
V European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2010

J. C. F. Pereira and A. Sequeira (Eds)
Lisbon, Portugal,14-17 June 2010

ADJOINT CFD CODES THROUGH AUTOMATIC DIFFERENTIATION

D. Jones∗, F. Christakopoulos and J.-D. Muller

School of Engineering and Materials Science, Queen Mary, University of London,
London, E1 4NS

∗e-mail: dominic.jones@qmul.ac.uk

Key words: CFD, Discrete Adjoint, Automatic Differentiation

Abstract. This paper presents some insights into constructing sensitivity algorithms,
the tools required, what the constraints are and how to assemble the program. In this work
Tapenade [2], a source transformation automatic differentiation tool, is used to obtain the
sensitivity of a CFD system, whereby the independent and dependent variables are user-
defined. Points on how to prepare the source code are detailed, with the aim of enabling
the programmer to submit safe transformable code to Tapenade whilst retaining the use of
modern Fortran structures, making use of modules, derived data types, pointers, etc.

1

D. Jones, F. Christakopoulos and J.-D. Muller

1 INTRODUCTION

By applying the chain rule consecutively to a differentiable system of equations, the
sensitivity (Jacobian) of the system is obtained of all the dependent variables with respect
to all the independent variables. Using the chain rule in its ordinary form, one obtains
the Jacobian in a column by column manner. This is known as tangent mode. A tangent
of the Jacobian describes the sensitivity of one independent variable to all dependent
variables. The cost of constructing the Jacobian then is proportional to the number
of columns in the Jacobian. However, for most optimization problems there are many
independent variables and only a few dependent variables (thus many columns and few
rows).

A preferred evaluation then of the Jacobian is row by row, which is achieved by taking
the transpose of the complete chain of partial derivatives. This is known as adjoint mode,
whereby each row represents the gradient of all independent variables with respect to one
dependent variable. Tapenade performs both these tasks on user-provided code.

In certain types of CFD formulations, the solution of a sparse linear system is required
[1]. Often the algorithm which performs this operation is called from a library, such as
Sparskit [4], since it performs a general operation. It is undesirable to differentiate this
operation, due to its complexity and the likelihood that the source code is not available in
the first place. However, the task must be open to consideration. A highly optimized dis-
crete adjoint sparse linear system solver would be a valuable contribution to mathematical
libraries.

In this paper, a discussion is presented on the construction of the sensitivity of a non-
linear system. Present capabilities of Tapenade are highlighted along with insight into
how to use it effectively. Considerations on program structure in Fortran which is to
be parsed or transformed by Tapenade are detailed, since Tapenade is not capable of
transforming all programming structures available in the language.

2 CODE PREPARATION

2.1 Language Support

A given automatic differentiation (AD) tool does not necessarily recognize the entire
syntax of the programming language it operates on. AD is fundamentally concerned with
transforming mathematical statements. Bridging the discrepancy between the language
features used in the code to be differentiated and the what the tool can parse/transform
is perhaps the most significant obstacle to overcome.

If the code is being written from scratch, the following is good practice. Procedures to
be differentiated should be pure, implying that all parameters are passed explicitly. Allo-
cation within routines to be differentiated should be avoided. Certain control sequences, if
present, will need modifying: the forall and the do while constructs both need to become
do loops.

Best practice is to submit short example codes to the AD tool to see exactly what

2

D. Jones, F. Christakopoulos and J.-D. Muller

the tool can deal with, only being sure that a programming feature can be used once
the resulting differentiated code is compiled and successfully tested (testing both forward
(tangent) and reverse (adjoint) mode).

2.2 Modular Structure

Encapsulation of all subroutines within modules offers a number of benefits for both
the original code and the differentiated code. All calls are type-checked, pointers may
be passed, optional arguments and explicit argument naming may be used, array sizes
can be implied. One module per file is a sensible arrangement, as this keeps one-to-
one file/module correspondence for the differentiated code with the primal code. Include
statements, whereby its contents contains derived type definitions, used outside modules
ought to be avoided. These are best contained within modules. Finally, a file containing
one module should have the name of the module as its file name. This helps with writing
the makefile rules.

With the use of modules, compilation of files cannot be performed in any order; com-
pilation must begin with the base module which has no dependencies, and on to the top
level.

