.1.1 Construction of faces’ volume fluxes

As described in Sec. (4.1), it is necessary to construct a volume flux polyhedron for
each face. The flux polyhedron proposed in this work satisfies:

Figure 2: Face’s volume flux polyhedron. The polyhedron is constructed by using the vertexes of the
face (a,b,c) and by tracing back the Lagrangian trajectories for time δt of the face’s vertexes (a − ~uaδt,
b− ~ubδt, c− ~ucδt).

- Non-overlapping: to avoid overlapping, as explained by Rider16, the polyhedron
is constructed from the velocities at the vertexes of the face. The vertexes of the
polyhedron, see Fig. (2), consist of: the vertexes of the face (a,b,c) and the traced
back Lagrangian trajectories for time δt of the face’s vertexes (a − ~uaδt, b − ~ubδt,
c− ~ucδt).

- Volume adjustment: in order to verify Eq. (13), the polyhedron’s volume is adjusted.
The back face, created by a − ~uaδt, b − ~ubδt and c − ~ucδt, is a non-planar surface,
then, when approximating the surface by a set of planar surfaces the centroid of
this back face can be readjusted to create a flux polyhedron with a volume equal to
δVf .

The constructed flux polyhedron, in the case of 3D flows, is a set of non-planar surfaces
that create a non-convex polyhedron. The non-planar surfaces are approximated by a set
of planes and the resulting non-convex polyhedron is split up in several convex figures.

4.1.2 Truncation of faces’ volume fluxes

Once the face volume fluxes are constructed, they have to be truncated by the interface
reconstruction to get the kth fluid volume fluxes across the faces, δVk,f . Given a face, see
Fig. (3), its flux polyhedron is constructed (boldface lines), then, for each surrounding
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cell (a, b, c, d, e, f, g, h and i) the polyhedron is truncated by the cell faces (continuous
lines) and the reconstructed interface (dashed lines), finally, the addition of the individual
volumes (hatched areas) corresponds to δVk,f . When the kth fluid volume fluxes across
all the faces have been calculated, Eq. (8) can be evaluated for each cell taking in account
that if the fluid enters, the δVk,f is positive and negative if it leaves the cell.

Figure 3: Truncation of the face’s volume flux polyhedron to calculate the δVk,f , represented on a 2D
unstructured mesh. Given a face, its volume flux polyhedron is constructed (boldface lines), then, for
each surrounding cell (a, b, c, d, e, f, g, h and i) the polyhedron is truncated by the cell faces (continuous
lines) and reconstructed interface (dashed lines) and the addition of the individual volumes (hatched
areas) corresponds to δVk,f .

4.2 Algorithm details

The standard time step17 for structured meshes is defined from the CFL25 constraint
as

δt <
CFL h

u
(14)

where the CFL value ranges from 0 to 1, h refers to mesh size and u is a characteristic
velocity.

Unstructured meshes require a different approach to calculate the correct time step,
δt. Imposing that the volume of the flux polyhedron, Eq. (13), has to be equal to the
volume of the cell, Vc, gives

Vc = ~uf · ~nfAfδt (15)

using constant σ, the minimum time step is calculated as

δt < min

{
σVc

~uf · ~nfAf

}
(16)

8
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where the σ value ranges from 0 to 1, Vc is the volume of the cell, and ~uf , ~nf and Af are
the velocity, the outward-unit normal and the area for each face of the cell, respectively.
When applying this condition to structured meshes, the equation is equivalent to Eq. (14).

Some errors are introduced to the solution when advecting volumes in time by resolving
Eq. (8), generating undershoots (Ck < 0), overshoots (Ck > 1) and wisps (fluid in void
regions or vice versa). These errors are caused basically by discretization errors and
velocity fields with non-zero divergence. When any of the previous errors occur is useful
to use a local redistribution algorithm like the one proposed by Harvie and Fletcher26.

5 TESTS

5.1 Reconstruction tests

The hollowed sphere test is used to examine the accuracy of the reconstruction methods
presented in Sec. (3). This test problem is stationary; no advection is performed and hence
there is no error due to discretization in time. In the test, a sphere of radius 0.4 (convex
surface) is initialized in a unitary domain, and a spherical core of radius 0.2 (concave
surface) is then hollowed out of it.

The interface reconstruction error is measured as the difference between the exact
interface and the reconstructed one. An L1 error norm is used, which in the continuous
limit is the integral27

EL1 =
∫
|χ(~x)− χ̃(~x)|dV (17)

where χ(~x) is the exact interface topology and χ̃(~x) is its approximation obtained using
an interface reconstruction method.

cartesian Youngs LVIRA unstructured Youngs LVIRA
103 4.80× 10−3 6.76× 10−3 103 2.62× 10−2 3.05× 10−2

203 1.40× 10−3 1.41× 10−3 203 2.81× 10−3 3.30× 10−3

403 6.36× 10−4 4.44× 10−4 403 9.92× 10−4 9.04× 10−4

803 3.15× 10−4 1.73× 10−4 803 4.74× 10−4 2.97× 10−4

Table 1: EL1 in interface reconstruction in the hollowed sphere test, using the Youngs and LVIRA schemes
on cartesian and unstructured meshes.

