
V European Conference on Computational Fluid Dynamics 

ECCOMAS CFD 2010 

J. C. F. Pereira and A. Sequeira (Eds) 

Lisbon, Portugal, 14 17 June 2010 

TEMPERATURE INLET-WALL BOUNDARY CONDITION 
IDENTIFICATION OF TRANSIENT INVERSE CONVECTIVE 
HEAT TRANSFER PROBLEMS WITHIN CHANNELS/PIPES 

LAMINAR FLOW 

Aziz Azimi*, and Mohammad R. Ghamari

 

*Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, 
Golestan High way, Ahvaz 61355-157, Iran 

aazimi@asme.org 

Faculty of Engineering, Islamic Azad University, Khorram Abad Branch, 
           Khorram Abad, Lorestan, Iran 

ghamari_mr@yahoo.com 

Key words: Inverse Convective Heat Transfer Problem, Parameter Estimation, Stream-
Vorticity Formulation, Finite Difference Method, Boundary Condition Identification, 
Point Heat Source Estimation. 

Abstract. This paper deals with the method for determining simultaneous inlet-wall 
boundary condition in transient convective heat transfer in a channel/pipe which is 
based on the solution of the inverse problem referred as the Levenberg-Marquardt 
method. This method is an iterative regularization algorithm for parameter estimation. 
The direct problem is formulized based on the stream-vorticity version of the 
incompressible Navier-Stokes equations together with energy equation. The solution of 
this inverse problem requires a finite set of temperature measurements taken by 
noisy/non-noisy sensors located near the boundaries of the domain. Some cases are 
considered, in which simultaneous wall-inlet boundary condition identification and 
point heat source strength estimation within a channel/pipe are performed. The results 
of the present study are compared to those of the exact boundary conditions, and good 
agreement is achieved.  



1 INTRODUCTION 

Today, inverse problems have many applications in different branches of science and 
engineering. In fact, the use of inverse analysis techniques represents a new research 
paradigm in numerous engineering applications such as transient heat convection 
processes. Inverse problems of heat transfer utilize temperature measurements to 
estimate unknown quantities required in the manner in which physical problems are 
formulated in mathematical representation modeling. In Inverse Convective Heat 
Transfer Problems (ICHTPs), temporal/spatial parameters such as inlet and wall 
boundary conditions have been found by known parameters of temperature field.  

ICHTPs in the sense of Hadamard definition [1] are ill-posed and too sensitive to 
errors in the measured data. According to the ill-posed nature of inverse problems, 
common numerical methods for solving direct problems are not applicable in solving 
inverse problems and thus, specific numerical techniques are required to establish 
stability conditions for solving inverse problems.  

Currently, there are techniques that are capable of resolving the inherent ill-
posedness in inverse problems by improving the least squares method via adding 
minimization and regularization techniques. These techniques, based on the solution of 
whole domain, are divided into two categories: sequential and whole domain methods. 
In the whole domain method, estimation of unknown quantities in all of domain (spatial 
or time) is done, but in the sequential method, the whole domain is divided into several 
subdomains and then unknown quantities are estimated sequentially in each subdomain. 
To solve inverse problems, two regularization methods, direct regularization methods 
such as Tikhonov method and iterative regularization methods such as Levenberg-
Marquardt method, can be used.  

A quite large number of techniques have been proposed for the solution of inverse 
problems such as iterative regularization techniques. As a result, there are few 
considerable numbers of the published works concerned with the ICHTPs due to the 
mathematical complexities which are limited to current twenty years. Most of these 
ICHTPs works considered problems involving hydrodynamically fully developed 
laminar flows and also estimation of the unknown quantities with constant values.  