2.3 Derived Data Types

As these are very useful for collecting related data and can be the cause of many
problems in AD, they are especially examined. Tapenade correctly parses derived data
type definitions, such as

type::face_t

integer::id=0

real,dimension(:),pointer::x,norm

real::area=0

}

Assuming this type is used in a differentiated routine whereby all floating point variables
are active, Tapenade will not create a new type if id was not present. However, it is
better to cause the tool to create a new type for ease of code readability. This is easily
done by adding an integer into the type. The resulting differential type becomes

type::face_t_d

real,dimension(:),pointer::x,norm

real::area=0

}

If data is passed explicitly, declaration of differential variables must be handled by the
user at the top level. In addition, it is useful to force the tool to create differential type
definitions which it does not ordinarily see. Suppose a procedure calculates the convective
flux, ρS~v · ~n, as

3

D. Jones, F. Christakopoulos and J.-D. Muller

conv_flux(dens,area,vel,norm)

flux = dens*area &

*dot_product(vel,norm)

}

and the routine is called by conv_flux(dens,face%area,vel,face%norm). Upon differ-
entiating the procedure, the AD tool does not produce a differential face type because
it sees no relation between the data structure and the procedure called. However, the
programmer probably wants such a structure to exist. In order to do this, a dependency
routine is written and differentiated, along with the original procedure.

active_face_elements(face,x)

type(face_t)::face

real::x

face%area = x

face%norm = x

face%x = x

}

When passing an array of derived types to a procedure, it is necessary to pass its size
as well in order for Tapenade to correctly parse the code; i.e.

boundary(pde,ipde,i,ib)

type(pde_t),dimension(:)::pde

pde(ipde)%phi(ib)=pde(ipde)%phi(i)

}

must become

boundary(n_pde,pde,ipde,i,ib)

type(pde_t),dimension(n_pde)::pde

pde(ipde)%phi(ib)=pde(ipde)%phi(i)

}

Using pointers to point to elements of derived data types purely for the purposes of
having a shorter token is commonly done. This is permitted by the Tapenade (it is
parsed), but at present, in reverse mode the pointers cause a problem which can be fixed
by a script afterwards. If the original code is of the form

do i=1,n

phi => pde(ipde)%phi(i)

phi = ...

}

either the code needs to be rewritten, becoming

4

D. Jones, F. Christakopoulos and J.-D. Muller

do i=1,n

pde(ipde)%phi(i) = ...

}

or the pointer must be set pointing to a true address in the adjoint code at the earliest
point, as in

phi => pde(ipde)%phi(1) !! added

...

do i=1,n

call PUSHPOINTER(phi)

phi => pde(ipde)%phi(i)

...

}

2.4 Iterators

For computing surface and volume integrals loops are performed over all elements.
The order in which this is done is irrelevant, so can be treated as iteratively independent.
However, whilst the programmer may know this, Tapenade is not yet able to determine
this, so a pragma is required, of the form

!$AD II-LOOP

do i=1,n

ap(i)=ap(i)+aw(i)+ae(i)

}

This pragma becomes useful when reverse mode is used.

2.5 Useful Tools

In addition to the AD tool, Make and the C preprocessor significantly ease the building
of the program. In the case of Fortran, the C preprocessor built in to the compiler ought to
be used, if a preprocessor is required. If modifications to the differential code is required,
Perl offers much regular expression support, though often Sed is sufficient.

3 ASSEMBLY

3.1 Calling Tapenade

In order to obtain the correctly differentiated code, Tapenade must be called properly,
whereby the command is of the form

$tapenade -[bd] -head "subr1(vars)\(outvars) ..."

5

D. Jones, F. Christakopoulos and J.-D. Muller

The code which contains the routines to be differentiated and all its dependencies must
be passed to Tapenade when the program is invoked.

The key issue is what the vars and the outvars are to be set as. To create the
differential of all dependent variables with respect to all independent variables, these are
left blank. This is the simplest choice, though the resultant routines may be calculating
many derivatives which are not needed.

As a first premise, vars should be the list of variables from which derivatives are wanted
with respect to and outvars should be the list of variables about which derivatives are
wanted. However, one needs to look at the context in which the derivate code is to be
used to be sure about how to invoke the AD tool properly.

