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Abstract. We present a compact finite differences method for the calculation of two-
dimensional viscous flows in porous media. This is achieved by using body forces that
allow for the imposition of boundary conditions that coincide with the computational grid.
An implementation of the forcing of Mohd-Yusof1 is used in order to implement the im-
mersed boundary. A detailed description of the original compact finite difference method
used can be found in Ferreira de Sousa et al.2 The unsteady, incompressible Navier-Stokes
equations are solved in a Cartesian staggered grid with fourth-order Runge-Kutta temporal
discretization and fourth-order compact schemes for spatial discretization, used to achieve
highly accurate calculations. Special attention is given to the boundary condition imple-
mentation on the immersed media.

In this paper, two different flows are calculated. First, the flow over a 2D square
cylinder located along the centreline of a channel with free-slip boundary conditions. The
computed drag coefficient is compared with numerical results available in the literature.
The second flow configuration analyzed is the flow over a porous matrix composed of
staggered square cylinders. Results for the pressure drop across the porous matrix are
presented for a wide range of Reynolds numbers, along with flow visualization.
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1 INTRODUCTION

The study of transport phenomena in porous media is important due to the many
engineering applications it possesses. If one focus on energy conversion applications only,
combustion or gasification of biomass can be regarded as occurring in non-inert porous
media (e.g., di Blasi3 and van der Lans4); or, alternatively, inert porous media can in-
tegrate equipment that involve the recovery of what would be otherwise waste energy
or that burn hydrogen, biogas or more conventional fuels (e.g., Wood and Harris5 and
Mendes et al.6). Non-Darcian flow is common on such technological applications and a
flexible and accurate computational tool is required to predict it.

Almost all the numerical studies dedicated to flow and heat transfer in porous media
rely on semi-empirical derivations of the volume-averaged forms of the transport equa-
tions - continuum approach (e.g., Howell et al.,7 Bouma and de Goey,8 Brenner et al.,9

Malico and Pereira,10 Barra and Ellzey,11 Pereira et al.12 and Hayashi et al.13). This
approach is very valuable and capable of giving relatively fast answers to the macroscopic
characteristics of the problems studied, but is incapable of dealing with the pore level
characteristics, which are sometimes determinate to explain certain phenomena, such as,
flashback in low porosity porous media and NOx formation (See for example, Sahraoui
and Kaviany14 and Hayashi et al.13). Moreover, when using the volume-average forms of
the transport equations, closure models are needed for the equations since a large number
of unknowns are introduced by the averaging procedure. These models are based either
on experiments or simple geometry numerical simulations due to the complexity of the
flow paths and the interpore and pore-to-pore fluid dynamic interactions (e.g., Macdonald
et al.,15 Pedras and Lemos16 and Alshare et al.17).

To be able to predict pore level characteristics, a direct numerical simulation, DNS,
of the flow field has to be undertaken. There are examples of such simulations (e.g.,
Sahraoui and Kaviany,14 Pedras and Lemos16 and Breugem and Boersma18); however,
often the porous media have a relatively simple geometry, such as 2D arrays of cylinders.
Also, when trying to simulate microscopically the flow and heat transfer in porous media,
mainly boundary fitted grids have been used. This procedure presents two significant dis-
advantages: i) fitting a grid to a complex geometry prevents the use of simple orthogonal
grids and ii) generating a boundary fitted grid for a complex geometry can be extremely
time consuming and difficult.19 An alternative to the boundary fitted curvilinear method
and unstructured mesh technique that overcomes this advantages is the simulation of
immerse boundaries on Cartesian grids. This is the path followed in this work.

Breugem and Boersma18 were the first to apply the immersed boundary method, IBM,
to enforce the no-slip and no-penetration conditions on the cubes constituting the porous
media. They compared the results of DNS and the continuum approach, and found a
very good agreement. Sahraoui and Kaviany14 also compared the continuum and the
volume-average approaches to simulate not only momentum, but also heat and reacting
species transport with no radiation. However, they considered boundary fitted grids and
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simple 2D porous media. It was demonstrated that, for the macroscopic characteristics,
the volume averaged model preformed well, but could not predict pore level phenomena.

