
V European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2010

J. C. F. Pereira and A. Sequeira (Eds)
Lisbon, Portugal,14-17 June 2010

TIME-STEPPING FOR ADJOINT CFD CODES FROM AUTOMATIC
DIFFERENTIATION

Faidon Christakopoulos∗, Dominic Jones and Jens D. Müller

The School of Engineering and Materials Science,
Queen Mary,

University of London,
Mile End Road, London, E1 4NS, United Kingdom

e-mails: {∗f.christakopoulos, dominic.jones, j.mueller}@qmul.ac.uk

Key words: Optimization, Discrete, Adjoint, Automatic Differentiation

Abstract. In the case of aerodynamic shape optimization problems, the adjoint formula-
tion has always been favored due to its properties. The past decade lots of effort has been
drawn on the development of continuous adjoint solvers, which have though presented
important disadvantages. The development and improvement of automatic differentia-
tion tools in the last years on the other hand, has enabled the exploitation of the discrete
adjoint formulations, which present some great advantages and seem to overcome the prob-
lems of the continuous approach. These formulations can even be coupled with acceleration
methodologies such as multigrid and one-shot to produce even faster and more efficient
adjoints and optimization codes.

1

Faidon Christakopoulos, Dominic Jones and Jens D. Müller

1 INTRODUCTION

The property of adjoint CFD codes to be practically independent of the number of
design variables makes the implementation of such codes essential for efficient gradient-
based optimization, in problems were more than very few design variables have to be
considered, e.g. in real industrial 3D problems. Early implementations [1] have favored
continuous adjoint codes, where the adjoint equations are derived, then discretised. Such
codes though have been proven to be rather difficult to maintain and often present con-
vergence problems due to errors in the transposition of the Jacobian matrix A.

On the other hand, in discrete adjoint codes, the adjoint code is derived as a differ-
entiation of the code statements of a CFD code. This presents a number of advantages.
First of all, the adjoint Jacobian AT is guaranteed to be the exact transpose of the primal
Jacobian A and thus convergence loss problems are avoided. Most importantly, the dis-
crete approach is straightforward, albeit tedious, but can be automated using automatic
differentiation tools (AD).

A number of applications of AD to CFD codes have been published before [2, 3, 4]
and have been shown for some types of discretisation to be able to obtain a performance
comparable to continuous adjoint codes [5].

In this paper, emphasis is placed on presenting the way and the simplicity, in which an
AD derived adjoint code can be validated and assembled from the original CFD code. A
different approach to the adjoint pseudo-time-step is presented and then the whole primal
and adjoint code is coupled with one-shot and multigrid methods, in order to acquire an
even faster optimization process.

2 METHODOLOGY

2.1 Automatic Differentiation

Automatic differentiation (AD) is the process through which the code that calculates
the gradient of a primal (code written) function is automatically generated. The main
logic used by the various AD tools (e.g. Tapenade, TAMC, etc) is that the chain rule
can be used to derive the gradient of a primal function, no matter how complicated this
function may be. This gradient can be computed either in forward (tangent linearisation)
or reverse (adjoint) mode.

Therefore, provided a primal CFD code, its equivalent tangent linearisation and adjoint
codes can be straightforwardly derived using the AD tools and be coupled with the original
code so that the gradients are calculated. The ability of generating both versions is of
great importance, as it enables the validation of the adjoint in every iteration towards
convergence, as it will be shown later on in the paper.

This provides a great advantage to the discrete adjoint optimization CFD codes, as
the process of deriving the adjoint code can be fully automated and can also be easily
checked, debugged and maintained, considering that the generation of the AD routines is
practically costless in time for the CFD code programmer.

2

Faidon Christakopoulos, Dominic Jones and Jens D. Müller

Furthermore, the use of AD guarantees the exact transposition of the Jacobian A,
thus convergence loss problems are avoided. These problems are very often in continuous
adjoint codes, due to transposition errors, which require lots of effort to be traced and is
highly time consuming.

2.2 Multigrid

Multigrid methods have proven to provide to major advantages, which are convergence
frequency damping and acceleration. They follow four main steps, that can be summarized
as :

1. Remove fine grid oscillations with the smoother.

2. Restrict fine grid solution and residuals to the coarse grid.

3. Remove coarse grid oscillations with the smoother.

4. Prolongate the coarse grid corrections to the fine grid.

The main multigrid cycles used, are the V and the W cycles, presented in the following
figure :

Finest Grid

Lower lever Grid

Coarsest Grid

Figure 1: Two basic multigrid cycles, the V and the W cycle.