Consider the following example:

subr(x,f)

f = f + x

}

To differentiate this, one may simply invoke

tapenade -[bd] -head "subr(x,f)\(f)" <file>

since this reflects the intent of the parameters, producing

subr_d(x,xd,f,fd)

fd = fd + xd

f = f + x

}

for tangent mode and

subr_b(x,xb,f,fb)

xb = fb

}

for adjoint mode. Suppose the subroutine was called within a loop; for the adjoint code,
xb would overwrite its state prior to entry. This may not be the desired behaviour as
other procedures may be contributing to this term at an earlier stage. If this is the case,
Tapenade should instead be invoked as

tapenade -b -head "subr(x,f)\(x)" <file>

resulting in

subr_d(x,xb,f,fb)

xb = xb + fb

}

6

D. Jones, F. Christakopoulos and J.-D. Muller

3.2 Using the Transformed Source Code

After Tapenade is called, it outputs the primal and derivative source code. As a result,
two versions of the primal now exist and will cause a conflict at the linking stage. In the
case where only tangent or adjoint code is required, the program may be compiled with
the output code from Tapenade. If both tangent and adjoint code are required for the
same program then it is best to transfer the tangent procedures into the adjoint source
code files, ensuring AD suffices are the same for both modes.

The output code then is then compiled and linked with the higher level routines. In
the top level caller routines, it is helpful to use macros for compiling either the original
code or the sensitivity code.

3.3 Non-linear System

It has been assumed so far that one already knows what to differentiate in the system.
However, there may be some uncertainty in this or an alternative approach to differen-
tiating the system may be desired. The latter reason is the purpose of the following
discussion. Here, the desire is to avoid having to differentiate the linear solver in addition
to the other dependent subroutines to obtain the sensitivity of a non-linear problem. This
case arises particularly in incompressible CFD algorithms. Treatment of this problem is
well documented for compressible solvers, whereby the residual of the non-linear system
is computed. A clear discussion of how to obtain the adjoint is found in [3].

To obtain the sensitivity of a CFD system, at some point, the differential of the dis-
cretized momentum equation will need solving

∂

∂~x
[A(~u, ~x) ~u(~x)] =

∂

∂~x

[
~b(~u, ~x)

]
(1)

becoming (dropping the dependencies)

A
∂~u

∂~x
=
∂~b

∂~x
− ∂A

∂~x
~u (2)

This system can readily be constructed in pure tangent mode without having to differen-
tiate the linear solver. The attainment of each differential term can be accounted for: the
first term on the right-hand side coming from the differential of source term construction
in tangent mode, and the second term on the right-hand side coming from the differential
of matrix construction in tangent mode.

However, the principle interest is whether or not the transpose of this system can be
performed in purely adjoint mode without differentiating the solver. Placing the problem
in context, the differential of the entire system is of the form

dJ

d~x
=
∂J

∂~u

∂~u

∂~x
+ . . . (3)

7

D. Jones, F. Christakopoulos and J.-D. Muller

where J is the objective function, which at least depends on the velocity field. Substituting
in Eq. (2) and transposing gives

dJ

d~x

T

=
∂~u

∂~x

T ∂J

∂~u

T

+ . . .

=

[
∂~b

∂~x

T

− ~uT
∂A

∂~x

T
]{

A−T ∂J

∂~u

T}
+ . . .

=

[
∂~u

∂~x

T ∂~b

∂~u

T

+
∂~b

∂~x

T

− ~uT
(
∂~u

∂~x

T ∂A

∂~u

T

+
∂A

∂~x

T)]{
A−T ∂J

∂~u

T}
+ . . . (4)

where the term in braces indicates the solution of a linear system, whose solution is
referred to as the adjoint flow field, ψ, i.e.

ATψ =
∂J

∂~u

T

(5)

Obtaining the adjoint flow field is simple enough; the adjoint of the cost function is
first obtained, then the result is passed to the linear solver, with the transposed matrix,
returning ψ. The remaining terms however, require some analysis.

Within the brackets there are two main terms, relating to the right-hand side, b, and

the matrix, A. From the fully expanded form of Eq. (4), both ∂~b
∂~x

T
and ∂A

∂~x

T
are readily

computed from the tangent source and matrix construction procedures. The cost of
computing them is proportional to the number of independent variables, though the cost
is relatively cheap, especially for the matrix derivative.

Alternatively, the adjoint of both the source and matrix construction can be computed,
obtaining all the partial derivatives with respect to b and A, but at potentially significant
cost (proportional to the mesh size).