Moutsouglou [2] studied the estimation of the heat flux boundary condition of the 
upper wall in a steady-state channel flow by using the temperature values of the lower 
wall. The inverse method used in his research was Beck s function estimation method. 
In the works published by Liu and ? zisik [3], Raghunath [4] and Bokar and ? zisik [5], 
the estimation of the unknown inflow temperature distribution and in Huang and ? zisik 
[6] and Park and Lee [7] papers, estimating the unknown wall heat flux distributions 
with constant and temperature-dependent thermal conductivity coefficients, 
respectively, in steady-state flows using conjugate gradient method were performed. 
Prud homme and Nguyen [8], and Machado and Orlande [9, 10] estimated the unknown 
time/spatial-varying wall heat flux distribution within a channel using the conjugate 
gradient method for Newtonian and non-Newtonian fluid. All the above studies were 
done for hydrodynamically fully developed laminar flows.  

In other works, simultaneous estimation of two unknown quantities was considered. 
Hsu et al. [12] estimated simultaneously spatial distribution of inflow and wall heat flux 
boundary conditions using inverse analysis in a steady state laminar pipe flow. Colaço 
and Orlande [13] estimated simultaneously two space-time varying heat flux boundary 
conditions in forced convective heat transfer using function estimation version of the 
adjoint conjugate gradient method. They studied laminar flow within a two-dimensional 
channel with parallel surfaces and used a finite volume method for numerical simulation 
of the flow field. The flow considered in these works was developed hydrodynamicly. 
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Moreover, they solved the same inverse forced heat convection problem in a two-
dimensional channel with non-parallel surfaces and in a concentric tube annulus in [14, 
15]. They also used the finite volume method for numerical simulation of the flow field 
in a curvilinear coordinates system. 

In this article, to demonstrate the capability of inverse analysis methods in solving 
practical problems, transient inverse convective heat transfer in a two-dimensional/ 
axisymmetric domain is solved to determine the unknown quantities such as thermal 
inlet and wall boundary conditions. The governing equations of the direct problem are 
the Stream-Vorticity Formulation (SVF) of the transient incompressible Navier-Stokes 
equations together with transient energy equation. The SVF is used to simulate transient 
convective heat transfer in a channel/pipe. The direct problem and other partial 
differential equations in the Cartesian coordinates system are solved numerically using 
the implicit factorized finite difference method in delta form proposed by Beam-
Warming [16]. Central and upwind differencing are used to descretize the diffusion and 
convection fluxes. In addition, a central finite difference method together with a 
successive line under relaxation method has been used to solve the stream function 
equation in an iterative manner. For grid generation, a simple algebraic method is used 
to have sufficient grids in the boundary layer region. In order to solve governing 
equations and estimate unknown quantities accurately, 50×35 grid points and time 
step, 0.1t

 

are used and the duration of the simulation time is supposed to be 120 (a 
nondimensional value). 

The inverse approach is constructed by using an iterative inverse analysis algorithm 
based on the Levenberg-Marquardt parameter estimation method [17]. The temperature 
histories are delivered by noisy ( 0.05 ) or non-noisy ( 0.0 ) simulated temperature 
measurements assumed as sensors located on the outlet of the channel/pipe. Three cases 
are considered, in which the time/space varying inflow/wall boundary condition, time-
varying point heat source and simultaneous estimation of two unknown functions, 
inflow-wall boundary condition identifications are performed in a channel/pipe laminar 
flow to assess the performance of inverse analysis method to solve inverse convective 
heat transfer problems. The results of the present study are compared to those of exact 
heat source, and boundary and inflow conditions, and good agreement is achieved.  

2 INVERSE ANALYSIS 

The algorithm of inverse analysis is composed of two sections. In the first section, 
through considering the physical model of the problem as direct problem, a numerical 
method is employed to solve this direct problem. In direct problem, geometry and 
computational domain, governing equations, and initial and boundary conditions along 
with other parameters are assumed to be known and the objective of the section is to 
achieve the distribution of the physical variables such as temperature, ( , , )T x y t , within 
the domain. In the second section, by defining an objective function, applying 
optimizing and reqularization methods for error minimization and eliminating the 
fluctuations presented in the measured temperature, an estimation of the unknown 
parameters and functions is acquired. 

