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Abstract. The interaction of a jet of cooling gas injected through single boreholes with
a supersonic flow field plays an essential role in the design of innovative cooling systems.
The detailed knowledge of this process will be helpful to derive effective boundary conditions
for a homogenized mass flux of cooling gas through porous media.

In a first step, a simplified two-dimensional configuration mimicking the gas injection
through a slot of infinite length in a plate is investigated. These numerical results are
thoroughly validated by van Driest’s similarity solution for laminar boundary layers, com-
putations performed with a non-adaptive code and experimental data provided by the Shock
Wave Laboratory of the RWTH Aachen.

The numerical investigations verify that the multiscale-based grid adaptation concept
is a reliable and efficient tool by which all physically relevant effects are automatically
detected and appropriately resolved.
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1 Introduction

In combustion chambers of rocket engines the walls are exposed to high temperatures.
In order to avoid material damage effective cooling concepts are necessary. Here film
cooling is an innovative concept to reduce the heat load of the wall that is subject of current
research activities. However, there is still a severe lack of understanding concerning the
fundamentals of the flow field and the thermal interaction.

The basic idea of film cooling is to inject cooling gas through boreholes in the wall
surface such that a thin film develops at the wall. Thus, the high temperature gas in the
burning chamber does not come into direct contact with the surface and the heat load at
the wall will be reduced. To reliably produce such a thin cooling layer, the cooling gas has
to be injected through many densely distributed holes. One option is the use of porous
media. To avoid the resolution of corresponding fine scale geometric structures one may
resort to upscaling strategies, for instance, based on local fine scale problems involving
one or a few injection holes. Appropriate materials are being investigated.

The effectivity of such cooling concepts crucially relies on the comprehension of the
mass flow through the porous media and the boreholes, respectively, and the interaction
of the cooling gas with the attached high-speed flow field. A direct numerical simulation
(DNS) that adequately resolves all geometric and corresponding flow scales for many
injection holes or porous surfaces is far beyond the capacity of present and near future
computer technology. Therefore the mass flux has to be modeled by homogenization
and multiscale techniques. For this purpose, our investigations are firstly confined to the
injection of cooling gas through single boreholes. The resulting insights are then used
to determine effective boundary conditions for a homogenized formulation of the active
cooling process with a multitude of boreholes.

In the present work we focus on the numerical simulation of cooling gas injected into
a laminar, supersonic flow field through a single slot in a plate. The main purpose is
(i) to extend the flow solver Quadflow1 basically developed and applied to subsonic and
transonic flow fields around airfoils2 to such applications and (ii) to thoroughly validate
the numerical results by analytical results3, computations by Heufer4 and by experimental
data at the Shock Wave Laboratory of the RWTH Aachen5.

Thus this paper is structured as follows: First, the basic concepts of the flow solver
Quadflow concerning grid adaptation, grid generation and finite volume discretization are
briefly summarized in Section 2. In Section 3.1, we then apply the solver to a supersonic
flow field over a flat plate. This allows us to validate the results by van Driest’s similarity
solution. Here, in particular, the reliability and efficiency of the grid adaptation is of
interest. Finally, in Section 3.2, we present computations where a cooling gas is injected
by one slot in the plate and investigate the interaction with the laminar boundary layer
and the supersonic flow field. We conclude with a summary of the main results and give
an outlook to future work.

2



Wolfgang Dahmen, Thomas Gotzen and Siegfried Müller

2 Numerical Method

The computations are performed using the adaptive flow solver Quadflow1 . This
solver has been developed over a period of more than one decade within the collaborative
research center SFB 401 Modulation of Flow and Fluid-Structure Interaction at Airplane
Wings2. It solves the Euler and Navier-Stokes equations around complex aerodynamic
configurations by a cell-centered finite volume method on locally refined grids. Mesh
adaptation is based on multiscale analysis. The computational grids are represented by
block-structured parametric B-Spline patches.

The central objective is to realize adaptively generated discretizations that are able to
resolve the physically relevant phenomena at the expense of possibly few degrees of free-
dom and correspondingly reduced storage demands. This requires a careful coordination
of the core ingredients namely the discretization of the underlying system of partial differ-
ential equations, the generation and management of suitable meshes and the adaptation
mechanisms.

