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Abstract. The spatial discretization of the unsteady incompressible Navier-Stokes equa-
tions is stated as a system of Differential Algebraic Equations (DAEs), corresponding to
the conservation of momentum equation plus the constraint due to the incompressibility
condition. Runge-Kutta methods applied to the solution of the resulting index-2 DAE
system are analyzed, allowing a critical comparison in terms of accuracy of semi-implicit
and fully implicit Runge-Kutta methods. Numerical examples, considering a discontinuous
Galerkin Interior Penalty Method with piecewise solenoidal approximations, demonstrate
the applicability of the approach, and compare its performance with classical methods for
incompressible flows.
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1 INTRODUCTION

Due to constraints of computing costs, in the past, development of numerical techniques
for fluid flow simulations has focused mainly on steady state calculations. However, many
physical phenomena of interest are inherently unsteady, creating the need for efficient
numerical formulations for unsteady flows, a few examples being separated flows, wake
flows, fluid actuators and maneuvering. Good stability properties and high orders of
accuracy in time as well as in space are critical requirements, especially when studying
boundary layers or high Reynolds number flows.

An important difficulty for the numerical simulation of incompressible flows is that
velocity and pressure are coupled by the incompressibility constraint. Interest in using
projection methods to overcome this difficulty in time-dependent viscous incompress-
ible flows started with the introduction of fractional-step methods for the incompressible
Navier-Stokes equations, see [1, 2]. Following the original ideas of Chorin and Temam,
numerous authors have successfully used fractional-step methods for incompressible flows,
see for instance [3, 4, 5, 6]. The pressure/incompressibility terms have to be treated im-
plicitly while the remaining terms, viscous and convective, can be treated either explicitly,
semi-implicitly or fully implicitly. Nevertheless, while explicit schemes are used at much
lower cost, the number of realistic problems that are amenable to explicit formulation is
very small. In common situations, large variations in element size, required to solve multi-
ple spatial scales occurring in high Reynolds number flow or in boundary layers, make the
use of explicit time integration techniques impractical. In such cases, implicit schemes
have to be considered such as implicit fractional step methods, Crank-Nicolson [7], or
generalized-α methods [8]. Unfortunately, these classical methods for incompressible flow
are at most second-order accurate in time.

On the other hand, higher order time integrators are widely used for compressible
flows, such as Backward Difference multistep methods [9] or high-order Runge-Kutta
(RK) methods. In particular, it is well known that for high-order accurate computations,
RK methods present two major advantages in front of multistep methods: larger stability
regions and straightforward implementation of variable time step. Thus, high-order RK
methods have been successfully applied to compressible flow problems, whose spatial
discretization (for example with finite elements or finite volumes) leads to a system of
Ordinary Differential Equations (ODEs), see [10, 11].

In this work, the possibilities of using high-order implicit RK methods for incom-
pressible flow computations are explored. To that end, the space discretization of the
unsteady incompressible Navier-Stokes equations is interpreted as an index-2 system of
Differential Algebraic Equations (DAE) [12]; that is, a system of ODEs corresponding
to the conservation of momentum equation, plus algebraic constraints corresponding to
the incompressibility condition. This interpretation was already considered in [13] for the
implementation of third and fifth-order implicit RK methods. Here a critical compari-
son, in terms of accuracy, of semi-implicit and fully-implicit RK methods is performed
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for the solution of the unsteady Navier-Stokes equations, whereas a full stability analy-
sis is presented in [14]. Specific RK methods are recommended for incompressible flow
computations, with both unconditional stability and high-order accuracy.

Furthermore, numerical examples using a Discontinuous Galerkin (DG) formulation
with solenoidal approximation allow a comparison, in terms of accuracy and compu-
tational cost, between the high-order recommended RK methods and also with other
classical methods, such as the second-order Crank-Nicolson method.

The paper is structured as follows. Section 2 recalls the basic concepts of implicit RK
methods for the solution of index-2 DAEs, motivated by their application to the solution
of incompressible flow problems. In Section 3, the DG Interior Penalty Method proposed
in [15, 16] for the steady Stokes and Navier-Stokes equations is recalled, and extended to
the solution of the unsteady Navier-Stokes equations. The resulting IRK-DG scheme has
high-order properties both in time and space. Moreover, the use of piecewise solenoidal
approximations leads to an important reduction in the number of degrees of freedom.
Numerical examples are presented in Section 4 to show the applicability of the methods,
and to compare accuracy and computational cost of RK methods for index-2 DAEs with
a classical Crank-Nicolson scheme.

