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Abstract. A differential Reynolds stress model is presented that combines the Speziale-
Sarkar-Gatski (SSG) model with the Launder-Reece-Rodi (LRR) model near walls, where
the length scale is provided by Menter’s baseline ω-equation. The model is applied to
transonic flows around the RAE 2822 airfoil, the ONERA M6 wing and the DLR-ALVAST
generic aircraft. Improved prediction of shock and pressure induced separation is observed
compared to standard eddy viscosity models.
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1 INTRODUCTION

Industrial engineering is increasingly relying on computational simulation data. In
particular, in aerodynamic aircraft design there is a trend towards simulation based design
where Computational Fluid Dynamics (CFD) is employed for reducing wind tunnel tests
to only a few targeted key experiments. Obviously this strategy relies on the predictive
accuracy of the respective simulation tools and thus the available physical models in a wide
range of flight conditions. Hence turbulence modelling is a key technology for providing
sufficiently accurate predictions, particularly at the boundaries of the flight envelope.

Besides accuracy efficiency is a key criterion in industrial engineering, because of the
large amount of simulation data needed in design and optimisation. Direct Numerical
Simulations (DNS) and Large Eddy Simulations (LES), accurately resolving all or part
of the turbulent fluctuations in space and time, are therefore currently beyond the scope
for data production in routine applications. Instead, methods based on the Reynolds
averaged Navier-Stokes (RANS) equations supplemented with corresponding turbulence
models are still the backbone of industrial CFD applications.

In the RANS approach only the average effect of turbulence on the mean flow is consid-
ered, where the so-called Reynolds stress tensor, representing the average fluctuations of
the velocity field, has to be modelled in terms of mean flow quantities. The typical mod-
elling approach relies on the Boussinesq hypothesis, assuming turbulence to effectively
increase the viscosity of a Newtonian fluid, where the additional so-called eddy viscosity
is not a property of the fluid, but depends on the flow.

In the past algebraic eddy viscosity models like the Baldwin-Lomax model [1] have
been popular in aeronautical applications, where the eddy viscosity is computed directly
from the mean flow field, whereas today transport equation models are state-of-the-art,
where the eddy viscosity is computed from the transported quantities. Because of there
advantages near the wall k-ω type models like the one by Wilcox [13] or particularly the
Shear Stress Transport (SST) model by Menter [7, 8] are preferred in aeronautics to the
otherwise popular k-ε type models. Alternatively the Spalart-Allmaras model [10, 11] is
widely applied, involving only one transport equation for a modified eddy viscosity.

These eddy viscosity models are well established in numerical aerodynamics and yield
reliable predictions as long as the flow stays attached. However discrepancies with exper-
iments are observed in case of separation, as is typical of approaching the boundaries of
the flight envelope. Key scenarios are the shock-boundary layer interaction at high speed
flight and low speed conditions close to maximum lift.

The failure of eddy viscosity models in case of separation can be associated with the
Boussinesq hypothesis, enforcing the predicted Reynolds stresses being parallel to the
viscous stresses. Furthermore this approach leads to isotropic normal stresses near walls
which is in contrast to experimental observation.

A possible remedy consists in replacing the Boussinesq hypothesis by directly solving
the transport equations for the individual Reynolds stresses. These equations can be
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derived from the momentum equations and involve several terms associated with different
phenomena that can be modelled according to physical reasoning. However, in contrast
to standard eddy viscosity models, the production term of the Reynolds stress transport
equation is exact and thus also includes effects of curvature and rotation. This feature
makes the so-called Differential Reynolds Stress Models (DRSM) particularly promising
for predicting complex flows in aerodynamics.

2 REYNOLDS STRESS MODELLING

The transport equation of the Reynolds stresses for compressible flow reads in general
form

∂

∂t

(
ρR̃ij

)
+

∂

∂xk

(
ρŨkR̃ij

)
= ρPij + ρΦij − ρεij + ρDij + ρMij, (1)

where ρ is the density and Ui the components of the velocity vector. The overbar repre-
sents simple and the tilde mass weighted averages.