Adaptation6: The main distinction from previous work in this regard lies in the fact
that we employ here recent multiresolution techniques. The starting point is to transform
the arrays of cell averages associated with any given finite volume discretization into a
different format that reveals insight into the local behavior of the solution. The cell
averages on a given highest level of resolution l = L are represented as cell averages on
some coarse level l = 0 where the fine scale information is encoded in arrays of detail
coefficients of ascending resolution l = 0, . . . , L− 1. This requires a hierarchy of meshes.
The multiscale representation is used to create locally refined meshes. Thus a principal
objective is to extract the inherent complexity of the problem by placing as few degrees
of freedom so as to still capture the features of the searched for solution within a given
tolerance. A central mathematical problem is then to show that the essential information
to be propagated in time is still kept with sufficient accuracy when working on locally
coarser meshes.

Mesh Generation7: The adaptation strategy gives rise to locally refined meshes of
quadtree respectively octree type. The second important ingredient is the generation
of such meshes along with the information needed by the flow solver at any stage of a
dynamical calculation. A key idea is to represent such meshes with as few parameters
as possible while further successive refinements can be efficiently computed based on the
knowledge of these parameters. This seems to be of vital importance with regard to (ge-
ometrically) non–stationary processes. Roughly speaking the mesh in each block results
from evaluating a parametric mapping from the computational domain into the physical
domain. Such mappings can be based on B-spline representations in combination with
well established concepts from CAGD (computer aided geometric design). The quanti-
ties to be updated in time are the relatively few control parameters in those parametric
representations, while mesh points on any level of resolution can be efficiently computed
due to the locality of the B-spline representation. The fact that one needs indeed only
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relatively few control points in order to generate meshes of good quality is partly due to
the variation diminishing property of B-splines.

Flow Solver8: The discretization scheme has to meet the requirements of the adapta-
tion concept and has to fit well with the mesh generation. This requires the development
of a finite volume scheme for fairly general cell partitions that can cope, in particular,
with hanging nodes and possible unstructured parts in complicated regions of the flow
domain. For this purpose, the locally adapted grid is treated as a fully unstructured mesh
with arbitrary polygonal/polyhedral control volumes in two and three space dimensions,
respectively. The convective fluxes are determined by solving quasi–one–dimensional Rie-
mann problems at the cell interfaces. Several approximate Riemann solvers (Roe, HLLC,
AUSMDV) and upwind schemes (van Leer) have been incorporated. A linear, multidi-
mensional reconstruction of the conservative variables is applied to increase the spatial
accuracy. In order to avoid oscillations in the vicinity of local extrema and discontinuities,
limiters with TVD property are used. Concerning the computation of the viscous fluxes,
the gradients of the variables at cell interfaces are determined using the divergence the-
orem. Finally, the time–integration is performed by an explicit multistage Runge–Kutta
scheme and a fully implicit Newton–Krylov type method, respectively.

3 Numerical results

The flow solver Quadflow has been primarily developed to investigate transonic flow
fields around airfoils. In order to perform numerical simulations of cooling gas injection
into a supersonic flow field, we need to validate the solver thoroughly by means of classical
benchmark problems. For this purpose, we will first consider in Section 3.1 the supersonic
flow over a 2D flat plate and compare the results with similarity solutions of van Driest3.
The validated solver is then applied to the simulation of cooling gas injection in Section
3.2. The results are compared with experiments that were carried out at the Shock Wave
Laboratory of the RWTH Aachen and numerical simulations provided by a non-adaptive
code5.

3.1 Supersonic flow over flat plate

Computational Setup: First of all, we consider a supersonic flow over a flat plate
of length 150 mm, where the plate thickness in the computation is assumed to be zero.
The free stream conditions at the leading edge of the plate are characterized by the
Mach number Mae = 2.6, the Reynolds number Ree = 4.3 · 106 and the temperature
Te = 488 K. These will also be used later on in Section 3.2 where in addition a cooling
gas is injected through a slot in the plate. Since the flow field is supposed to be laminar,
the computations are performed in two space dimensions only.