Inverse analysis is a technique which provides efficient means for implementing the 
temperature values measured by sensors in estimation of mathematical models, 
parameters, functions, and initial and boundary conditions, more effectively. In contrast 
to a direct problem, an inverse problem includes some unknown quantities which are 
estimated regarding to temperatures measured in various time and sensor positions. In 
an inverse problem error is calculated according to following equation [17]: 

( )m ce T T P

 

(1) 
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In order to minimize the error in equation (1), there are various methods. One of the 

most practical methods is the least squares method [17]: 

( ) ( )
Tm c m cS P T T P T T P

 
(2) 

In this method to minimize the error, gradient of the equation (2) with respect to 
unknown quantities must be set equal to zero: 

1 2

0
N

S S S S

P P P

P P P P

P

 
(3) 

3 DIRECT PROBLEM 

Transient incompressible two-dimensional/axisymmetric Navier-Stokes equations 
are employed to model the forced convective heat transfer. This set of equations is 
expressed in nondimensionalized form as follow: 

1

Re
j j

t x y y x y y

U F G H R S W
Sc

 

(4) 

where U% vector is: 
0, , ,T u v TU

 

(5) 
and j  is defined as follows: 

0 twodimensionalflow

1 axisymmetricflow
j

 

(6) 

The following non-dimensional parameters are used to non-dimensionalize the flow 
variables:  
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(7)

Considering the above non-dimensional parameters, non-dimensional numbers are: 

Re ,ref refu L
                Pr pc

k

 

(8) 

Viscous and inviscid flux vectors in equation (4) are presented in reference [18]. 
Defining vorticity and stream functions and inserting them in momentum equations, the 
pressure terms which make the numerical solution of momentum equations difficult are 
eliminated. Therefore, transient vorticity-function transport equations, along with 
energy equation for an incompressible two-dimensional/axisymmetric flow in Cartesian 
coordinates system in their non-dimensional forms are as follows: 

2 2

2 2
1 ( 1)

j
j y

x y y y

 

(9) 

1
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j j
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where U  vector is: 
,T TU (11)

Viscid and inviscid vectors in equation (10) are. 
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where function ( , , )G x y t  is a point heat source and is defined as follows 

( , , ) ( ) ( , )s sG x y t g t x x y y

 
(13) 

Thus, through implementing stream and vorticity functions, the number of dependent 
variables in the governing equations is reduced by one, although the order of derivatives 
is increased by one. Equation (9) is solved using a finite difference method and the non 
iterative implicit approximate factorized algorithm in the delta 

 
form, presented by 

Beam and Warming

 

[16]. 

3.1 Initial and boundary conditions for numerical solution of direct problem 

Regarding wall and entrance boundary conditions, initial values for flow variables 
including distributions of stream and vorticity functions and temperature are considered 
for the solution of governing equations.  

In this study, boundary conditions, inflow, outflow and wall boundary conditions, are 
applied explicitly. In viscous flow, boundary condition applied on body surface is no-
slip condition, accordingly velocity magnitudes u and v on the surface are zero, which 
dictates the following stream function boundary condition [19]: 

Constant

 

(14) 
Based on Thom s method [20], vorticity function boundary condition applied on a 

wall where unit vector is in opposite direction to y axis direction and has no movement 
is applied as follows: 

2
1, ,

, 22

,

21 1

1 ( 1) 1 ( 1)
M j M j

M j

M j
y y y y

 

(15) 

Two cases are possible for temperature boundary condition:  

 

Body surface temperature is known. 