2 DAE RUNGE-KUTTA METHODS FOR UNSTEADY INCOMPRESS-

IBLE FLOWS

Let Ω ⊂ R
nsd be an open bounded domain, with boundary ∂Ω, and nsd the number

of spatial dimensions. The strong form of the unsteady incompressible Navier-Stokes
problem can be written as

∂u

∂t
− 2∇ · (ν∇

su) + ∇p + (u ·∇)u = f in Ω, (1a)

∇ · u = 0 in Ω, (1b)

u = uD on ΓD, (1c)

−pn + 2ν(n · ∇
s)u = t on ΓN , (1d)

where ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, f ∈ L2(Ω) is a source term, u the flux velocity, p its
pressure, ν the kinematic viscosity and ∇

s = 1
2
(∇ + ∇

T ). In (1a), the constant density
has been absorbed into the pressure.

Here the space discretization of the incompressible Navier-Stokes equations is carried
out using a discontinuous Galerkin Interior Penalty Method with solenoidal piecewise
approximations, as detailed in Section 3. Nevertheless, the algorithms discussed in this
work would be equally applicable to other types of discretization schemes, for example
using other DG formulations or continuous Galerkin. In any case, the space discretization
of the unsteady incompressible Navier-Stokes problem (1) can be written as

{

Mu̇ + Ku + C(u)u + Gp = f1

GTu = f2
(2)
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where M is the mass matrix, K the diffusion matrix, C the convection matrix, G the
pressure matrix, u and p the vectors of nodal values, or approximation coefficients of
velocity and pressure respectively, and f1 and f2 vectors taking into account force term
and boundary conditions, see for instance [17]. This system, of ndof degrees of freedom,
can also be written as

{

u̇ = F(t,u,p)

0 = G(t,u)
(3)

where
F(t,u,p) = M−1 (f1 − Ku − C(u)u − Gp) ,

G(t,u) = GTu − f2.
(4)

Note that ∂G
∂u

∂F
∂p

= GTM−1G is invertible. Therefore, (3) is a Hessenberg index-2 DAE

system [18].
DAEs originate in the modelisation of various physical or chemical phenomena and

have been deeply studied during the last years [18, 19]. They are classified by their
differential index, that is, the minimum number of times that a DAE system must be
differentiated to obtain an ODE. For instance, the discrete incompressible Stokes, Oseen
and Navier-Stokes equations are index-2 DAE systems.

Many numerical methods initially defined for ODEs have been adapted to DAEs, as for
example multistep Backward Differentiation Formulae [20] or Runge-Kutta methods [19].
Runge-Kutta (RK) methods have been first regarded as poor competitors to multistep
methods, mainly because for most DAEs and RK methods, the order of convergence
obtained was less than the order obtained for ODEs, and the higher the index, the higher
the reduction. Ulterior results from [12] have however shown that proper RK methods
can form the basis of a competitive code, because they are unconditionally stable and can
reach orders of convergence as high as when applied to ODE.

In this work, Runge-Kutta methods for index-2 DAE are considered [12]. An s-stage
Runge-Kutta method for (3) reads

un+1 = un + ∆t

s
∑

i=1

bili

pn+1 = pn + ∆t
s
∑

i=1

biki

(5)

where li and ki are defined as the solution of the system

li = F

(

tn + ci∆t,un + ∆t
s
∑

j=1

aijlj,p
n + ∆t

s
∑

j=1

aijkj

)

(6a)

0 = G

(

tn + ci∆t,un + ∆t

s
∑

j=1

aijlj

)

(6b)
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for i = 1, ..., s. Coefficients aij, bi, ci come from the Butcher array, whose general form
is seen in Table 1. Depending on the specific form of the Butcher array, implicit, semi-

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
...