The flow field is characterized by a laminar boundary layer and an isotropic compression
wave emanating at the leading edge of the plate. These physical effects have to be
adequately resolved by locally anisotropic and isotropic grids, respectively. To account for
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both opposing requirements, we therefore split the computational domain into basically
two blocks ΩB = [−0.01m, 0.2m]× [0m, δ] and ΩF = [−0.01m, 0.2m]× [δ, 0.15m] for the
offset at the plate and the far field, respectively, where δ = 0.005 m is about four times
the analytical prediction of the boundary layer thickness at the end of the plate according
to van Driest3.

Due to the high Reynolds number the boundary layer is very thin. To resolve this thin
layer by dyadic, isotropic grid refinement requires a very high number of refinement levels
resulting in a tremendously high number of cells. This can be avoided to some extent by
concentrating grid lines at the wall resulting in stretched cells. On the other hand, the
leading edge of the boundary layer needs to be resolved locally by an isotropic grid to
capture the compression wave emanating at this point. To compensate for the stretching
in normal wall direction, we also have to narrow grid lines in tangential direction at the
leading edge. In addition, it turned out that the flow field in front of the plate has to
be discretized as well to resolve the physical effects at the leading edge. Therefore the
offset block ΩB is split into two sub-blocks ΩB,1 = [−0.01 m, 0 m]× [0 m, δ] in front of the
plate and ΩB,2 = [0 m, 0.2 m]× [0 m, δ] at the plate. In each block a B-spline mapping is
constructed. In order to concentrate grid lines at the wall and at the leading edge of the
plate (x = 0 m), we apply stretching functions to the parameter spaces of the B-Spline
functions corresponding to the tangential and wall-normal direction, respectively. In the
far field, i.e., block ΩF , a Cartesian mesh is used.

In front of the flat plate, we impose symmetric boundary conditions, i.e.,

∂ρ

∂n
= 0,

∂u

∂n
= 0, v = 0,

∂p

∂n
= 0, (1)

for density ρ, velocity components in x- and y-direction u and v, respectively, and pressure
p. On the surface of the plate, we prescribe no slip conditions and a constant wall
temperature of Tw = 293 K modeling an impermeable and isothermal wall.

The coarse grid discretization corresponding to level l = 0 is composed of 605 cells.
Note that the current implementation of the no-slip conditions requires to resolve all cells
attached to the wall by the highest refinement level in order to avoid that hanging nodes
occur in these cells, i.e., grid adaptation is prohibited in these cells. Due to grading,
the resolution may decrease gradually in wall-normal direction. This can be seen in
Fig. 1(a). Since the flow field is initialized by the homogeneous free stream conditions,
the computation is started on the first uniformly refined refinement level l = 1, see
Fig. 1(a). During the computation grid adaptation is performed whenever the averaged
density residual has dropped by 4 orders of magnitude for five adaptations. Afterwards,
computation continues until a residual drop of 10−5 is reached. Due to the steady state
character of the solution, the time discretization is performed implicitly by a backward
Euler step and the time step is chosen locally with respect to a varying global CFL number
determined by the following CFL evolution strategy

CFLk+1 = min(CFLmin · 1.05k, CFLmax), (2)
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Figure 1: Initial grid (uniform 1st refinement level) (a) and final grid (b).

where CFLmin and CFLmax are set to 1 and 20, respectively. Note that the index k
enumerates the number of time steps since the last adaptation, i.e., after each adaptation
the CFL number is again set to CFLmin. For solving the Riemann problem at the cell
interfaces we use the AUSMDV solver. The viscosity is calculated by the Sutherland Law

µ(T ) = µe

(
T

Te

)3/2 Te + S

T + S
(3)

with the Sutherland constant S = 110 K and the Prandtl number is set to Pr = 0.72.
The wall-temperature ratio is given as Tw/Te = 1.665.

Numerical Results: Starting from a homogeneous flow field, the initial grid, see
Fig. 1(a), is locally refined during the computation by means of multiscale-based grid
adaptation. The final grid corresponding to the steady state solution consists of about
45000 cells distributed over 5 levels of refinement, see Fig. 1(b). For comparison, the
uniformly refined mesh corresponding to L = 5 consists of about 620000 cells. Hence the
computational complexity is reduced by a factor of about 14.