The components of the Reynolds stress tensor are defined as

ρR̃ij = ρu′′
i u

′′
j , (2)

where the u′′
i denote the velocity fluctuations around the mass weighted mean. The trace

of the specific Reynolds stress tensor is related to the specific kinetic turbulence energy k̃
by

k̃ =
R̃ii

2
. (3)

As already stated, the production term of the Reynolds stress transport equation (1)

ρPij = −ρR̃ik
∂Ũj

∂xk

− ρR̃jk
∂Ũi

∂xk

(4)

is exact, since it does not involve any additional unknowns.
Various models exist for the re-distribution term ρΦij, where in the former aeronautics

oriented EU-project FLOMANIA [5] the model by Speziale, Sarkar and Gatski (SSG) [12]
has been considered the most promising one. However this model requires an ε-equation
for providing the length scale. In contrast, Wilcox [14] has shown that the model by
Launder, Reece and Rodi (LRR) [6] can be combined with an ω-equation for the length
scale, when the so-called wall-reflexion terms are omitted. Both models can be cast into
the same form reading

ρΦij = −
(
C1ρε +

1

2
C∗

1ρPkk

)
b̃ij + C2ρε

(
b̃ikb̃kj −

1

3
b̃mnb̃mnδij

)
+
(
C3 − C∗

3

√
II
)
ρk̃S̃∗

ij + C4ρk̃
(
b̃ikS̃jk + b̃jkS̃ik −

2

3
b̃mnS̃mnδij

)
+C5ρk̃

(
b̃ikW̃jk + b̃jkW̃ik

)
, (5)

3



Bernhard Eisfeld

where

b̃ij =
R̃ij

2k̃
− δij

3
(6)

are the components of the anisotropy tensor with its second invariant

II = b̃ij b̃ij, (7)

and δij denotes the components of the Kronecker tensor.

S̃ij =
1

2

(
∂Ũi

∂xj

+
∂Ũj

∂xi

)
and S̃∗

ij = S̃ij −
∂Ũk

∂xk

δij (8)

are the components of the mean strain rate tensor and its traceless counterpart, respec-
tively, and

W̃ij =
1

2

(
∂Ũi

∂xj

− ∂Ũj

∂xi

)
(9)

represents the components of the mean rotation tensor. Finally the isotropic dissipation
rate ε is linked to the specific dissipation rate ω by

ε = Cµk̃ω, (10)

where Cµ = 0.09.
The dissipation term is usually modelled by an isotropic tensor according to

ρε =
2

3
ρεδij =

2

3
Cµρk̃ωδij (11)

and the diffusion term by a generalised gradient diffusion according to Daly and Harlow
[3]

ρDij =
∂

∂xk

[(
µδkl + Cs

ρk̃

ε
R̃kl

)
∂R̃ij

∂xl

]
=

∂

∂xk

[(
µδkl +

Cs

Cµ

ρ

ω
R̃kl

)
∂R̃ij

∂xl

]
, (12)

where µ is the average molecular viscosity of the fluid.
The contribution of the fluctuating mass flux, ρMij, due to density fluctuations are

usually neglected, when considering transonic flows.
As on can see, all model terms can be alternatively expressed in terms of ε or ω. This

allows transferring the ideas of Menter [7, 8] for combining a k-ω model near the wall
with a k-ε model further away to differential Reynolds stress models.

In Menter’s baseline model (BSL) the length scale is given by a single transport equation
for ω

∂ (ρω)

∂t
+

∂

∂xk

(
ρŨkω

)
= α

ω

k̃

ρPkk

2
−βρω2+

∂

∂xk

[(
µ + σ

ρk̃

ω

)
∂ω

∂xk

]
+σd

ρ

ω
max

(
∂k̃

∂xk

∂ω

∂xk

; 0

)
,

(13)
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where all coefficients continuously change according to

φ = F1φ
(k−ω) + (1− F1) φ(k−ε), (14)

using Menter’s blending function

F1 = tanh
(
ζ4
)

(15)

with

ζ = min

max


√

k̃

Cµωd
;
500µ

ρωd2

 ;
4σ(k−ε)ρk̃

max
{
2σ(k−ε) ρ

ω
∂k̃
∂xk

∂ω
∂xk

; 10−20

}
d2

 (16)

and d the wall distance. The corresponding bounding values of the coefficients in the k-ε
and the k-ω region are given in Tab. 1.