cs as1 as2 · · · ass

b1 b2 · · · bs

Table 1: Butcher array

implicit or explicit Runge-Kutta methods are obtained. A Runge-Kutta method is said
to be explicit if its Butcher array is strictly lower triangular, that is aij = 0 for j ≥ i.
Otherwise the method is implicit (IRK). In particular, an implicit method is said to
be semi-implicit, or diagonally implicit (DIRK), if aij = 0 for j > i and aii 6= 0 for
some i. If in addition all diagonal coefficients (aii) are identical, the method is called
singly diagonally implicit (SDIRK). SDIRK are of special interest for a linear problem,
as for example the Stokes problem, since one may hope to use repeatedly the stored
LU-factorization of the matrix. This work focuses on fully implicit and semi-implicit
methods because of their stability properties. In fact, explicit Runge-Kutta methods
can not even be used in the form of (5)-(6) for Hessenberg index-2 DAEs, because the
resulting system (6) is under-determined to solve for li and ki. Nevertheless, in [21]
explicit Runge-Kutta methods are applied to DAE, using a different formulation than
(5)-(6). In this case, the order of convergence of explicit Runge-Kutta methods is less
than the one reached for a regular ODE. For example, the 4-stage explicit RK scheme
applied to the incompressible Navier-Stokes equations in [21] only leads to second-order
accuracy for velocity and pressure, see [14].

2.1 IRK and SDIRK methods

Table 2 shows the order of convergence for index-2 DAE (such as the discrete incom-
pressible Navier-Stokes problem), and for ODE, for s-stage Radau IA, IIA and Lobatto
IIIC methods. Other methods, such as Gauss or Lobatto IIIA, are dismissed because they
present higher order reduction when applied to DAEs with respect to ODEs. As shown
in Table 2, the best orders of convergence for velocity and pressure are obtained for a
Radau IIA-IRK method, keeping the order of convergence for velocity for DAEs as high
as for ODEs.

Table 3 shows Butcher diagrams for 2- and 3-stage Radau IIA-IRK methods. Radau
IIA-IRK methods are a special case of IRK methods satisfying the additional property
bj = asj for j = 1, · · · , s. These methods are called IRK(DAE) and they stand out from all
IRK methods in view of their applicability to DAE since at the last stage, un+1 directly
satisfies the constraint G(tn+1,un+1) = 0. Because of this additional property and of
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Method DAE: u error DAE: p error ODE error
Radau IA hs hs−1 h2s−1

Radau IIA h2s−1 hs h2s−1

Lobatto IIIC h2s−2 hs−1 h2s−2

Table 2: Orders of convergence for s-stage IRK methods for index-2 DAEs and for ODEs [22, 12].

1
3

5
12

- 1
12

1 3
4

1
4

3
4

1
4

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

Table 3: Butcher array for 2-stage (left) and 3-stage (right) Radau IIA-IRK methods

their high orders of convergence, 2- and 3-stage Radau IIA-IRK are selected among fully-
implicit RK methods to be compared from accuracy and cost points of view in Section
4.2.

Note that the solution of an index-2 DAE system, such as (3), with an s-stage fully-
implicit Runge-Kutta method requires solving a non-linear system of equations of dimen-
sion sndof at each time step, where ndof is the number of degrees of freedom in (3). An
alternative to reduce the computational cost would be to use an SDIRK method.

For instance, Table 4 shows the Butcher diagram for 2-stage SDIRK method. The

γ γ 0

1 − γ 1 − 2γ γ
1
2

1
2

Table 4: Butcher array for 2-stage SDIRK method, with γ = 3+
√

3

6

computational effort in implementing semi-implicit methods is substantially less than for
a fully-implicit method, indeed s systems of dimension ndof are to be solved, instead of a
problem of dimension sndof in the fully-implicit scheme.

Unfortunately, SDIRK methods do not reach high orders of convergence, as illustrated
in Table 5. Unlike for ODE problems, increasing the number of stages of SDIRK meth-
ods does not improve the order of convergence for index-2 DAE systems. The order of
convergence of SDIRK methods for an index-2 DAE system is limited to 2 for velocity
and 1 for pressure, for 2, 3 or 5 stages 1. Note that, this is exactly the same order as

1[23] conjectured and presented some evidence for the belief that for any s even number greater than
two, no SDIRK method exists with order s + 1 for an ODE. That is why no 4-stage method appears in
Table 5.
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Number of stages DAE: u error DAE: p error ODE error
2 2 1 3
3 2 1 4
5 2 1 6

Table 5: Orders of convergence for SDIRK methods for index-2 DAEs and for ODEs [22, 12].

the classical Crank-Nicolson scheme, which has considerably less computational cost (one
system of dimension ndof at each time step).