As can be concluded from Fig. 1(b), the compression wave has been automatically
detected during runtime by performing grid adaptation. At the trailing edge, see Fig. 4(b),
the compression wave is adequately resolved by cells on the highest refinement level. In
the far field, since the compression becomes weaker, it no longer needs to be resolved on
the highest refinement level.

For the boundary layer we have similar conclusions. Although the grid is a priorily
refined in this layer, due to the stretching applied to the parameter spaces of the B-Spline
mappings, the grid is further refined. This is verified by Fig. 3, where the resolution of
the boundary layer at the end of the plate is shown for the initial and the final grid,
respectively. The numerical boundary layer thickness at the end of the plate δnum =
1.12 mm that can be depicted from Fig. 3(b) fits very well with the analytical prediction
δ = 1.14 mm of van Driest’s similarity solution. The boundary layer is, at the end of the
plate, resolved by about 50 cells in wall-normal direction.
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Figure 2: Supersonic flow over a flat plate compared with similarity solution according to van Driest:
skin friction (a) and Stanton number (b).

It has to be emphasized that the concept of multiscale-based grid adaptation reliably
and automatically detects all physical relevant effects, namely, the compression wave and
the boundary layer.

The results obtained are validated by similarity solutions of van Driest3. As can be
seen in Fig. 2, the numerical results for the skin friction fits very well with the theoretical
prediction. The results for Stanton number, describing the heat flux at the wall, show
slight differences, but the quality is still satisfying. Regarding the cooling gas injection,
this indicates that a good agreement for the skin friction does not necessarily ensure
reliable results for the cooling efficiency.

3.2 Cooling gas injection in laminar flow

Experimental Setup: At the Shock Wave Laboratory of the RWTH Aachen exper-
iments have been performed at supersonic inflow conditions, where the main flow field
hits a wedge with edge length 150 mm at an angle of attack α = 30◦. Typically an
oblique shock is forming at the leading edge of the wedge. Cooling gas, here air, is in-
jected through a slit in the surface that is located 55 mm from the leading edge of the
wedge, see Fig. 5. Characteristic parameters of the experimental setup are the slit width
Ls, the injection angle Θ and the blowing ratio F = ρcuc/ρeue, where ρ and u are the
density and the velocity, and the subscripts e and c denote the respective values behind
the oblique shock wave and the condition of the injected cooling gas. These parameters
can be varied as follows: Ls ∈ [0.5 mm, 1 mm], Θ ∈ [30◦, 90◦] and F ∈ [0.0151, 0.065].
Note that Θ = 90◦ corresponds to an injection orthogonal to the wall.

Computational Setup: The flow field in the experiment is essentially laminar and,
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Figure 3: Resolution of the boundary layer: initial grid (uniform 1st refinement level) (a) and final
grid (b).
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Figure 4: Resolution of the leading edge of the plate: initial grid (uniform 1st refinement level) (a) and
final grid (b).
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Figure 6: Computational setup: Plate with slot where the dashed lines indicate the boundaries of the
grid blocks.
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cond. 1 cond. 2 cond. 3 cond. 4 cond. 5
slot width [mm] 0.5 1 1 1 1
injection angle [degrees] 90 90 30 90 60
blowing ratio [ - ] 0.065 0.0151 0.065 0.065 0.065
eff. mass flux [ mm ] 0.0325 0.0151 0.0325 0.065 0.0563

Table 1: List of injection parameters for different configurations.

hence, two-dimensional. In order to reduce the computational complexity, we therefore
simplify the 3D experimental setup by a two-dimensional configuration of a flat plate (see
Fig. 6, where we impose inflow boundary conditions determined by the flow conditions
behind the oblique shock. These post-shock conditions correspond to the free stream
condition specified in the previous Section 3.1. For the injection, we have considered five
configurations with varying slot width Ls, injection angle Θ and maximum blowing ratio
F as summarized in Table 1. For all cases the cooling fluid is air at a temperature equal to
the wall temperature Tw = 293K. Note that Condition 1 and 3 only differ in the smaller
injection angle. However, the effective slot width Ls sin(θ) is the same in both cases. In
our computations, the mass flow of injection gas is either prescribed by imposing a top
hat profile via boundary conditions at the slot, i.e.,

∂p

∂n
= 0, ρu = F · ρe ·Mae · ce · cos(Θ), ρv = F · ρe ·Mae · ce · sin(Θ), T = Tw, (4)

or we fully simulate the flow in the injection channel. In the following, we refer to the
results of the different approaches by either simulated or modeled injection, respectively.

