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Abstract. The flow around one and two side-by-side infinite fixed cylinders is 
computed using Large Eddy Simulation. The first simulations dealing with the flow 
around a single infinite cylinder are performed at the Reynolds numbers 3000 and 3900 
and compared to experimental data and fine numerical simulations. Satisfactory 
quantitative results are obtained. Sensitivity studies of the solution to the mesh 
refinement in the wall normal and the spanwise directions, to the subgrid scale model 
and to the extrusion length have been carried out. The mean solution is not influenced 
by the extrusion length or a finer refinement in the spanwise direction. However, 
switching off the subgrid-scale model or coarsening the mesh in the wall normal 
direction have a dramatic effect on the recirculation bubble and thus on the whole 
velocity field. Then, a calculation is carried out for two side-by-side cylinders with a 
pitch ratio equal to 1.5 at a Reynolds number of 3000. The comparisons with available 
experimental data show a satisfactory agreement. Two shedding frequencies are 
detected and the deflection of the flow is clearly observed. Moreover, the bi-stability 
which is not reproduced experimentally, is observed during the same numerical 
simulation. 
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1 INTRODUCTION 

Fluid-elastic instabilities, wear and fatigue of steam generators tubes are a major 
concern for nuclear operators. Estimation of these phenomena requires the knowledge 
of fluid forces acting on the tubes. In order to predict these forces, fine simulations ( 
Large Eddy Simulation or Direct Numerical Simulation) which allow obtaining large 
temporal spectra are required. Before dealing with multiple tubes configurations (in-line 
or staggered bundles in the present case), one has to focus on simpler configurations 
such as the flow over a single cylinder, the flow over two or three side by side cylinders, 
the flow over tandems of cylinders, … 

The present paper deals with the numerical simulation using Large Eddy Simulation 
of the flow over a single and two side-by-side cylinders at sub-critical Reynolds 
numbers. For both cases, a literature review can be found in Parnaudeau et al.[1] and 
Sumners et al. [2] respectively.  

After computing a standard flow over a single cylinder at Re=3000 and Re=3900, a 
sensitivity study to the mesh refinement, the extrusion length and the subgrid-scale 
model is carried out. Finally, the side-by-side configuration with a pitch ratio equal to 
1.5 is computed and some quantitative and qualitative data are provided and compared 
to available experimental results. 
 
2 NUMERICAL METHOD  

EDF in-house open source CFD tool Code_Saturne is utilized herein (www.code-
saturne.org). Code_Saturne is an unstructured collocated finite volume solver for 
incompressible flows using a SIMPLEC algorithm for pressure-velocity coupling, with 
a Rhie and Chow interpolation to avoid odd-even decoupling on structured meshes. 
Further details about the code and its capabilities can be found in Archambeau et al. [3]. 
One focuses herein on Large Eddy Simulation. The flow is assumed Newtonian and the 
density ρ is constant. If u  stands for the filtered velocity, the filtered Navier-Stokes 
equations can be written : 
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The sub-grid scale tensor τ  has to be modeled. The dynamic Smagorinsky model 

based on Germano identity [4] and Lilly minimization [5] is used to take into account 
the small structures that are mainly dissipative. The deviatoric part of the subgrid-scale 
tensor is given by : 

 

ijSijtijkkij SSCS 2)(22
3

1 ∆−=−=− νδττ  (2)              

 

ijS  is the filtered strain rate tensor, ijij SSS 2= , νt the subgrid-scale viscosity, ∆  

the filter width and Cs the dynamic Smagorinsky constant. As the cells used in the 
present work are hexahedral (even if Code_Saturne accepts cells of any shape), one can 
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take 3

1

2Ω=∆ , where Ω is the volume of a computational cell. The term ijkk δτ
3

1 is taken 

into account in the pressure gradient. The filter which appears in equation (1) is implicit 
as it is introduced by the discretization errors in space and time and by the model itself. 
The explicit filter which is applied to compute the dynamic constant Cs uses the 
neighbors which share a node with the computational cell. No averaging in the 
homogeneous directions (the spanwise direction in the present cases) is performed. No 
negative value is allowed to the subgrid-scale viscosity and the maximum value of the 
dynamic constant is set to 0.065 (the value used with the standard Smagorinsky model). 