Thus, in this work, fully-implicit Radau IIA-IRK methods are recommended among
other RK methods for the solution of incompressible flow problems. These methods are
compared in term of accuracy and computational cost with the classical Crank-Nicolson
method in Section 4.2.

3 DISCONTINUOUS GALERKIN FORMULATION FOR THE UNSTEADY

INCOMPRESSIBLE NAVIER-STOKES PROBLEM

The discretization of problem (1) following a DG Interior Penalty formulation [15, 16]
is presented in this section. To that purpose, suppose that Ω is partitioned in nel disjoint
subdomains Ωi,

Ω =
nel
⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j,

with piecewise linear boundaries ∂Ωi, which define an internal interphase Γ

Γ :=
[

nel
⋃

i=1

∂Ωi

]

\∂Ω.

The jump J·K and mean {·} operators are defined along the interface Γ using values
from the elements to the left and to the right of the interface (say, Ωi and Ωj) and are
also extended along the exterior boundary (only values in Ω are employed), namely

J⊚K =

{

⊚i +⊚j on Γ,

⊚ on ∂Ω,
and {⊚} =

{

κi ⊚i +κj⊚j on Γ,

⊚ on ∂Ω.

Usually κi = κj = 1/2 but, in general, these two scalars are only required to verify
κi + κj = 1, see for instance [24]. The major difference between the mean and the jump
operator is that the latter always involves the normal to the interface or to the boundary
of the domain. For instance, given two contiguous subdomains Ωi and Ωj their exterior
unit normals are denoted respectively ni and nj (recall that ni = −nj) and along ∂Ω the
exterior unit normal is denoted by n; the jump is then

Jp nK =

{

pi ni + pj nj = ni(pi − pj) on Γ

p n on ∂Ω
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for scalars, see [15] for vectors or tensors.
The following discrete finite element spaces are also introduced

V
h = {v ∈ [L2(Ω)]nsd ; v|Ωi

∈ [Pk(Ωi)]
nsd ∀Ωi}

Qh = {q ∈ [L2(Ω)] ; q|Ωi
∈ [Pk−1(Ωi)] ∀Ωi}

where Pk(Ωi) is the space of polynomial functions of degree at most k ≥ 1 in Ωi.
Finally, in the following equations (·, ·) denotes the L2 scalar product in Ω, that is

(p, q) =

∫

Ω

p q dΩ for scalars,

(u,v) =

∫

Ω

u · v dΩ for vectors,

(σ, τ ) =

∫

Ω

σ : τ dΩ for second-order tensors.

Analogously, (·, ·)Υ denotes the L2 scalar product in any domain Υ ⊂ Γ ∪ ∂Ω. For
instance,

(p, q)Υ =

∫

Υ

p q dΓ

for scalars.
In [16], an Interior Penalty Method was derived for the steady Navier-Stokes equations.

Its extension for an unsteady formulation becomes: find uh ∈ V
h and ph ∈ Qh such that

(

∂uh

∂t
,v

)

+ a
(

uh,v
)

+ c
(

uh; uh,v
)

+ b
(

v, ph

)

+ ({ph}, Jn · vK)Γ∪ΓD
= l
(

v
)

∀ v ∈ V
h,

b
(

uh, q
)

+ ({q}, Jn · uhK)Γ∪ΓD
= (q,n · uD)ΓD

∀ q ∈ Qh,
(7)

where the following forms must be defined,

a
(

u,v
)

:=
(

2ν∇
su,∇sv

)

+ C11 (Jn ⊗ uK, Jn ⊗ vK)Γ∪ΓD

−
(

2ν{∇su}, Jn ⊗ vK
)

Γ∪ΓD

−
(

Jn ⊗ uK, 2ν{∇sv}
)

Γ∪ΓD

, (8a)

l
(

v
)

:= (f ,v) + (t,v)ΓN
+ C11 (uD,v)ΓD

−
(

n ⊗ uD, 2ν∇
sv
)

ΓD

, (8b)

c
(

w; u,v
)

:=
1

2

[

− ((w · ∇)v,u) + ((w ·∇)u,v) +

∫

ΓN

(w · n)u · vdΓ

+
nel
∑

i=1

∫

∂Ωi\ΓN

1

2

[

(w · ni)(u
ext + u) − |w · ni| (u

ext − u)
]

· vdΓ
]

(9a)
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and

b
(

v, p
)

:= −

∫

Ω

q ∇ · v dΩ, (9b)

The penalty parameter, a positive scalar C11 of order O(h−1), must be large enough to
ensure coercivity of the bilinear form a

(

·, ·
)

, see [15]. The characteristic mesh size is
denoted by h. A standard upwind numerical flux, see for instance [25], is used for the
definition of the convective term c

(

·; ·, ·
)

. In (9a), uext denotes the exterior trace of u

taken over the side/face under consideration, that is

uext(x) = lim
ε→0+

u(x + εni) for x ∈ ∂Ωi.