The computations have been performed either on a 5-block (modeled injection) or 6-
block (one extra block for the simulated injection) grid, refined by stretching either to
the solid wall or, in the other parameter direction, to the leading edge of the plate and to
the slot, respectively. The computational domain extends over Ω = [−0.01 m, 0.15 m] ×
[0 m, 0.15 m]. In total the coarse grid consists of 300 grid cells and 4 levels of refinement
are used, see Fig. 7.

Numerical results: First of all, we discuss the performance of the grid adaptation
where we exemplarily consider the computations corresponding to condition 1 in case of
simulated injection. For this configuration, the final adaptive grid corresponding to the
steady state solution, consists of about 58000 grid cells. For comparison, the reference
computations by Heufer have been performed on a grid for a smaller computational do-
main that consists of 74000 grid cells. As can be seen in Figs. 7 and 8 the grid has been
locally refined in the boundary layer and at the compression waves. Note that there are
two isotropic compression waves, one emanating at the leading edge of the plate and an-
other one on top of the injection jet that is shown in Fig. 8(b). The second compression
wave results from the interaction of the injection jet with the laminar boundary layer.
Due to the injection, the boundary layer becomes thicker and causes a local compression
of the attached supersonic flow field and, hence, a compression wave is developing. This
is displayed in Fig. 9 for the density field.
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Figure 7: Condition 1: Initial grid (uniform 1st refinement level) (a) and final grid (b) for simulated
injection.
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Figure 8: Condition 1: Zoom into the initial grid (uniform 1st refinement level) (a) and final grid (b)
near to the injection slot in case of simulated injection.
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(a) (b)

Figure 9: Condition 1: Density distribution and streamlines for simulated (a) and modeled (b) injection.

(a) (b)

Figure 10: Condition 1: Temperature distribution and streamlines for simulated (a) and modeled (b)
injection.

Next we discuss the influence of modeling and simulating the injection. For this pur-
pose, we present in Fig. 10 the local temperature fields in the neighborhood of the slot
resulting from the numerical simulations corresponding to simulated and modeled injec-
tion, respectively. A few millimeter in front of the slot, the main flow deflects from the
plate and the boundary layer becomes thicker. Furthermore, there is a separation bubble
located in the subsonic area in front of the slot, which arises from a large vortex located
there. This vortex seems to be more developed in the case of modeled injection. Addi-
tionally, for the simulated injection we observe a flow separation at the upstream wall of
the injection slot and another small vortex directly behind the slot.

Although there are visible differences in the flow field, the effect on the cooling efficiency
η = 1− q̇c/q̇nc is small as can be seen in Fig. 11(a). Here the cooling efficiency is defined
by the specific wall heat-fluxes q̇c and q̇nc corresponding to simulations with and without
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cooling gas injection, respectively. This was already found by Heufer5: Far upstream the
slot the cooling efficiency is zero, until it starts to increase in the separation bubble. In the
injection area it reaches one and then slowly decreases. The only qualitative difference for
the simulated injection can be found directly behind the slot, where a cooling efficiency
larger than 1 appears. This results from the expanding flow around the corner, where the
temperature next to the wall becomes smaller than the wall temperature at this position
and the wall heat flux changes its sign. Furthermore, the cooling efficiency seems to
decrease faster in the case of modeled injection, but this phenomenon was not observed
for other conditions.

For validation of our results, we compare them with experimental measurements per-
formed at the Shock Wave Laboratory at RWTH Aachen and computations with a non-
adaptive code, performed by Heufer4. As can be concluded from Figs. 11(a) and 11(b),
the results for the cooling efficiency are in good agreement and, hence, confirm our com-
putations.