 

The surface is adiabatic. In this case, temperature values are obtained from the 
following equation: 

0
n

T

 

(16) 

For inflow boundary condition, variables such as velocity vector and temperature 
must be known. Through using them, other variables such as stream and vorticity 
functions can be computed. Assuming a constant velocity, u, for inflow, stream function 
boundary condition is calculated by applying the following relation: 

0

y

u dy u y

 

(17) 

Using the following relation, vorticity function at entrance boundary is found: 
2

1, 2, 3, 1, 1 1, 1

1, 22

1,

3 4

2
j j j j j

j

j

u uv u u

x y x y yx

 

(18) 

In outflow boundary, assuming a fully developed regime, one can use linear 
extrapolation to obtain stream function and temperature variable. Vorticity function is 
also reachable through discritization of the vorticity equation at this boundary. 

4 MESH GENERATION 

Considering that governing equations of the problem are expressed in a finite 
difference form, a structured mesh generated by a simple algebraic method [18] is used 
to solve numerically partial differential equations and then, to compute the velocity field 
and temperature of the fluid. 
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Considering ( , )l lx y

 
and ( , )u ux y

 
as lower and upper boundary coordinates, 

geometrical domain of the flow field can be descritized using the following equations: 
( )l u lx x x x                         ( )l u ly y y y

 
(19) 

where a  is defined as: 
max

max

1 /

1 /

1
1

1

j j

j j
                 

1

1

 
(20) 

and b

 

varies between 1.001 to 1.05. 

5 INVERSE PROBLEM 

Levenberg-Marquadrant parameter-estimation method is utilized to solve the inverse 
forced convective problems. Since this study investigates forced convective heat 
transfer cases, temperature field does not influence the governing equations, vorticity 
and stream function equations. In fact vorticity and stream functions are not affected by 
temperature field, thus they are not related to the unknown parameter in the entrance or 
wall thermal boundary conditions. The only parameter which is sensitive to unknown 
parameters is temperature. As a result, the only equation investigated in the inverse 
analysis is energy equation.  

5.1 Levenberg-Marquardt method 

This technique is an iterative algorithm designed to solve least squares parameter-
estimation problems. The algorithm is a modified version of the least squares method 
suitable for determining linear and nonlinear problems. At the start point, close to initial 
guess, Levenberg-Marquardt method acts like steepest decent method. However, as it 
approaches the solution, it acts similar to Newton-Gauss method. In this algorithm to 
solve an inverse problem, one should assume the function of the unknown inflow or 
wall boundary condition in the following form [17]:  

1 1

( ) ( ), ( , ) ( , )
N N

n n n n
n n

g t P C t F s t P D x t

 

(21) 

where ( , )nC s t

 

and ( , )nD s t

 

can be known functions like polynomials or B-splines, etc. 
By the definition, an inverse heat conduction problem with (s, )F t

 

as the unknown 
function is converted into an inverse heat conduction problem with unknown parameter 
P . Based on the minimization of the least squares norm, equation (2), the solution is 
achieved by the following equation: 

1
1 ( )

T Tk k k k k k k m c kP P J J J T T P (22) 

where matrix k  is defined as: 

Diag( ) Diag
Tk k kP J J

 

(23) 

As mentioned above during iterations to compute the unknown parameter, matrix 
Tk kJ J

 

should not be singular i.e. determinant should not equal zero. Otherwise, 

iteration procedure can not continue.  
Damping parameter k?

 

takes positive value. The objective of defining k

 

and k

 

is 
damping the fluctuations, avoiding the instabilities caused by ill-posed nature of inverse 

problems and assuming small values for 
Tk k k kJ J when the value of 

Tk kJ J

 

becomes considerably small [17].  
To apply equation (22), one needs to have an equation in order to calculate 

sensitivity coefficient matrix J

 

as well as initial and boundary conditions by employing 
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the governing equations of direct problem and also the corresponding initial and 
boundary conditions. Differentiating energy equation (10) with respect to unknown 
parameters, the following equation is achieved as sensitivity equation: 

1

Re
J J J J J J J

Jj j
t x y y x y y

U F G H R S W
Sc (24) 

In the above equation, each of the vectors has one component. Dependent parameter 
of equation (24) is J

 
parameter. The only nonzero boundary condition for the above 

equation is ( , )F s t , which is inflow or wall boundary condition as imposed on the 
corresponding boundary: 