Remark 1 Possible alternatives to the IPM formulation proposed here are for example
the Local Discontinous Galerkin (LDG) method [26, 27], and the Compact Discontinous
Galerkin (CDG) method [28]. In [16], IPM and CDG methods are compared for the solu-
tion of the Navier-Stokes equations, concluding that both methods present similar results
for the accuracy of the numerical solution, reaching optimal convergence rates for velocity
and pressure. The main differences are that CDG is less sensitive to the selection of the
penalty parameter, but has the major disadvantage of the implementation and computation
of lifting operators.

Remark 2 Note that in [16] the convective term was defined as

c
(

w; u,v
)

:= − ((w · ∇)v,u) +

∫

ΓN

(w · n)u · vdΓ

+
nel
∑

i=1

∫

∂Ωi\ΓN

1

2

[

(w · ni)(u
ext + u) − |w · ni| (u

ext − u)
]

· vdΓ. (10)

Nevertheless, when solving the unsteady incompressible Navier-Stokes equations, the orig-
inal convective term of the strong form, (u · ∇)u can be replaced by (u · ∇)u− 1

2
(∇· u)u,

which is a legitimate modification for a divergence-free velocity field [2]. This guarantees
unconditional stability, in the case of an implicit or semi-implicit time integration [17].
The trilinear convective term defined in (9a) is skew-symmetric, that is, c

(

w; u,u
)

= 0.

Following [26, 15, 27], the velocity space V
h is now split into direct sum of a solenoidal

part and an irrotational part V
h = S

h ⊕ I
h, where

S
h =

{

v ∈ [H1(Ω)]nsd | v|Ωi
∈ [Pk(Ωi)]

nsd , ∇· v|Ωi
= 0 for i = 1, . . . , nel

}

,

I
h ⊂

{

v ∈ [H1(Ω)]nsd | v|Ωi
∈ [Pk(Ωi)]

nsd , ∇×v|Ωi
= 0 for i = 1, . . . , nel

}

.

For instance, a solenoidal basis in a 2D triangle for an approximation of degree k = 2 is

S
h =

〈(

1
0

)

,

(

0
1

)

,

(

0
x

)

,

(

x
−y

)

,

(

y
0

)

,

(

0
x2

)

,

(

2xy
−y2

)

,

(

x2

−2xy

)

,

(

y2

0

)〉

,

9
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and the irrotational complementary part for k = 2 is

I
h =

〈(

x
0

)

,

(

x2

0

)

,

(

0
y2

)〉

,

see for example [29] for the construction of these spaces.
Under these circumstances, IPM problem (7) can be split in two uncoupled problems.

The first one solves for divergence-free velocities and hybrid pressures: find uh ∈ S
h and

p̃h ∈ P h solution of










(

∂uh

∂t
,v

)

+ a
(

uh,v
)

+ c
(

uh; uh,v
)

+ (p̃h, Jn · vK)Γ∪ΓD
= l
(

v
)

∀v ∈ S
h,

(q̃, Jn · uhK)Γ∪ΓD
= (q̃,n · uD)ΓD

∀q̃ ∈ P h,

(11)
with the forms defined in (8), (9b) and (9a). Note that this problem, which has to
be solved at each time step, shows an important reduction in the number of degrees of
freedom with respect to problem (7), as explained in [16].

The space of hybrid pressures (pressures along the sides in 2D or faces in 3D) is simply:

P h :=
{

p̃ | p̃ : Γ ∪ ΓD −→ R and p̃ = Jn · vK for some v ∈ S
h
}

.

In fact, reference [26] demonstrates that P h corresponds to piecewise polynomial pressures
in the element sides in 2D or faces in 3D.