Additionally, we perform parameter studies for varying injection parameters. As can
be seen in Fig. 11(d), the lower blowing ratio (condition 2 compared to 4) results in a
much faster decreasing cooling efficiency. Decreasing the slot width (condition 1 compared
to 4) leads to the same effect. If a critical blowing ratio is reached, the cooling efficiency
suddenly becomes negative, because the high mass flux results in the transition of the
boundary layer from laminar to turbulent. The used blowing ratio here are all below the
critical ones found by Heufer5.

So far, the direction of injection was orthogonal to the flow field. Now we discuss the
influence of injecting the cooling at a different angle, where we confine to the approach
of modeled injection. The results for the cooling efficiency are displayed in Fig. 11(c).
Note that the injection angle does not change the mass flux. Nevertheless, it influences
the cooling efficiency, because the effective slot width changes by the factor of sin(Θ).
Therefore condition 1 and 3 lead to almost the same results, because the factor 2 in the
slot widths is compensated by the factor sin(30◦) = 1/2. Keeping the other parameters
fixed and only decreasing the injection angle from 90◦ (cond. 4) over 60◦ (cond. 5) to 30◦

(cond. 3) results in a decreasing cooling efficiency, because of the decreasing effective slot
width.

In order to see the quality of the different setups, we finally scale the x-axis with the
different effective mass-fluxes F · Ls · sin(Θ) (see Table 1). This allows for comparing the
cooling efficiencies independently from the mass-flux. As we can conclude from Fig. 12, the
results seem to be more or less independent from the geometric parameters. This at least
holds for the considered parameter range. There only remains a significant dependency
on the effective mass-flux itself, that means, that the cooling efficiency in this regions
scales nonlinear with the effective mass-flux.
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(a) Condition 1: Comparison of modeled (mod)
and simulated (sim) injection and reference solu-
tion of Heufer5.
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Figure 11: Cooling efficiency η
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Figure 12: Cooling efficiency η over x normalized by effective mass-flux.

4 Conclusion and Outlook

The numerical investigations confirm that the Quadflow solver is an appropriate tool
for simulating film cooling. In particular, the multiscale-based grid adaptation concept
turns out to be a reliable tool by which all physically relevant effects are automatically
detected and appropriately resolved. Since the grid is only refined in regions, where the
flow field exhibits local variations, this results in substantial savings of cells in comparison
to a fully refined grid and, hence, the computational costs both in terms of CPU time
and memory savings are significantly reduced, whereas the accuracy of the uniform mesh
corresponding to the highest refinement level is maintained.

Next we will perform 3D computations, where the cooling gas is injected through a slot
of finite length in the plate. In order to reduce the computational cost to an affordable or-
der of magnitude, grid adaptation techniques have to be complemented by parallelization.
In recent years, the Quadflow solver has been parallelized. In a first step, the unstructured
finite volume solver was parallelized via MPI for distributed memory architectures. Here
load-balancing is performed by graph partitioning techniques. However, when applied to
adaptive, block-structured grids all data had to be transferred to one processor. Since
this ruins the overall performance, we are currently parallelizing the multiscale-based
grid adaptation that is applied to each block separately. In order to balance the load
on the different processors and, thus, to minimize interprocessor communication, we use
the concept of space-filling curves. Since the underlying adaptive grids are unstructured
due to hanging nodes, this task is by no means trivial. Recently, first results have been
published for one-block grids in two and three space dimensions9. Currently, the strategy
is extended to multi-block grids. This requires an additional handling of ghost cells at
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block boundaries.
In the future, the fully parallelized solver is to be applied to turbulent flow fields. Since

a DNS is not feasible, we have to model the effect of the unresolved fluctuations on the
resolved coarse scales. Up to now, turbulent flow fields have been investigated by means
of the Reynolds Averaged Navier-Stokes (RANS) method, where the averaged governing
equations are solved for the mean variables. For the turbulent closure, classical one- and
two-equation models such as Spalart-Allmaras and Menter-SST, respectively, are used.
Recently a differential Reynolds stress model, the SSG/LRR-ω model, has been imple-
mented into Quadflow10. Instead of these models, we will use the Variational Multiscale
Method (VMS). This method can be considered as an advanced LES. It has already been
implemented into Quadflow according to Koobus and Farhat11 and is currently being
validated.
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