Immersed boundary methods have gained popularity for their ability to handle com-
plex surface geometry.19 Peskin20,21 first introduced the method by describing the flow
field with an Eulerian discretization and representing the immersed surface with a set of
Lagrangian points. Methods such as those of Peskin fall in the category of methods that
employ “continuous forcing”. A second category consists of methods that employ dis-
crete forcing, where the forcing is either explicitly or implicitly applied to the discretized
Navier-Stokes equations. These include methods of Ye et al.,22 Fadlun et al.,23 Udayku-
mar et al.,24 Kim et al.,25 Ghias et al.,26 Ferreira de Sousa et al.2 and others. The key
advantage for the methods in the second category is that for certain formulations, a sharp
representation of the immersed boundary is possible.24 In Mital et al.,27 a finite-difference
based immersed boundary method that allows simulating complex 3D flows with moving
immersed boundaries is presented.

More recently, Paravento et al.28 used an IBM to calculate a geometry consisting
of a square body in a flow (not a porous medium, but what could be looked like the
building block of a simple porous medium). The method is applied to flow cases with and
without heat transfer. This approach has already been successfully applied by Breugem
and Boersma,18 but it was extended for the case of heat transfer between body and flow.

In this paper, a compact finite differences method is used for the calculation of two-
dimensional viscous flows both over a square cylinder and in a porous matrix composed
of staggered square cylinders. This is achieved by using body forces that allow for the
imposition of the boundary conditions that coincide with the computational grid. An
implementation of the forcing of Mohd-Yusof1 is used in order to implement the immersed
boundary. The unsteady, incompressible Navier-Stokes equations are solved in a Cartesian
staggered grid with third-order Runge-Kutta temporal discretization and fourth-order
compact schemes for spatial discretization, used to achieve highly accurate calculations.
The results obtained for the flow over a square cylinder are obtained for validation with
the data of other authors.28,30 As far as the simulations through the porous matrix
are concerned, pressure forces are shown for several Reynolds numbers, along with flow
visualization.

2 GOVERNING EQUATIONS

The unsteady incompressible form of the continuity and Navier–Stokes equations for a
Newtonian fluid were considered

∇ · u = 0 (1)

∂u

∂t
+ (u · ∇)u = ν∇2u−∇p+ f (2)

where u is the fluid velocity, p the pressure (divided by density), ν the kinematic viscosity
of the fluid and f is a body-force field.
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3 NUMERICAL SCHEMES

The momentum equations are spatially discretized on a Cartesian staggered mesh by
finite differences and all derivatives are evaluated with implicit 4th-order accurate compact
finite difference schemes.31 The fourth order accurate Runge–Kutta scheme was used for
temporal discretization. The numerical method used belongs to the projection methods
class, and the resulting Poisson equation was also discretized with compact operators.
The procedure is presented in the Ferreira de Sousa’s papers.2, 32

For the sake of simplicity, let us consider a uniformly spaced mesh where the nodes are
indexed by j, as shown in Figure 1. The independent variable at the nodes is xj = h(j−1)
for 1 ≤ j ≤ N , where h = xj+1 − xj , and the function values at the nodes fj = f(xj) are
given.

Figure 1: 1D grid for collocated and staggered schemes

3.1 Approximation of First Derivative

The finite difference approximation f ′
j to the first derivative at the node j depends

on the function values at nodes near j. These schemes are generalizations of the Padé
scheme. These generalizations are derived by writing approximations of the form

βf ′
j−2 + αf ′

j−1 + f ′
j + αf ′

j+1 + βf ′
j+2 = a

fj+1 − fj−1

2h
+ b

fj+2 − fj−2

4h
+ c

fj+3 − fj−3

6h
(3)

The relations between the coefficients α, β, a, b and c are derived by matching the
Taylor series coefficients of various orders. For the 4th order tri-diagonal scheme (Classical
Padé scheme):

α =
1

4
, β = 0, a =

3

2
, b = 0, c = 0 (4)

3.2 Approximation of Second Derivative

The derivation of compact approximations for the second derivative is similar to the
first derivative. Again we start with a relation of the following form

βf ′′
j−2 + αf ′′

j−1 + f ′′
j + αf ′′

j+1 + βf ′′
j+2 = a

fj+1 − 2fj + fj−1

h2
+ b

fj+2 − 2fj + fj−2

4h2
+ (5)

+c
fj+3 − 2fj + fj−3

9h2

where f ′′
j represents the finite difference approximation to the second derivative at node j.