The second problem, which requires the solution of the previous one, evaluates interior
pressures: find ph ∈ Qh such that

b
(

v, ph

)

= l
(

v
)

−

(

∂uh

∂t
,v

)

−a
(

uh,v
)

−(p̃h, Jn · vK)Γ∪ΓD
−c
(

uh; uh,v
)

∀v ∈ I
h. (12)

It is important to note that equation (12) can be solved element by element and pressure
is its only unknown. The second problem (12) is a postprocess that allows to compute
pressure in the elements’ interior, usually at the end of the computation, or after the
iterations in each time step. For example, if interior pressure ph needs to be calculated at
time tn, (12) is solved at tn, where ut

h can be approximated using

∂uh

∂t

∣

∣

∣

∣

n

=
utn

h − utn−1

h

∆t
, for first-order accuracy in time, (13a)

∂uh

∂t

∣

∣

∣

∣

n

=
utn+1

h − utn−1

h

2∆t
, for second-order accuracy in time, (13b)

∂uh

∂t

∣

∣

∣

∣

n

=
−utn+2

h + 8utn+1

h − 8utn−1

h + utn−2

h

12∆t
, for fourth-order accuracy in time. (13c)

To preserve the high order of convergence of hybrid pressure obtained with Radau IIA-IRK
methods, formulation (13c) is the most suitable for interior pressure recovery.
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4 NUMERICAL EXAMPLES

Numerical examples are now considered to show the applicability of the proposed meth-
ods. First, the flow past a circle example is used to show the good behavior of the
proposed methods. An example with analytical solution is then used to compare RK
methods with a classical Crank Nicolson method from accuracy and cost points of view.
In both examples, the discontinuous Galerkin IPM formulation with piecewise solenoidal
approximations described in Section 3 is used.

4.1 Flow past a circle

In the present section we consider a mixed Dirichlet/Neumann problem simulating the
flow past a circle, with diameter D = 1, in a uniform stream. In this example, a high-order
mesh generator EZ4U is used, see [30].

An unstructured mesh of 472 fourth-order elements is used, as seen in Figure 1. These
fourth-order elements are used for numerical integration and post-process. Fourth-order
piecewise solenoidal approximation for the velocity is also used (k = 4) and third-order for
pressure, see Section 3. Dirichlet boundary condition uD = (1, 0) is imposed on the inlet

(a) Mesh of the total domain (b) Zoom in the vicinity of the circle

Figure 1: Flow past a circle: unstructured mesh of 472 fourth-order elements

and no-slip condition, uD = (0, 0), on the circle. Null Neumann conditions are imposed
on the three other sides. Initial conditions prescribe a unitary velocity field u0 = (1, 0)
on the whole domain, except on the circle boundary where u0 = (0, 0). 3-stage Radau
IIA-IRK is used for time integration. The flow pattern depends on the Reynolds number
defined here as Re = u∞D

ν
, where u∞ is the mean fluid velocity, here u∞ = 1.

For low Reynolds number (1 ≤ Re ≤ 50), it is well known that the solution reaches
a stationary state. Here a Reynolds number of Re = 100 is considered, leading to an
unsteady solution. A time step ∆t = 0.03 is used on the time interval [0, 100], and
∆t = 0.005 on [100, 120], to better capture the period of the periodic flow pattern. Once

11
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(a) t=96 (b) t=105

Figure 2: Flow past a circle: velocity module of the flow for Re = 100, periodic phase.

the flow passes the transient phase and reaches a periodic solution, vortex shedding is
observed, that is, the flow detaches successively from the top and from the bottom of the
sphere creating vortices behind the circle as seen in Figure 2 and more precisely in Figure
3. This happens in an alternating fashion and this non-symmetric flow pattern is known
as Von Karman vortex.

(a) t=96 (b) t=105

Figure 3: Flow past a circle: velocity vectors in the vicinity of the circle for Re = 100, periodic phase.