In the collocated finite volume approach, all the variables are located at the centres of 
gravity of the cells. The momentum equations are solved by considering an explicit 
mass flux (the three components of the velocity are thus uncoupled). A second order 
centred scheme in space and time is used. It is Crank-Nicolson in time with a linearized 
convection, and the second order Adams-Bashforth method is used for the part of the 
diffusion involving the transposed gradient operator, that couples the velocity 
components. A centred scheme is utilized for the convection operator. However, a slope 
test is used. When the test is positive, 1% upwinding is added to the centred scheme. 
The non-orthogonalities are taken into account with an implicit reconstruction technique 
explained in Archambeau et al. [3]. When a non-orthogonal grid is used, the matrix 
contains only the orthogonal contributions of the different operators. The non-
orthogonal part is added to the right hand side of the transport equation (thus, inner 
iterations are needed for the velocity and pressure equations to make the gradient 
reconstruction implicit). The code has been validated with LES on several academic 
cases (decaying isotropic turbulence, channel flow) and industrial ones (T-junctions, 
combustor chamber, …) in Benhamadouche [6]. Benhamadouche and Laurence [7] also 
validated the approach on a staggered tube bundle configuration.  
 
3 COMPUTATIONAL DETAILS 
 

Two main cases have been computed. The flow over an infinite cylinder and the flow 
over two side-by-side cylinders of the same diameter with a pitch ration T/D=1.5. D is 
the diameter of the cylinders and T the distance between two centres. The computational 
domain and a view of the mesh for the flow over one cylinder are shown in figure 1. 
The size of the computational domain is 25D × 20D × 4D. The length of the 
computational domain upstream the cylinder is equal to 10D. This is necessary to allow 
the pressure field to reach an upstream asymptotic behaviour. A discussion is developed 
in Parnaudeau et al. [1] about the minimum spanwise length (or extrusion length) which 
has to be taken. πD seems to be enough. The total number of cells is equal to 13 million. 
256 cells are used in the spanwise direction. This is superior to what is usually used 
with more accurate numerical schemes (Parnaudeau et al. [1] use for example 48 points 
for a spanwise length equal to πD with a sixth order compact scheme). As LES 
technique is very sensitive to non-orthogonal or non-conforming meshes, a fully 
conforming hexahedral mesh is used. 

Constant boundary conditions are used at the inlet (constant velocity in space and 
time) and no synthetic method to generate turbulence is used. The flow is laminar 
upstream the cylinders. As it will be shown, the meshes are very fine at the wall, thus, 
no slip boundary conditions are used for the velocity and homogeneous Neumann 
conditions for the pressure. No wall functions have been necessary during the unsteady 
simulations. Periodic boundary conditions are used in the spanwise direction. The outlet 
conditions are standard, Dirichlet condition for the pressure and homogeneous 
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Neumann for the velocity. Symmetry boundary conditions are used for the upper and 
lower boundary faces (see figure 1).  

Two Reynolds numbers have been computed, Re=3000 and the most widely used 
Re=3900.  

The maximum CFL number is equal to 0.6. The corresponding time step is 
∆t = 0.005 D/U0. where U0 is the bulk velocity. One flow passage corresponds to 5000 
time steps. The first computation is performed over 14 flow passages using the last four 
passages for time and space averaging. The averaging corresponds to 20 shedding 
periods. This should be enough to have a reasonable uncertainty on the statistics (this of 
course depends on which statistic one considers). The non-dimensional mean 
refinements at the wall is shown on figure 2. If y and z stand respectively for the wall 
normal an spanwise directions, one can observe that ∆y+ and ∆z+ do not exceed 2 and 
12 (this means that the maximum distance between the first computational node at the 
wall and the wall is around 1). The azimuthal refinement D∆θ+/2 does not exceed 12 as 
well. These are the maximum values. The wake region corresponds in figure 2 to the 
angles between 90° and 270°. It this region, the maximum values of ∆y+, D∆θ+/2 and 
∆z+ are respectively 0.5, 3 and 4. 

As it will be shown in the next part, the solution of the flow over two side-by-side 
cylinders is bi-stable what makes this case more difficult to deal with. Figure 3 shows 
the computational mesh which contains 25 million cells (256 cells in the spanwise 
direction). The same time step is used for this computation. The computation has been 
for the moment pushed to a physical time equal to 2500 what corresponds to 250 
shedding period for one of cylinders and to 1000 shedding period for the other one (as it 
will be shown later, the shedding frequency changes compared to the flow around one 
cylinder). When statistical quantities are shown, they are obtained on one stable 
situation over a physical time equals to 400 s (respectively 40 and 160 shedding 
periods). Figure 4 shows the refinements at the wall for the two cylinders. The 
asymmetry of the flow can be observed on this figure. The refinements in the spanwise 
and azimuthal directions are of the same order as for the single cylinder. The mesh is 
finer in the wall normal direction in the present case.  

 HPC calculations have been carried out using 1024 or 2048 processors on EDF 
BlueGene/L and BlueGene/P supercomputers. One needs about 4.5 days (resp. 5 days) 
for 350 (resp. 400) physical seconds for the isolated cylinder (resp. side-by-side 
configuration) on 1024 (resp. 2048) processors. 