The error norm L1 results for the hollowed sphere reconstructions tests are shown on
Tab. (1). The Youngs algorithm exhibits better results for coarse grids (103 cells) but
LVIRA performs better when the grid is refined (403 cells). In the other hand, the LVIRA
algorithm is much more time consuming since it needs a 2D minimization. The results for
the cartesian meshes are of same magnitude as the ones of the equivalent unstructured
meshes, except for the very coarse ones where the cartesian mesh presents better results.
The calculation of the interface reconstruction is faster on unstructured meshes than
on cartesian ones due to the less number of faces per cell. In order to understand the
magnitude of the error, the profiles of the interface reconstruction, cutted by a plane to
view the internal part, for the different tests are shown from Fig. (4) to Fig. (7).

9
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Figure 4: Hollowed sphere reconstruction using Youngs algorithm on a cartesian mesh.

Figure 5: Hollowed sphere reconstruction using LVIRA algorithm on a cartesian mesh.

Figure 6: Hollowed sphere reconstruction using Youngs algorithm on an unstructured mesh.

Figure 7: Hollowed sphere reconstruction using LVIRA algorithm on an unstructured mesh.
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5.2 Advection tests

The Rotating flow field test is used to verify the implementation of the advection
algorithm presented in Sec. (4). The test makes no change in interface topology being
ideal to test just the advection algorithm. In the test, a sphere of radius 0.15 and centered
at (0.5, 0.75, 0.5) is initialized in a unitary domain, and is advected in a rotational field
for the period of time required to return to its initial position. In this paper, a CFL equal
to 0.5 will be used.

The advection error is measured as the difference between the initial and after advection
colour functions. An L1 error norm is used, which in the discrete form is the summation27

EL1 =
∑

c

Vc|C̃k,c − Ck,c| (18)

where Vc refers to the volume of cell c, and Ck,c and C̃k,c are the colour functions, for fluid
k, before and after advection of cell c, respectively.

cartesian Youngs unstructured Youngs
323 6.34× 10−4 323 2.18× 10−3

643 5.47× 10−4 643 1.21× 10−3

1283 3.20× 10−4 1283 6.74× 10−4

Table 2: EL1 in advection in the rotational flow field test, using the Youngs scheme and a CFL 0.5 on
cartesian and unstructured meshes.

The error norm L1 results for the rotational flow field tests are found in Tab. (2). The
Youngs algorithm was the only one used since the LVIRA based on the Powell’s method24

is not efficient enough. The time step was calculated for the different tests from Eq. (16).
Cartesian tests were faster due to the less number of neighbours surrounding the faces,
as it can be seen in Fig. (3). The reconstructed interfaces for the advection test at times:
T/4, 2T/4, 3T/4 and T , are shown in Fig. (8) and Fig. (9) for cartesian an unstructured
meshes, repectively.

The results can be largely improved since some numerical inconsistencies have been
found when testing the advection algorithm. There are inaccuracies in some flux polyhe-
drons when vertex’s velocities are tangent to the cell faces. Solving these problems will
improve the results and the errors will be reduced as the grid is refined.

When the problems described in the previous paragraph are solved, more advection
tests will be performed. The LVIRA algorithm have to be improved, e.g. using the BFGS
method24, to be tested on the advection tests in order to compare the results with the
Youngs’ ones. Vortical flows, such as the shearing and deformation flow fields20, will be
tested to study the behaviour of the advection algorithm for more demanding situations.
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Figure 8: Rotation flow field using Youngs algorithm on a cartesian 323 mesh.

Figure 9: Rotation flow field using Youngs algorithm on an unstructured 323 mesh.
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6 CONCLUSIONS

A Volume-of-Fluid method based on a new approach for the multidimensional ad-
vection has been proposed for tracking interfaces in 3D. For this purpose, a set of simple
geometric tasks have been explained in detail. The proposed advection algorithm enforces
mass conservation locally by using non-overlapping fluxes and verifying the conservation
equation, thus, reducing the formation of undershoots, overshoots and wisps.

The interface reconstruction and advection methods presented have been assessed using
different tests. After studying the results some conclusions have been made: the LVIRA
error has to be minimized by a more efficient method, e.g. BFGS method24, and construc-
tion inaccuracies have to be solved for some flux polyhedrons when vertex’s velocities are
tangent to the cells’ faces. When these inaccuracies are solved more demanding advection
tests will be performed.
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