( , )
( , , )

F s t
x y tJ

P

 

(25) 

5.2 Iterative algorithm convergence criterion 

To implement equation (22) and obtaining desirable results, one needs a criterion to 
stop the iteration procedure of Levenberg-Marquardt method. This criterion is a 
necessary condition to avoid the amplification of the measurement errors on the 
computed solution, to obtain a result from iteration procedure (to converge inverse 
solution). If a criterion is employed to stop iteration procedure, the inverse problem 
together with the iteration algorithm as regularization method will become well-posed, 
hence the following criterion is applied: 

1( )kS P (26) 
where  is the tolerance value to avoid unstable solutions and to converge the iteration: 

2M I

 

(27) 

6 INVERSE ANALYSIS RESULTS 

In order to demonstrate the capability of inverse analysis method in estimating the 
unknown inflow and wall boundary conditions in heat transfer problems, the results of 
the transient inverse forced convective heat transfer in a duct/pipe are investigated. This 
study is conducted using the Levenberg-Marquardt method for unknown parameter 
estimation. Computational field is descritized to 50×35 grids. For numerical solution of 
direct problem and sensitivity equation in the inverse problem, mesh is generated by a 
simple algebraic technique. Figure 1 depicts the computational field and mesh points, 
used in numerical solution of partial differential equation for duct/pipe geometry.  

As stated before, inverse heat transfer problems in contrast to direct ones include one 
or more unknowns, estimated by temperatures measured in sensor locations. A normal 
distribution of zero mean values of fluctuating errors is added to the exact 
computational temperature field from 0t

 

to 120t . Then, these computed values are 
used as the simulated temperature measurements in the sensor locations: 

max( , , ) ( , , )m c cT x y t T x y t T

 

(28) 
where using the normal distribution, 

 

is a random number between (-2.576, 2.576) 
with a confidence of 0.99. Sensors are assumed to be located adjacent to geometrical 
boundaries. In this study, the computed temperature values without error ( 0 ) as well 
as with 0.05

 

have been used for estimation of the unknown parameters. Time step, 
0.1t , is employed to solve partial differential equations. Root Mean Square (RMS) 

error of estimated functions, ( )g t  and ( , )F x t , are also calculated using: 

2

1

1
( ) ( )

I

RMS est i exact i
i

e g t g t
I

 

2

RMS est exact
1 1

1
( , ) ( , )

bI I

j i j i
j ib

e F x t F x t
I I

 

(29) 
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Before proceeding to explain the examples of inverse forced convective heat transfer 

in a duct/pipe, it is necessary to verify the data extracted from numerical simulation of a 
flow in a duct/pipe with initial and boundary conditions (direct problem). Hence, an 
example has been conducted for numerical simulation of a flow in a duct with Re 500

 
and Pr 1

 
(figure 2) to verify and validate numerical simulation of the direct problem 

whose results are presented in figures 3 and 4. In this example, maximum velocity at the 
centerline has been 1.47 which differs from the empirical value by 2 percents. This 
solution confirms the appropriate accuracy of the numerical solution of the direct 
problem for application in numerical solution of inverse convection problems. 

In this study, estimation of point heat source strength and inflow/wall boundary 
condition, and simultaneous estimation of two unknown functions, inflow-wall 
boundary condition based on three cases is conducted to test the performance of the 
iterative inverse analysis. The strength of the heat source is a linear function of time, but 
the boundary conditions are a linear/quadratic/triangular function of time or space. The 
initial guesses of the parameters and functions are taken equal to zero. It should be 
mentioned that, in inverse and direct convective heat transfer problems, temperature at 
exit boundary is calculated using approximate condition / 0T x .  

x

y

0 5 10 15 20
0

1

 

Figure 1: Grid 50×35 to solve governing equations of the problem in computational domain. 