α β σ σd

k-ε 0.44 0.0828 0.856 2σ(k−ε)

k-ω 0.5556 0.075 0.5 0

Table 1: Values of coefficients of Menter’s baseline ω-equation corresponding to the k-ε and k-ω parts.

The so-called SSG/LRR-ω model [4] adopts Menter’s technique by changing the coef-
ficients of the re-distribution and diffusion term accordingly from the LRR values at the
wall to the SSG values further apart, i. e.

φ = F1φ
(LRR) + (1− F1) φ(SSG), (17)

The corresponding values of the coefficients in the LRR and SSG region are given Tab.
2.

C1 C∗
1 C2 C3 C∗

3 C4 C5 Cs

SSG 3.4 1.8 4.2 0.8 1.3 1.25 0.4 0.22

LRR 3.6 0 0 0.8 0 18C
(LRR)
2 + 12

11

−14C
(LRR)
2 + 20

11
0.5Cµ

Table 2: Values of closure coefficients for the SSG and the LRR contributions to the SSG/LRR-ω re-
distribution term. C

(LRR)
2 = 0.5556, Cµ = 0.09.

Combining this modelling for the Reynolds stresses with Menter’s BSL ω-equation
(13) yields a consistent change from the stress-ω model by Wilcox [14] near walls (=
LRR without wall-reflexion) to the ε-based SSG model further away. As it appears, the
SSG/LRR-ω is applicable to aerodynamic problems up to rather high complexity.
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3 AERODYNAMIC APPLICATIONS

3.1 RAE 2822 Airfoil

The RAE 2822 airfoil is a standard test case for applying turbulence models at transonic
speed [2]. In particular the conditions of the so-called Case 9 (Mach number Ma = 0.73,
Reynolds number Re = 6.5 · 106, incidence α = 2.80) and Case 10 (Mach number Ma =
0.75, Reynolds number Re = 6.2 · 106, incidence α = 2.80) are regularly tested, where the
challenge is to match the shock position in both cases sufficiently well.

Fig. 1 shows the pressure distributions obtained with three different turbulence mod-
els. As one can see, the Wilcox k-ω model yields the shock position downstream the
experimental location and is far off for Case 10. In contrast the Menter SST as well as
the SSG/LRR-ω model predict the shock for Case 9 slightly downstream and for Case 10
only slightly upstream the measured position, where it is difficult to judge which of both
to prefer.

Figure 1: RAE 2822 airfoil. Pressure distributions for Case 9 (left) and Case 10 (right).

Nevertheless with two-equation models an unphysically high production of kinetic
turbulence energy is observed near stagnation points. This so-called stagnation point
anomaly is attributed to the fact that, in contrast to the Reynolds stress production
term, the k-production term does not account for rotational effects. Fig. 2 shows the
kinetic turbulence energy in the stagnation point region. Clearly the Menter SST model
predicts a much higher level of k ahead the airfoil than the SSG/LRR-ω model, although
production limiting is already applied, as suggested by Menter [7]. Fortunately in this
particular case this effect has only little influence on the predicted shock position and is
usually blanked out by setting transtion at the airfoil’s nose.
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Figure 2: RAE 2822 airfoil, Case 9. Kinetic turbulence energy near stagnation point.

3.2 ONERA M6 Wing

The ONERA M6 wing is another standard test case for three-dimensional transonic
flows [9]. The experiments have been carried out at a Mach number of Ma = 0.84 and a
Reynolds number, based on the mean aerodynamic chord, of Re = 11.72 · 106, where the
angle of attack varied from α = 0.030 to α = 6.060. Most often results at α = 3.060 are
shown, where it comes out that the experimental pressure distribution is well predicted
almost independently of the turbulence model [5].