The periodic behavior of the solution is also captured by the evolution of the lift
coefficient CL, which is defined by the following integral along the circle

CL =

∫ 2π

0

τ ydθ

where τ y is the y-component of the normal component of the Cauchy stress tensor τ =
−pn + 2ν(n ·∇

s)u. Figure 4 shows CL as a function of time. After a transient phase,
the flow pattern reaches the periodic solution, showing the frequency of the Von Karman

12
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0 20 40 60 80 100 120
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0

0.5
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Figure 4: Flow past a circle: evolution of the lift coefficient with time

vortex. Roshko, see [31], experimentally established the relation between the Strouhal
number and the Reynolds number, for flows past a circle and for Reynolds numbers
between 90 and 150 as

S = 0.212

(

1 −
21.2

Re

)

. (14)

The Strouhal number is a dimensionless number describing oscillating flow mechanisms,
defined from the frequency of vortex shedding fS as

S =
fSD

u∞
,

with D and u∞ characteristic lengths and velocity of the problem previously defined. In
Figure 4, the period of the periodic movement is measured and is found equal to T = 5.96,
which corresponds to S = 0.1678, which is in good agreement with experimental results
and reported numerical simulations from [31] and [32], as seen in Table 6. Note that in

3-stage IRK 2-stage IRK Roshko (14) Simo [32]

S 0.168 0.168 0.1671 0.167

Table 6: Flow past a circle: Strouhal number results for Re = 100

order to obtain a better measure of the period T , the time step ∆t has been set up to a
value of 0.005 on a few periods, once the periodic solution is reached. The same value of
Strouhal number is obtained when using a 2-stage IRK method, confirming the general
good performance of the Radau IIA-IRK methods, for the solution of the incompressible
Navier-Stokes problem.
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4.2 Runge-Kutta and Crank-Nicolson accuracy and cost comparison

An example with analytical solution proposed in [5] is used to compare the accuracy
and cost of 2- and 3- stage Radau IIA-IRK and Crank-Nicolson (CN) methods, which are
all unconditionally stable methods for incompressible Navier-Stokes problems.

The incompressible Navier-Stokes equations are solved in a 2D square domain Ω =
]0, 1

2
[×]0, 1

2
[ with Dirichlet boundary conditions on three sides and Neumann boundary

condition on the fourth side {x = 0}. A body force

f =

(

2νsin(x + t)sin(y + t) + cos(x − y + t) + sin(x + y + 2t) + sin(x + t)cos(x + t)

2νcos(x + t)cos(y + t) − cos(x − y + t) − sin(x + y + 2t) − sin(y + t)cos(y + t)

)

is imposed in order to have the exact solution

u =

(

sin(x + t)sin(y + t)

cos(x + t)cos(y + t)

)

,

p = sin(x − y + t),

Polynomial interpolation of degree k = 4 for velocity and 3 for pressure is chosen and
an unstructured mesh of 128 elements is used, with 0.01 ≤ h ≤ 0.1. The calculation is
made until a final time t = 40. Initial condition prescribes exact solution on the whole
domain.
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(b) Hybrid pressure error

Figure 5: Unsteady analytical example: velocity and hybrid pressure L2-errors for 3-stage and 2-stage
IRK and CN methods, k = 4, 0.01 ≤ h ≤ 0.1.

Figure 5 shows the evolution of the L2-error under ∆t-refinement when solving (11)
for velocity and hybrid pressure. CN exhibits its theoretical convergence rate, 2 for both
velocity and pressure, whereas IRK methods present optimal convergence rates for hybrid
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pressure, respectively 2 and 3 for 2- and 3-stage IRK methods, but suboptimal convergence
rates for velocity: almost 4 instead of 5 for the 3-stage IRK scheme, and around 2.6 instead
of 3 for the 2-stage IRK scheme. Nevertheless, it is worth noticing the increasing slope
of the convergence curves. This behavior has also been observed in scalar toy numerical
tests, showing almost optimal convergence rates for smaller time steps. In any case, as
expected from the theoretical orders of convergence, for the same time step clearly higher
accuracy and convergence rate is obtained with the 3-stage IRK method.
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Figure 6: Unsteady analytical example: interior pressure L2-errors for 3-stage and 2-stage IRK and CN
methods, k = 4, 0.01 ≤ h ≤ 0.1.

Figure 6 shows the evolution of the L2-error of the interior pressure, obtained as a
post-process, solving (12) with the time derivative fourth-order approximation (13c). For
all methods, interior pressure reaches optimal order of convergence.

Figures 5 and 6 show how, for the same time step, the high-order 3-stage IRK method
provides higher accuracy compared to the classical CN method or to the 2-stage IRK
method. Nevertheless, it is also the most expensive method. Compared to CN, the 3-
stage IRK method requires three times more evaluations of the convective residue, and
leads to a three-time larger linear system of equations to be solved at each iteration. Thus,
is it necessary to see if its higher accuracy balances its high computational cost.