u=1
v=0
T=1

u=v=0, T=2

u=v=0, T=2

u/ x=0
v/ x=0
T/ x=0 

Figure 2: Boundary conditions to verify solution f the governing equations of the direct problem. 
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Figure 3: Contours of vorticity function, example of the verification. 
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Figure 4: Contours of temperature, example of the verification. 
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6.1 Case study 1: estimation of point heat source 

In the first case, inverse convective heat transfer with an unknown point heat source 
and the boundary conditions depicted in figure 2 is investigated. It is assumed that the 
strength of the heat source positioned at 5x =

 
and 0.5y =

 
is a linear time varying 

function which the aim of the inverse analysis is to find its two coefficients: 
1 2( ) 9 3g t P P t t

 
(30) 

The measured values of a sensor is located at the interface of lower and exit 
boundaries at 19.95x

 

and 0.05y . Figure 3 shows temperature contours of the 
estimated flow field. The sensitivity coefficients of the parameters and the estimation of 
the heat source strength are shown in figures 4 and 5, respectively, and the results are 
also summarized in table 1.  

SensorHeat Source
T=2

T=2

T
=

1

T
/

x=
0 

Figure 2: The boundary conditions and heat source position, case 1. 
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Figure 3: The temperature contours, case 1, 120t  and. 0.05
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Figure 4: Non-dimensional sensitivity coefficients Figure 5: Variation of the estimated strength of  
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Table 1: Estimation of the point heat source strength. 
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6.2 Case study 2: estimation of inflow/wall boundary condition 

In the second case, inverse convective heat transfer with an unknown inflow/wall 
boundary condition is studied. It is assumed that the fitted functions for inflow and wall 
boundary conditions are quadratic and triangular space varying functions, respectively. 
The coefficients of these functions are estimated by the measured values of a sensor 
located at the interface of lower and exit boundaries at 19.95x

 
and 0.05y . 

Estimations of these two functions are illustrated in two following examples and their 
results are shown in table 2. 

In example 1 the objective is to find the second order polynomial which represents 
estimation of inflow temperature as a function of location:  

2 2

1 2 2( ) 2 6 6F y P P y P y y y

 

(31) 
The other boundary conditions are depicted in figure 6. Figure 7 illustrates estimated 

temperature field at t=120 with 0.05 . Figure 8 shows the estimated inflow 
temperature function for 0.05

 

and the values of the exact inflow temperatures.  
In example 2 the objective is to find the triangular function which represents 

estimation of wall temperature as a function of location:  

1

1 2

1 2 3

4

3 for 5

( 5) 3 2( 5) for 5 7.5
( )

2.5 ( 7.5) for 7.5 108 2.4( 7.5)

for 102

P x

P P x x x
F y

P P P x xx

xP

 

(32) 

The other boundary conditions are shown in figure 9. Figure 10 demonstrates 
estimated temperature field at t=120 with 0.05 . Figure 11 shows comparison of the 
variations of the estimated wall temperature for 0.05

 

with those of exact values. 
These results reveal good agreements of inverse analyses.   
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Table 2: Estimation of the inflow and wall boundary conditions, case 2. 
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Figure 6: The unknown inflow boundary condition and other boundary conditions, case 2. 
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Figure 7: Temperature contours, case 2: inflow boundary condition, 120t  and. 0.05
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Figure 8: Variation of the estimated inflow boundary condition, case 2.  
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Figure 9: The unknown wall boundary condition and other boundary conditions, case 2. 
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Figure 10: Temperature contours, case 2: wall boundary condition, 120t  and. 0.05
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Figure 11: Variation of the estimated wall boundary condition, case 2.  
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6.3 Case study 3: simultaneous estimation of inflow and wall boundary 

conditions 

This study focuses on an inverse convection heat transfer problem with inflow and 
wall boundary conditions as unknowns. Boundary conditions of the problem are shown 
in figure 12. Inflow and wall thermal boundary conditions are the space varying 
functions of equations (31) and (32), respectively. The aim of this inverse problem is 
simultaneous estimation of inflow and wall boundary conditions using Levenberg-
Marquardt parameter estimation method. 