However at the next higher experimental incidence of α = 4.080 significant differences
are observed between the results obtained with various turbulence models. Fig 3 shows
the pressure distributions in two sections at 65% and 90% span, predicted by three differ-
ent turbulence models in comparison with the experiments. Clearly the Reynolds stress
model yields a good agreement with the measurements with some discrepancies at 65%
span, where a double shock system is present. In contrast, all eddy viscosity models
tested, except the Wilcox k-ω model (not shown here), show a large deviation from the
measurement over most of the outer wing.

As can already been concluded from the pressure distributions, the failure of the Menter
SST and Spalart-Allmaras model is due to a shock induced separation that is obviously
over-estimated. Fig. 4 shows the friction lines, indicating the separation pattern, for the
Spalart-Allmaras and the SSG/LRR-ω model. Clearly the latter predicts a much smaller
separation region which is obviously in closer agreement with the experimental results.

3.3 DLR-ALVAST Generic Aircraft

The DLR-ALVAST model is a wing-body configuration that has been tested experi-
mentally in the EU-project Enifair. Simulations have been carried out at a Mach number
of Ma = 0.75 and a Reynolds number of Re = 4.8 · 106, where the incidence has been
adapted, until a lift coefficient of CL = 0.500 has been achieved.
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Figure 3: ONERA M6 wing. Pressure distributions at α = 4.080.

Figure 4: ONERA M6 wing, α = 4.080. Friction lines on upper surface for Spalart-Allmaras model (left)
and SSG/LRR-ω model (right).

Fig. 5 shows the friction lines on the upper surface of the ALVAST wing obtained
with the Menter SST and the SSG/LRR-ω model. As one can see, the major difference
occurs with respect to the separation in the wing-body junction which is predicted larger
with the SST model. Comparing the inboard pressure distributions with the experiments,
once again the Reynolds stress model yields somewhat better agreement than the eddy
viscosity model, indicating higher accuracy with respect to the separation prediction.

4 CONCLUSIONS

A differential Reynolds stress modelling approach has been presented, combining the
Speziale-Sarkar-Gatski (SSG) model [12] with the Launder-Reece-Rodi (LRR) model [6]
near walls where the length scale is determined by Menter’s baseline ω-equation [8]. This
SSG/LRR-ω model is applicable to aerodynamic problems up to fairly high complexity.

8



Bernhard Eisfeld

Figure 5: DLR-ALVAST generic aircraft, CL = 0.500. Friction lines on upper surface for Menter SST
(left) and SSG/LRR-ω model (right).

Figure 6: DLR-ALVAST generic aircraft, CL = 0.500. Inboard pressure distributions at 18% and 26.5%
span.

For the RAE 2822 airfoil the shock position of the so-called Case 9 and 10 is predicted
similarly well as with the Menter SST eddy viscosity model. As to be expected due to the
exact production term, the Reynolds stress model yields lower levels of kinetic turbulence
energy ahead the stagnation point of the airfoil than the SST model, i. e. there is no
stagnation point anomaly.

For the ONERA M6 wing at 4.080 angle of attack the SSG/LRR-ω model yields sig-
nificantly better agreement with the experimental pressure distribution than the Menter
SST and Spalart-Allmaras model. An over-prediction of shock induced separation by
the eddy viscosity models has been identified as major source of the discrepancies. The
Reynolds stress model predicts a much smaller separation region which is obviously in
better agreement with the experiment.

Finally results have been presented for the DLR-ALVAST wing-body configuration
at a given lift coefficient of CL = 0.500. The predictions by the Menter SST and the
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SSG/LRR-ω model differ mainly in the size of the separation in the wing-body junction
which again is larger with the eddy viscosity model. Comparison of the inboard pressure
distributions shows better agreement of the Reynolds stress model predicions with the
experiment, indicating its higher accuracy in predicting complex separation.
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