Once again, the relations between the coefficients α, β, a, b and c are derived by matching
the Taylor series coefficients of various orders. For the 4th order tri-diagonal scheme:
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α =
1

10
, β = 0, a =

6

5
, b = 0, c = 0 (6)

3.3 Approximation of First Derivative on Cell-centered Mesh

Formulas for calculating the first derivative on a cell-centered mesh are necessary in
staggered grids. Referring again to Figure 1 and starting from an approximation of the
form

βf ′
j−2 + αf ′

j−1 + f ′
j + αf ′

j+1 + βf ′
j+2 = a

fj+1/2 − fj−1/2

h
+ b

fj+3/2 − fj−3/2

3h
+ (7)

+c
fj+5/2 − fj−5/2

5h

the relations between the coefficients α, β, a, b and c are derived yet again by matching
the Taylor series coefficients of various orders.

For the 4th order tri-diagonal scheme:

α =
1

22
, β = 0, a =

12

11
, b = 0, c = 0 (8)

4 BOUNDARY SCHEMES

Most problems of physical interest involve domains with non-periodic boundaries. In
order to handle these, boundary schemes need to be implemented for differentiation and
interpolation at the boundary nodes. These schemes involve one-sided differencing and
need to possess an order of accuracy as high as possible, see for example Mahesh.33

Boundary schemes satisfying these requirements are presented in this section.
In a staggered grid, two sets of boundary schemes are required. Lets consider the 1D

grid shown in Figure 2 which shows the nodes and the numbering scheme at the left
boundary.

Figure 2: 1D variable arrangement at left boundary

4.1 Boundary Schemes for the First Derivative

A scheme for the first derivative at the boundary node (j = 0) may be written as

f ′
0 + α̂f ′

1 =
1

Δx
(af1/2 + bf3/2 + cf5/2 + df7/2) (9)

In this implementation, we used a third-order scheme given by:
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α̂ = 23 (10)

a = −25

b = 26

c = −1

The first derivative at the boundary (j = 1/2) can be written as

f ′
1/2 + α̂f ′

3/2 =
1

Δx
(af0 + bf1 + cf2 + df3) (11)

Again, the third-order scheme is given by:

α̂ = −1 (12)

a = −1

b = 2

c = −1

4.2 Boundary Schemes for Interpolation

A scheme for interpolating a function to the boundary (j = 0) can be written as

f0 + α̂f1 = (af1/2 + bf3/2 + cf5/2) (13)

Matching coefficients of the Taylor expansion gives a third-order scheme with

a =
1

8
(3α̂+ 15) (14)

b =
1

4
(3α̂− 5)

c =
1

8
(3− α̂)

For simplicity, the scheme with α̂ = 0 was used in all calculations.
The interpolation scheme for the boundary node (j = 1/2) is written as

f1/2 + α̂f3/2 = af0 + bf1 + cf2 + df3 (15)

This allows for a fourth-order scheme with

a =
1

16
(5− α̂) (16)

b =
1

16
(9α̂+ 15)

c =
1

16
(9α̂− 5)

d =
1

16
(1− α̂)

where α̂ = 0 once again is chosen for simplicity.
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5 IMMERSED BOUNDARY

One possibility for the solution of the IB problem is to have a body-force field f such
that a desired velocity distribution V can be assigned over a boundary S1 . In other
words, from the body–force f added to the Navier–Stokes equations we can solve for u
explicitly. In principle there are no restrictions for the velocity distribution V and for the
shape and motion of S. The main advantage of this approach is that f can be prescribed
on a regular mesh so that the accuracy and efficiency of the solution procedure on simple
grids are maintained. If Equation 2 is discretized in time, we have

ut+1 − ut

Δt
= RHSt+1/2 + ft+1/2 (17)

where RHSt+1/2 contains convective and viscous terms and the pressure gradient. If now
we ask which value of ft+1/2 will yield ut+1 = Vt+1 on the IB the answer is simply given
from the above equation,

ft+1/2 = −RHSt+1/2 +
Vt+1 − ut

Δt
(18)

This forcing is direct in the sense that the desired value of velocity is imposed directly
on the boundary without any dynamical process. Therefore, at every time step, the
boundary condition holds regardless of the frequencies in the flow.