These functions are calculated using measured values by three sensors located at the 
exit boundary, 19.95x

 

and 0.05,0.50,0.95y . Numerical solution results are 
represented in table 3.  

Figures 13 shows estimated temperature field at t=120 with 0.05

 

and the inflow 
and wall temperature variations with 0.05

 

2 are compared with those of the exact 
temperatures in figures 14 and 15. These figures indicate that inverse analysis estimate 
these boundary conditions with good accuracy. 

7 DISCUSSION AND CONCLUSION 

This study investigates the inverse analysis of convective heat transfer in a duct/pipe 
in Cartesian coordinates to demonstrate the capability of the inverse analysis method to 
estimate unknown functions in heat transfer problems. Finite difference as the numerical 
method is employed to solve numerically the direct problem and other partial 
differential equations resulted from inverse analysis along with structured grids and 
time/space varying boundary conditions. Then, some cases including a duct/pipe flow 
with unknown heat source, inflow or wall boundary conditions and simultaneous inflow 
and wall thermal boundary conditions, considered as thermal systems were investigated 
by Levenberg-Marquardt parameter-estimation method. Unknown functions under 
study were estimated with excellent accuracy.  
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Table 3: Estimation of the inflow and wall boundary conditions, case 3. 
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Figure 12: The unknown inflow and wall boundary conditions and other boundary conditions, case 3. 
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Figure 13: Temperature contours, case 3, 120t  and. 0.05
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Figure 14: Variation of the estimated inflow boundary condition, case 3.  
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Figure 15: Variation of the estimated wall boundary condition, case 3.  

Nomenclature 

pc

 

specific heat at constant pressure  Subscripts 

(s, )D t

 

polynomial coefficients in boundary 
condition function  b

 

boundary points 

E F

 

inviscid flux vectors  i

 

geometrical coordinates 
e

 

error  l

 

values on lower boundary 

( , )F s t

 

temperature boundary condition   r

 

values on upper boundary 

I

 

number of transient measurements  ref

 

reference variables 

J

 

sensitivity coefficient matrix  Superscripts 

k

 

thermal conductivity  c

 

calculated or estimated temperature 
n

 

normal vector  k

 

iteration number 
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P

 
vector of unknown parameters  m

 
measured temperature 

P

 
unkown parameter   T

 
Transpose 

P r

 
Prandtl number  *

 
dimensional variables 

R S

 
viscous flux vectors  :

 
flux vectors in primitive variable-
based Navier-Stokes equations 

Re

 
Reynolds number    

( )S P

 

objective function    
T

 

temperature    

Greek symbols    
a

 

stretching function used in grid 
generation    

b

 

stretching coefficient used in grid 
generation    

e

 

tolerence    

 

Damping parameter in Levenberg-
Marquardt method    

G

 

boundary of computational domain    

W

 

computational domain    
m

 

Dynamic viscosity    

r

 

density    
y

 

stream function    

s

 

constant used for calculating noise in 
measured data    

z

 

vorticity function    

REFERENCES  

[1] J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification 
physique, Princeton University Bulletin, pp. 49-52, (1992)  

[2] A. Moutsouglou, Solution of an Elliptic Inverse Convection Problem using a Whole 
Domain Regularization Technique, AIAA J. Thermophysics and Heat Transfer 4(3),   
pp. 341-349 (1990)  

[3] F.B. Liu and M.N. ?zisik, Estimation of Inlet Temperature Profile in Laminar Duct 
Flow, Inverse Problems in Engineering 3, pp. 131-141, (1996) 

 

[4] R. Raghunath, Determining Entrance Conditions from Downstream Measurements, 
Int. Comm. Heat Transfer 20, pp. 173-183, (1993)  