In this paper, the V cycle is used, but some extra attention should be drawn to the
adjustment of the multigrid process, when the altered adjoint pseudo-time-step (3.2) is
used.

2.3 One-shot

In one-shot methods [6], the solution to the KKT system is obtained by solving the
primal, adjoint and design simultaneously. Such methods have been shown to be able to
converge the primal, adjoint and design in 5-10 times the cost of computing the primal.
On the other hand, the classic approach of converging primal and adjoint fully for each
design step, typically results in factors of 50-100 times the primal for a converged design,
which is not acceptable in large optimization problems, as the ones in an industrial design
environment.

The simplest one-shot strategy is to use a fixed number of iterations on the primal
and adjoint and a Wolfe-condition to select the step-size. There is a more effective way

3

Faidon Christakopoulos, Dominic Jones and Jens D. Müller

though, that uses the linear relation that had been proven to exist between the conver-
gence of primal and adjoint and the convergence of the design. Based on this relation, a
convergence criterion can be used to stop iterating on primal and adjoint, which can be
described by the equation :

gRMS =
|∇J |
C

(1)

where J the functional and C a user defined constant, that controls the accuracy of the
primal and adjoint solution at each design step. This second methodogy is adopted in
this paper.

3 THEORY

3.1 Adjoint pseudo-time-stepping validation theory

Every automatically generated subroutine in reverse (adjoint) mode can be validated
by using the equivalent forward mode (tangent linearisation) subroutine. The results of
these subroutines should be identical. For example, considering the subroutine calclift

that calculates the lift coefficient of an airfoil, the equivalent automatically generated
subroutines in forward and reverse mode are respectively :

calcliftd(α,→ αd, CL,← CLd) and calcliftb(α,→ αb, CL,← CLb)

where d and b denote forward and reverse differentiation respectively.
Setting αd = 1 and CLb = 1, the two subroutines compute the same derivative in two

different ways :

CLd = ∂CL

∂α

αb = ∂CL

∂α

T

These derivatives should match exactly for the two subroutines. The value of these
derivatives can be validated using a simple finite differences calculation.

In the same logic, but one step further ahead, the whole adjoint time-stepping loop can
be validated versus the equivalent tangent linearisation loop. This can become clearer,
if one considers a typical CFD shape optimization problem. The primal would be the
solution of the system of state equations :

R(U, α) = 0 (2)

where U the state and α the design variables.
Considering a cost function J , its derivative with respect to the design variables would

be :
dJ

dα
=
∂J

∂α
+
∂J

∂U

∂U

∂α
(3)

4

Faidon Christakopoulos, Dominic Jones and Jens D. Müller

The term ∂U/∂α is calculated by differentiating the the state equations (2) with respect
to α :

∂

∂α
(R (U, α)) = 0

⇒ ∂R

∂U

∂U

∂α
+
∂R

∂α
= 0

⇒ Au = f

⇒ u = A−1f (4)

where A the Jacobian, u = ∂U/∂α the perturbation field and f = −∂R/∂α a source
term, which is added to the conservation equations by the shape change. Through (4),
(3) can be written :

dJ

dα
=
∂J

∂α
+ gTu (5)

where gT = ∂J/∂U . The variable u is the output of the tangent linearisation version of
the primal pseudo-time-stepping loop.

On the other hand, the adjoint variables v are the solution of the system :

ATv = g

⇒ v = A−Tg

⇒ vT = gTA−1 (6)

Through (4) and (6), (5) can be written as :

dJ

dα
=
∂J

∂α
+ vTf (7)

from which the adjoint - tangent linearisation equivalence is obvious :

gTu = vTf (8)

Equation (8) must be satisfied at every iteration for the forward and reverse AD derived
code.

Of course, from the automatic differentiation point of view, the transpose of dJ/dα is
being calculated from (7) as :

dJ

dα

T

=
∂J

∂α

T

+ fTv (9)

but exactly the same relation must be satisfied. Here, it should be mentioned that the
terms (∂J/∂α)T and fT can be calculated either in forward or in reverse mode.

5

Faidon Christakopoulos, Dominic Jones and Jens D. Müller

3.2 Adjoint pseudo-time-stepping alteration

In one-shot adjoint optimization methods, the optimum sought is the solution of the
system :

R(Q,α) = 0 (10)

ATv = g (11)

∂J

∂α
+ vTf = 0 (12)

where the solution of (10) are the state variables (primal), of (11) the adjoint variables
(dual) and of (12) the optimal shape.

The primal solution is acquired using a pseudo-time stepping scheme of the form :

do nIter = 1,mIt

call residual (→Q, ←R, →Nrm)

call update (→R, ←Q)

end do

with “→” and “←”, inputs and outputs are implied respectively.
Typically, in order to solve the dual, one would supply this loop to an AD tool (e.g.