However, this still leaves the term ∂~u
∂~x

T
. Since A−T is not computed, there is no obvious

way of obtaining this term other than performing

∂~u

∂~x

T

=

[
∂~b

∂~x

T

− ~uT
∂A

∂~x

T
]
ψ
∂J

∂~u

−T

=

[
∂~b

∂~x

T

− ~uT
∂A

∂~x

T
]
ψ

∥∥∥∥∂J∂~u
∥∥∥∥−2

∂J

∂~u

T

(6)

where ∂J
∂~u

in practice is a real vector. This approach implies that an iterative algorithm
is required to compute the result. Even if Eq. (6) offers a reasonable way of computing
it relatively cheaply, the whole process has already become laboured enough, indicating
that an adjoint linear solver would considerably simplify matters.

8

D. Jones, F. Christakopoulos and J.-D. Muller

Assuming that an adjoint linear solver was available, obtaining the system sensitivity
would be no more than (more or less) assembling the procedure calls in the correct order,
which is the reverse of the normal order. Taking a functional approach, the original
algorithm may look like

A = fA(x, u); b = fb(x, u)

u = fu(A, b)

J = fJ(u, . . .) (7)

where the function fu is the linear solver. Thus obtaining the adjoint of each function

and adopting the notation of φ ≡ ∂J
∂φ

T
, the pure adjoint may be written as

fRJ (u, u, J, J, . . .)

fRu (A,A, b, b, u, u)

fRb (x, x, u, u, b, b); fRA (x, x, u, u, A,A) (8)

where J is set to one, causing fRJ to return u. This becomes the input to fRu and the
procedure continues until the two contributions to the sensitivity are obtained.

At present, an adjoint linear solver is not available to the authors, so the sensitivity
example computed in adjoint mode is a linear problem (fixed velocity field). As the
tangent mode does not require a differentiated linear solver, the sensitivity of the complete
Navier-Stokes equations can be solved, and is presented below.

4 TANGENT MODE EXAMPLE

The case presented is taken from [1] though with a slightly modified inlet condition. It
is solved with a cell centred finite-volume code, suitable for incompressible flow.

To validate the tangent formulation of the sensitivity algorithm, the simplest test is
to find error between the Jacobian by finite differencing and the Jacobian by tangent
mode. Progressively reducing the interval step size in the finite difference approximation,
the error should drop to approximately 10−5 then increase again as the step becomes too
small.

The adjoint formulation may be validated in the same manner, though it is better to
validate it against an already validated tangent formulation. Here the error should be
close to the order of the floating point precision.

4.1 Flow around a Cylinder

The drag coefficient sensitivity with respect to the inlet velocity angle is determined
using the tangent formulation of the Navier-Stokes equations for incompressible flow. The
arrangement of the sensitivity algorithm is the same as that for the primal algorithm.
Convective and diffusive terms are calculated to second order accuracy and the SIMPLE
scheme for pressure-velocity coupling is implemented.

9

D. Jones, F. Christakopoulos and J.-D. Muller

Figure (1) shows the fields of velocity, velocity sensitivity ∂~u
∂α

and sensitivity error
∂~u
∂αTang

− ∂~u
∂αFD

of steady fluid flow around a cylinder (Re=20). The sensitivity error shows

small regions of relatively large error, though this is not surprising as the finite differencing
is only first order accurate and the system is non-linear. In the majority of the domain
the error is very small and the error norm is below 10−5.

(a) Velocity field (b) Velocity sensitivity

(c) Sensitivity error

Figure 1: Flow and its sensitivity around a cylinder

5 CONCLUSIONS

A brief overview of obtaining the sensitivity of a system using automatic differentiation
has been presented. Practical aspects on preparing the source code have been stressed as

10

D. Jones, F. Christakopoulos and J.-D. Muller

this can be the most time consuming step in the process. Analysis of the derivative of
non-linear systems has been given as this is the most complex part of a CFD code and it
has been shown that to obtain the sensitivity by the adjoint mode practically, the adjoint
of the linear system solver is required. This will most likely be the topic of future work.

6 ACKNOWLEDGEMENTS

This research is part of the European project FLOWHEAD (Fluid Optimisation Work-
flows for Highly Effective Automotive Development Processes), funded by the European
Commission under THEME SST.2007-RTD-1. http://flowhead.sems.qmul.ac.uk/

REFERENCES

[1] J. H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics. Springer,
third edition, 2002.

[2] L. Hascoët and V. Pascual. Tapenade 2.1 user’s guide. Technical Report 0300, INRIA,
2004.

[3] D. J. Mavriplis. A discrete adjoint-based approach for optimization problems on three-
dimensional unstructured meshes. AIAA, 2006.

[4] Y. Saad. Sparskit: A basic tool kit for sparse matrix computations. Version 2, 1994.

11