[5] J.C. Bokar and M.N. Ozisik, An Inverse Analysis for Estimating the Time-Varying 
Inlet Temperature in Laminar Flow Inside a Parallel Plate Duct, Int. J. Heat and Mass 
Transfer 38(1), pp. 39-45, (1995)  

[6] C.H. Huang and M.N. ? zisik, Inverse Problem of Determining Unknown Wall Heat 
Flux in Laminar Flow Through a Parallel Plate Duct, J. Numer. Heat Transfer, Part A 
21, pp. 55-70, (1992)  



A. Azimi and M.R. Ghamari 

  

15

 
[7] H.M. Park and J.H. Lee, A Method of Solving Inverse Convection Problems by 
Means of Mode Reduction, J. Chem. Eng. Sci. 53(9), pp. 1731 1744, (1998)  

[8] M. Prud homme and T.H. Nguyen, A Whole Time-Domain Approach to the Inverse 
Natural Convection Problem, Nume. Heat Transfer, Part A 32, pp. 169-186. (1997)  

[9] H.A. Machado and H.R.B. Orlande, Inverse Analysis for Estimating the Timewise 
and Spacewise Variation of the Wall Heat Flux in a Parallel Plate Channel, Int. J. Num. 
Meth. Heat Fluid Flow 7, pp. 696-710, (1997)  

[10] H.A. Machado and H.R.B. Orlande, Inverse Problem for Estimating the Heat Flux 
to a Non-Newtonian Fluid in a Parallel Plate Channel, J. Brazilian Society Mech. Sci. 
20, pp. 51-61, (1998)  

[11] A.K. Alekseev and I.M. Navon, The Analysis of an Ill-Posed Problem using Multi-
Scale Resolution and Second-Order Adjoint Techniques, J. Comput. Methods Appl. 
Mech. Eng. 190, pp. 1937-1953, (2001)  

[12] P.T. Hsu, C.K. Chen and Y.T. Yang, A 2-D Inverse Method for Simultaneous 
Estimation of the Inlet Temperature and Wall Heat Flux in a Laminar Circular Duct 
Flow, J. Numer. Heat Transfer, Part A 34, pp. 731 745, (1998)  

[13] M.J. Colaço and H.R.B Orlande, Inverse Convection Problem of Simultaneous 
Estimation of Two Boundary Heat Fluxes in Parallel Plate Channels, J. Brazilian 
Society Mech. Sci. 23(2), (2001)  

[14] M.J. Colaço and H.R.B Orlande, Inverse Forced Convection Problem of 
Simultaneous Estimation of Two Boundary Heat Fluxes in Irregularly Shaped Channels, 
J. Numer. Heat Transfer, Part A 39(7), pp. 737 760, (2001)  

[15] M.J. Colaço and H.R.B Orlande, Inverse Natural Convection Problem of 
Simultaneous Estimation of Two Boundary Heat Fluxes in Irregular Cavities, Int. J. 
Heat and Mass Transfer 47, pp. 1201 1215, (2004)  

[16] R.M. Beam and R.F. Warming, An Implicit Factored Scheme for Compressible 
Navier-Stokes Equations, AIAA Journal 16(4), pp. 393-402, (1978)  

[17] M.N. Ozisik and H.R.B. Orlande, Inverse Heat Transfer Problems: Fundamentals 
and Applications, Taylor & Francis Inc, (2000)  

[18] J.C. Tannehill, D.A. Anderson, and R.H. Pletcher, Computational Fluid Mechanics 
and Heat Transfer, 2nd Edition, McGraw Hill Book Company, New York, (1997)  

[19] M. Ghil, J.G. Liu, C. Wang and S. Wang, Boundary-layer separation and adverse 
pressure gradient for 2-D viscous incompressible flow, Physica D 197, pp. 149 173, 
(2004)  

[20] A. Thom , The Flow Past Circular Cylinders at Low Speeds, Proc. Roy. Soc. 
London, A 141, pp. 651 669, (1993) 



This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