 

 

Figure 1: The computational domain and the mesh for the flow over one cylinder. 
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Figure 2: Near wall resolution for the flow around one cylinder (right: zoom of the image on the left, ∆x+ 

is actually D∆θ+/2). 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3: The mesh for the flow over two side-by-side cylinders at Re=3000. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Near wall resolution for two side-by-side cylinders. 
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4 RESULTS AND DISCUSSION 

4.1 Flow around one circular cylinder at Re = 3000 and Re=3900 

Both Reynolds numbers Re=3000 and Re=3900 have been computed. The first 
Reynolds number has been performed to have a reference solution for the flow over two 
side-by-side cylinders. The second Reynolds number is widely used in the literature. 

 
4.1.1. Mean statistics 
Figure 5 gives the streamwise velocity along the symmetry axis y=0 compared to 

two experimental results and to the DNS of Rodi and Wissink [8]. This profile allows to 
define the recirculation length. As it can be seen, the profile is in very good agreement 
with Parnaudeau et al. [1] experiment and the DNS. Lourenko and Shih [9] experiment 
exhibits a shorter recirculation region which might be due to possible upstream 
turbulence. Parnaudeau et al. [1] checked in their experiment that they do not exceed a 
turbulence intensity of 0.4% at the entrance of the testing zone. Note that the profile 
obtained with Re=3000 exhibits a longer recirculation zone comparable to the one 
obtained by Rodi and Wissink [8] with Re=3300. 

Table 1 gives mean integral quantities compared to available numerical and 
experimental results. All the results are in relatively good agreement with the 
references. Note that the recirculation length in the present case is higher than the others 
and closer to the one obtained recently by Parnaudeau et al. [1]. Figures 6 and 7 give the 
mean streamwise and normal velocity components at three locations in the wake region 
compared to two experiments and to a DNS. A U shape profile is observed for the 
streamwise velocity. This is coherent with the available simulations in the literature. 
The V shape measured by Lourenco and Shih [9] might be due to an uncertainty in the 
experimental setup. Figures 8 to 10 give the turbulent mean quantities compared to the 
most relevant experiment (from Parnaudeau et al. [1]) at three locations in the wake 
region. The agreement is very satisfactory although the numerical method is only 
second order in space. Figures 11 shows the mean pressure coefficient distribution 
around the cylinder. The pressure coefficient is in good agreement with Norberg 
experiment [10] which has been performed at Re = 4020. The Cp value is not very 
sensitive to the Reynolds number. Finally, figure 12 shows the power spectra obtained 
with the lift and drag coefficients. The results are of the same order as the one obtained 
in the literature, a Strouhal number of 0.21 is obtained for the lift and around 0.4 for the 
drag.   
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 Present 
LES 

Breuer[11] 
LES 

Kravchenko[12] 
LES 

Wissink[8] 
DNS 

Experiments  

<CD> 1.007 1.016 1.040 -- 0.98±0.05 Norberg[10] 

<CL> -0.0005 -- -- -- --  

<Cpback> -0.9 -0.94 -0.94 -- -0.9±0.05 Norberg[10] 

θ (°) 87 87.3 88 87.3 85±2 Cardell[13] 

Lr/D 1.46 1.37 1.35 -- 1.33±0.2 Cardell[13] 

St 0.213 0.215 0.210 0.214 0.215±0.005 Cardell[13] 

Urmax/U0 -0.32 -0.23 -0.37 -- -0.24± Lourenko[9] 

 

Table 1: Mean integral quantities compared to experiments and computations. 

  

Figure 5 : Mean streamwise velocity along y=0. Figure 6 : Mean streamwise velocity in the wake. 

  

Figure 7 : Mean normal velocity in the wake. Figure 8 : Streamwise fluctuations in the wake. 
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Figure 9 : Normal fluctuations in the wake. Figure 10 : Covariance in the wake. 

 

 

Figure 11 : Cp coefficient.  

 

Figure 12 :  Power spectra of the lift and drag coefficients. 
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4.1.2. Sensitivity to the model, the spanwise length and the mesh refinement 

Figure 13 gives the mean streamwise velocity profile along the axis y=0 for a 
calculation using 512 nodes in the spanwise direction and an extrusion length equal to 
8D (the Reynolds number is equal to 3000, that is why the experimental data are not 
plotted). No differences are observed concerning this profile if one compares it to the 
reference case (256 nodes and an extrusion length of 4D). Figure 14 shows the effect of 
switching off the subgrid-scale model. A dramatic affect on the recirculation length is 
observed. The results are also surprisingly in very good agreement with Lourenco and 
Shih experiment [9]. No satisfactory explanation concerning this issue has been found 
for the moment. Unfortunately the first tests on the mesh refinement have been made 
without any subgrid scale model. Figure 14 shows the sensitivity to the mesh refinement 
in the spanwise and wall normal directions. Although the spanwise refinement has a 
very small effect (only small variations are observed), the refinement in the wall normal 
direction plays a major role (the results are very different from those obtained with a 
finer mesh in the wall normal direction, the recirculation region becomes very small). 