5.1 Immersed Obstacle Implementation

The expressions given for the forcing are accurate if the position of the unknowns
on the grid coincides with that of the IB. This is the case for the immersed obstacle
implementation presented in this paper. This requires the boundary to lie on coordinate
lines or surfaces. In the present case, where a staggered grid is used, the boundary is
coincident with the position where velocity component is defined, i.e. a whole cell is
forced when defining the shape of the obstacle (Figure 3). Mohd-Yusof’s1 and Fadlun et
al.23 original implementations were on a staggered grids too.

Since the forcing is used to enforce the velocity on the boundary, the x-direction force
is calculated on the u-grid and the y-direction force is calculated on the v-grid.

The forcing procedure used is the following. For each stage of the RK-4 time discretiza-
tion:

1 Forcing points are defined as the points that lie on coordinate lines corresponding
to the shape of the IB.

3 Forcing velocity Vt+1 is calculated directly from the Dirichlet boundary condition.

4 The body force f is calculated using Equation 18.
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Figure 3: Immersed boundary method staggered grid arrangement

As it will be shown in the results section, the velocity boundary conditions on Ψ
are satisfied ”exactly” within the overall accuracy of the scheme. Pressure boundary
conditions are not imposed on Ψ but they are implicit into the RHS of the Poisson
equation, since the momentum equation normal do the boundary reduces to dp/dn = 0
on the boundary points34 (see Fadlun et al.23 for a detailed discussion).

6 RESULTS

We present the simulations of two distinct flow configurations. The first geometry was
chosen with the objective of comparing our results with other authors data. It is the
laminar flow over a bi-dimensional square cylinder. The second flow configuration allows
showing the potential of the method, since it is a complex flow over a porous matrix
composed of staggered square cylinders.

6.1 Flow over a Square Cylinder

In this section we present the bi-dimensional flow over a square cylinder placed at the
centreline of a channel with free-slip boundary conditions at the walls. The cylinder has
a diameter D and is placed 4.5D from the inlet. The length of the channel is 20D and its
height 12D. The inflow velocity is unity and the simulated Reynolds numbers are 100,
150, 200, 250 and 300.

Figure 4 shows the mean drag coefficient as a function of the Reynolds number for
the 2D calculations of the flow over a square cylinder. The results are compared to the
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Figure 4: Mean drag coefficient versus Reynolds number for a square cylinder

numerical results of Franke et al.,30 which were validated with experimental data, and
Paravento et al.28 The present results are in good agreement with the reference data.

6.2 Flow through a Porous Matrix

The flow through an array of staggered square cylinders was simulated for five different
Reynolds numbers: 200, 500, 1000, 2000 and 5000. The implemented porous matrix
geometry can be seen in Figure 5. Dirichlet boundary conditions are imposed at the
walls, inlet boundary conditions at the inlet and open boundary conditions at the outlet.

Figure 5: Staggered square cylinders matrix implemented

Figure 6 shows the pressure force as a function of the Reynolds number for t = 10s.
For higher Reynolds numbers, the pressure force is lower, since the viscosity is lower.
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Figure 6: Pressure force versus Reynolds number for the flow through an array of staggered square
cylinders (t = 10s)

Figures 7 (a)-(e) show the vorticity fields for the computed Reynolds numbers at t =
10s. For the lower Reynolds numbers simulated, the wakes of the cylinders seem to be
almost unperturbed by the other cylinders. As the Reynolds number increases, so does the
length of the wakes and, at a Reynolds number of 2000, vortices like the ones observed in
the Karman vortex street develop and merge. It can be seen that for the higher Reynolds
numbers, the wakes of the upstream cylinders are reduced and stabilized by the presence
of the downstream obstacles.

7 CONCLUSIONS

A bi-dimensional compact finite difference immersed boundary method is used to sim-
ulate two different flow configurations. The flow over a square cylinder was chosen to
compare the present results with the data from other authors. The mean drag coefficients
for different Reynolds numbers in the range of 100 to 300 are compared with the data
of Franke et al.30 and Paravento et al.28 The agreement between the different results is
good.

The simulation of the flow through a complex geometry (staggered arrangement of
square cylinders) highlights the potential of immersed boundary methods. Visualization
of the vorticity field for five Reynolds numbers ranging from 200 to 5000 and the pressure
force versus the Reynolds number are shown.
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(a) Re=200

(b) Re=500

(c) Re=1000

(d) Re=2000

(e) Re=5000

Figure 7: The vorticity field for several Reynolds numbers.
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