A comparison of accuracy in terms of computational cost is presented in the following,
but let us first recall that one of the main motivations of using high-order time integrators
is to achieve similar accuracy in time and space. For instance, for fourth-order space
discretization, the global error is expected to behave as

e = c1h
4 + c2∆tr

where r is the order of the time integrator. Assuming that a characteristic mesh size is
h = 0.1, the order of magnitude of precision obtained in space is around 10−4. If a scheme
like 3-stage Radau IIA-IRK, reaching fourth or fifth order in time, is used, a time step of
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∆t = 0.1 can be considered to reach equivalent accuracy in time and in space. Whereas
if a second-order method as for example CN, is used, a time step of ∆t = 0.01 has to be
taken. This means that ten times more time steps are needed with CN than with 3-stage
Radau IIA-IRK to reach the same time accuracy. Note that Figure 5(a) confirms this
fact, the velocity error obtained with 3-stage Radau IIA-IRK for a time step of ∆t = 0.1
is equivalent to the one obtained with a CN scheme for ∆t ≈ 0.01.

Now let us compare the cost of both methods. As previously commented, 3-stage Radau
IIA-IRK requires three evaluations of the convective residue when only one evaluation is
needed for CN. At each iteration, it has been checked for 3-stage Radau IIA-IRK that
almost 90% of the CPU time is spent in evaluating the convective residue and only 10%
in other operations such as the solution of linear systems. Thus, roughly speaking, 3-
stage Radau IIA-IRK is three times more expensive than CN at each iteration. In both
cases a Broyden method is used to solve the non-linear system and the same number of
iterations is needed to solve the non-linear system at each time step. Since 3-stage Radau
IIA-IRK needs about ten times less time steps than CN to reach equivalent precision
for velocity, globally and for high levels of precision, 3-stage Radau IIA-IRK is three
times more efficient than CN. The same comparison can be made with hybrid pressure.
Though the differences are not that obvious because levels of precision for pressure are
more similar, 3-stage IRK is again more efficient than CN. The following study confirms
these numbers.

Figure 7 compares the L2-errors of velocity and hybrid pressures obtained with 2- and
3- stage Radau IIA-IRK and Crank-Nicolson methods as a function of CPU cost needed.
For low accuracy, all methods have an equivalent precision-to-cost ratio both for velocity
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Figure 7: Unsteady analytical example: velocity and hybrid pressure L2-errors, as a function of CPU
cost for 3-stage and 2-stage IRK and CN methods, k = 4, 0.01 ≤ h ≤ 0.1.

and hybrid pressures and the CN method seems to be the best option. But when higher
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accuracy is wanted, that is for example for an error less than 10−4 for velocity and less
than 10−2 for hybrid pressure, the higher order of convergence of 3-stage Radau IIA-
IRK balances its higher cost per iteration, and it becomes the most efficient method.
Figure 8 shows the L2-error of interior pressure, obtained from (12) using a fourth-order
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Figure 8: Unsteady analytical example: interior pressure L2-error, as a function of CPU cost for 3-stage
and 2-stage IRK and CN methods, k = 4, 0.01 ≤ h ≤ 0.1.

approximation for the time derivative, as a function of CPU cost. Again 3-stage Radau
IIA-IRK is the most efficient scheme when high accuracy is required. Note that this
example shows that 3-stage Radau IIA-IRK method is promising but more complex and
3D examples will have to be considered to confirm this trend.

5 CONCLUSIONS

- Semi-implicit (SDIRK) and fully-implicit Runge-Kutta (IRK) methods are consid-
ered to solve the unsteady incompressible Navier-Stokes equations, stated as a sys-
tem of Differential Algebraic Equations, but IRK are eventually preferred since they
reach higher order of time accuracy.

- Between the available IRK schemes, Radau IIA-IRK methods are chosen because,
for a given number of stages, they reach the highest order of convergence, with the
same order of convergence for velocity as for ODEs.

- For 2D classical examples, the resulting IRK time integration scheme is very com-
petitive, compared to a classical Crank Nicolson method, and is more efficient when
high accuracy is required.

- A high-order discontinuous Galerkin Interior Penalty Method, with solenoidal ap-
proximations, is used for space discretization, allowing to reach high orders of ac-
curacy in space as well as in time.
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