  

Figure 13 : Mean streamwise velocity along y=0, 
sensitivity to the spanwise direction length. 

Figure 14 :  Mean streamwise velocity along y=0, 
sensitivity to the model and to the mesh refinement. 

4.2 Flow around side-by-side cylinders at Re = 3000 with T/D=1.5 

The flow over two side-by-side cylinders has been computed with a pitch to diameter 
ratio T/D = 1.5 and at a Reynold number Re=3000. The asymmetry of the flow has been 
observed experimentally by several authors and a deflection angle going from 3° to 22° 
is observed in the experiments of Sumners et al. [2]. However, the bi-stable behavior 
has not been observed experimentally to the authors knowledge. In the present 
numerical simulation, the bi-stable behavior is observed as it is shown in figure 15. 
Figure 19 shows the time evolution of the pressure lift force. Two plateaux are observed 
for the two cylinders and this indicates the bi-stable behavior. The physical 
computational time is still not long enough to conclude whether the change from a 
stable regime to another is regular (if it occurs at a given frequency) or random. The 
first two computed periods given in figure 19 indicate that the change is not periodic. 
Due to this difficulty which does not occur experimentally, one has to take care while 
averaging. Special care has thus been taken to average the main flow quantities over a 
stable regime. 400 physical seconds are used for averaging (first plateau of figure 19). 
Figure 16 gives the diagonal components of the Reynolds stress tensor and the kinetic 
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energy. The deflection of the flow is  clearly visible. The behavior of the lower cylinder 
is totally different from the single cylinder configuration. An extended wake region is 
observed downstream the lower cylinder and a high turbulent activity downstream the 
upper one. Unfortunately no fine experimental data are available to the authors 
knowledge in order to perform fine comparisons. Figure 17 gives the pressure 
coefficient. The asymmetry is again clearly visible as the high pressure zone on the 
lower cylinder is shifted. The upper cylinder behaves like the single case cylinder. 
Figure 18 gives the power density spectra of the lift coefficient for both cylinders. 
Whereas the upper cylinder exhibits a first peak at a Strouhal number of 0.1, both 
cylinders show a peak at a Strouhal number of 0.4. This is characteristic of the existence 
of two vortex shedding. These results are supported by the experimental results of 
Sumners et al.  [2]. Finally, one can notice in figure 19 that the oscillation magnitude of 
lift force for both cylinders is lower than the one obtained in the single cylinder 
configuration. More investigations on the present test-case are needed. The quantity of 
numerical data is huge and finer information such as inter-spectra correlations can be 
obtained. 

 

 

 

 

 

 

 

 
 

Figure 15 : Instantaneous streamwise velocity at the two stable regimes. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 16 : Turbulent quantities when the flow is deflected to the top (top left : streamwise fluctuations, 

top right : normal fluctuations, bottom left : spanwise fluctuations, bottom right  : turbulent kinetic 
energy). 
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Figure 17 : Cp coefficient (side-by-side configuration) 

 
 

 
Figure 18 :  Power spectra of the lift coefficient (side-by-side configuration). 

 
 

 
Figure 19 :  Time evolution of the lift force (side-by-side configuration). 
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6 CONCLUSIONS 

The flow around one and two side-by-side infinite fixed cylinders is computed using 
Large Eddy simulation with the in-house EDF unstructured CFD tool Code_Saturne. 
The first simulation dealing with the flow around an infinite cylinder is performed at the 
Reynolds numbers 3000 and 3900 and compared to experimental data and fine 
numerical simulations. Satisfactory quantitative results are obtained concerning both 
integral and local quantities. Sensitivity studies of the solution to the mesh refinement in 
the wall normal and the spanwise directions, to the subgrid scale model and to the 
extrusion length have been carried out. The mean solution is not influenced by the 
extrusion length or the refinement in the spanwise direction. However, switching off the 
subgrid-scale model or coarsening the mesh in the wall normal direction have a 
dramatic effect on the recirculation bubble and thus on the overall solution. A 
computation is then carried out for two side-by-side cylinders with a pitch ratio equal to 
1.5 at a Reynolds number of 3000. The comparisons with available experimental data 
show a satisfactory agreement. The two shedding frequencies are detected and the 
deflection of the flow is clearly observed. Moreover, the bi-stability which has not been 
reproduced experimentally is observed during the same numerical simulation. 
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