Tapenade) for differentiation, producing, therefore, an adjoint pseudo- time-stepping loop
that has the reserve code statements order than the primal :

do nIter = mIt,1,-1

call update (Q, →Q, R, ←R))

call residual (Q, ←Q, R, →R, Nrm, ←Nrm)

end do

where the overline implies adjoint quantities and reverse differentiated subroutines. In this
case, in every iteration, an updated value of the adjoint residuals is calculated calculated
as :

R
i+1

= R
i − δt ·Qi

(13)

It can be observed that this form of the adjoint pseudo-time-stepping loop contains
the calculation of the derivative of the residuals with respect to the normals’ perturbation
(Nrm). This computation though only needs to be performed once, after the dual is
converged, avoiding in this way the extra computational cost. Furthermore, it is obvious
that adjoint variables q need to be initialized, as the first important operation is updating.
This initialization is performed by reverse differentiating the cost function.

Considering the disadvantages of this “brute-force” application of automatic differen-
tiation and trying to avoid them, the pseudo-timesteppig loop could be altered so as to
take the form :

6

Faidon Christakopoulos, Dominic Jones and Jens D. Müller

do nIter = 1,mIt

call residual (Q, ←R, R, →Q, Nrm)

R = R + g

call update (←Q, →R)

end do

where only the subroutine residual has been supplied for automatic differentiation. Here,
in every iteration, the updated adjoint variables are calculated as :

Q
i+1

= Q
i − δt ·Ri

(14)

In this adjoint pseudo-time-stepping loop, the same update subroutine with the primal
is used (self- adjoint subroutine), the order of the arguments q and r has been changed
and the adjoint source term g must be added to the adjoint residuals, before the solution
update. In this way, the adjoint pseudo-time stepping loop follows the same calculation
order with the primal and the same acceleration techniques can be used. Furthermore,
there is no need of initialization of the adjoint variables q, as the first important operation
is the residual computation and not the updating.

Therefore, the whole computational process to calculate the gradient of the functional
using the altered pseudo-time stepping, has the form :

do nIter = 1,mIt

call residual (Q, ←R, R, →Q, Nrm)

R = R + g

call update (←Q, →R)

end do

call residualnrm (Q, →Q, R, Nrm, ←Nrm)

call metrics (→X, ←X, →Nrm, →Nrm)

whereas the equivalent “brute force” process is :

call cost fun (→X, →Q, ←Q, ← cost, → 1)

do nIter = mIt,1,-1

call update (Q, →Q, R, ←R))

call residual (Q, ←Q, R, →R, Nrm, ←Nrm)

end do

call metrics (→X, ←X, ←Nrm, →Nrm)

4 RESULTS

4.1 Validation results

For the validation of the altered adjoint time-step, a test case of calculating the sen-
sitivity of the lift of an airfoil NACA 0012 with respect to the angle of attack is used.
The far-field conditions are Ma = 0.43 and α = 2o. At every iteration, the gradient is

7

Faidon Christakopoulos, Dominic Jones and Jens D. Müller

computed. Considering the adjoint equivalence, tangent linearisation and adjoint should
match in every iteration. The following table shows this relation :

It. Tangent linearisation Altered adjoint time-step
1 4.6767895663117161 4.6767895663117169
2 4.6025485792291176 4.6025485792291221
3 4.3965883079495329 4.3965883079495303
4 4.1346945501831556 4.1346945501831573
5 3.8504192698104562 3.8504192698104585
6 3.5618266817047339 3.5618266817047397
7 3.2884820797512821 3.2884820797512835
8 3.0396872942877495 3.0396872942877549
...

1700 3.1451761587343876 3.1451761587343960

Table 1: Tangent linearisation vs adjoint gradient

As mentioned before, the final value of the gradient computed via tangent linearisation
or adjoint can be compared and validated versus the equivalent value computed via finite
differences. For this test case and using central finite difference, the comparison with
tangent linearisation and adjoint is presented in the following table :

Gradient
Central Difference 3.1451761487549104

Tangent linearisation 3.1451761587343876
Adjoint 3.1451761587343960

Table 2: Finite difference vs tangent linearisation and adjoint

The gradient via central finite difference matches the values of the tangent linearisation
and adjoint down to an expected accuracy of seven decimal digits, that is enough to verify
the value of the gradient computed via AD.

4.2 Altered adjoint pseudo-time step performance results

By using the altered adjoint time-step, one avoids the computational cost of evaluating
the perturbation of the residuals with respect to the normals, as described before. Also,
as less primal code is being differentiated, there are overall less operations to be performed
in the AD code (e.g. less calls to the help-subroutines push/pop, when using Tapenade).
All these result in a runtime decrease, which is presented in the following table :
The cost of the two adjoint versions is therefore (compared to the cost of the primal) :

8

Faidon Christakopoulos, Dominic Jones and Jens D. Müller

Runtime (sec)
Primal 9.6886053

Altered adjoint 25.517594798
“Brute force” adjoint 40.826551312

Table 3: Runtime improvement for the pseudo-time stepping loop.

Cost
Altered adjoint 2.6337738

“Brute force” adjoint 4.2138729

Table 4: Cost of the adjoints’ pseudo time-stepping loop compared to the cost of the primal loop.

Even faster adjoint code can be produced by using the AD tool’s pragmas in all the
possible positions in the primal code and all the AD code generation improvement options
(e.g. pragma C$AD II-LOOP and adjointliveness option for Tapenade).

4.3 Multigrid results

As mentioned before, one of the advantages of multigrid is the convergence frequency
damping. Coupling the multigrid theory with the primal and adjoint code described
above, this virtue of multigrid is presented in the following figure :

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0 2000 4000 6000 8000 10000 12000

lo
gR

M
S

Iterations on the finest grid

Single grid - Primal
Single grid - Adjoint

Multigrid - Primal
Multigrid - Adjoint

Figure 2: Convergence of primal and adjoint for single and multi grid.

Because of the frequency damping and less iterations on the “expensive” grid, multigrid

9

Faidon Christakopoulos, Dominic Jones and Jens D. Müller

achieves a large runtime acceleration. The run-times for primal and adjoint for single and
multi- grid, as well as the acceleration achieved, are presented in the next table :

Single grid Multigrid Acceleration
Primal 48.563034s 11.612725s ∼ 76%
Adjoint 165.65434s 51.003185s ∼ 69%

Table 5: Multigrid runtime acceleration

5 DISCUSSION & CONCLUSIONS

In the previous sections, it has been shown that discrete adjoint CFD codes present a
number of significant advantages compared to the continuous ones. Moreover, the way, in
which the AD generated adjoint code can be validated, has been discussed. The simplicity
and the exactness of this validation process really brings forward the discrete adjoint
approach, compared to the continuous implementation. Last but not least, the option of
coupling the discrete adjoint with solving and optimizing acceleration techniques, such as
multigrid and one-shot, has been unfolded, that opens the way to even faster and more
efficient discrete adjoints.

Apart from the above, the present paper makes clear that the nowadays AD tools are
in the position of generating reliable discrete adjoints with high performance. Of course,
as the development and improvement of the AD tools is still an on going process, even
more efficient adjoint codes can be expected in the near future.

6 ACKNOWLEDGEMENTS

This research is part of the European project FLOWHEAD (Fluid Optimisation
Workflows for Highly Effective Automotive Development Processes), funded by the Eu-
ropean Commission under THEME SST.2007-RTD-1. http://flowhead.sems.qmul.ac.uk/

10

Faidon Christakopoulos, Dominic Jones and Jens D. Müller

REFERENCES

[1] A. Jameson, L. Martinelli, and N.A. Pierce. Optimum aerodynamic design using the
Navier-Stokes equations. Theor. Comp. Fluid. Dyn., 10:213–237, 1998.

[2] L. Hascoët, M. Vázquez, and A. Dervieux. Automatic differentiation for optimum
design, applied to sonic boom reduction. In V.Kumar et al., editor, Proceedings of the
International Conference on Computational Science and its Applications, ICCSA’03,
Montreal, Canada, pages 85–94. LNCS 2668, Springer, 2003.

[3] M. B. Giles, M. C. Duta, J.-D Müller, and N. A. Pierce. Algorithm developments for
discrete adjoint methods. AIAA Journal, 41(2):198–205, 2003.

[4] R. Giering, T. Kaminski, and T. Slawig. Generating efficient derivative code with
TAF: Adjoint and tangent linear Euler flow around an airfoil. Future Generation
Computer Systems, 21(8):1345–55, 2005.

[5] P. Cusdin and J.-D. Müller. On the performance of discrete adjoint CFD codes using
automatic differentiation. IJNMF, 47(6-7):939–945, 2005.

[6] A. Jaworski, P. Cusdin, and J.-D. Müller. Uniformly converging simultaneous time-
stepping methods for optimal design. In R. Schilling et. al., editor, Eurogen, Munich,
2005. Eccomas.

[7] L. Hascoët and V. Pascual. Tapenade 2.1 user’s guide. Technical Report 0300, INRIA,
2004.

11

