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Abstract. This paper presents two new methods to couple moving mesh ALE simula-
tions with highly anisotropic adaptation. The first one allows to extend the classical ALE
framework often used for simulation involving moving geometries to changing-connectivity
meshes. The second is an extension of the mesh adaptation fixed-point algorithm for un-
steady flows to the context of ALE simulations. Three CFD simulations in two dimensions
illustrate these new advances.

1 INTRODUCTION

The main goal of this paper is to perform anisotropic adaptive Arbitrary-Lagrangian-
Eulerian (ALE ) simulations. To be able to do this, we adopted a twofold strategy. First,
we worked on a new variable-topology ALE scheme enabling the use of the swap opera-
tion in a fully ALE manner, thus relaxing the strong fixed-topology constraint imposed
by the classical ALE framework. Secondly, we improved some existing moving mesh
techniques in terms of CPU time and efficiency. Finally, we extended the so-called fixed-
point adaptation algorithm to moving mesh simulations. This paper is built as follows:
in Section 2, the modeled problem is described and in Section 3, the spatial numerical
method is detailed; Section 4, ALE specific issues regarding numerical time integration
are discussed, and a new variable-topology ALE formulation is presented. Section 5, the
enhanced moving mesh techniques are explained. Finally, in Section 6, the extension
of the so-called fixed-point mesh adaptation algorithm to moving mesh simulations is
described. Numerical results are shown in Sections 4 and 6.

2 MODELLING OF THE PROBLEM

2.1 The Euler equations in the Arbitrary-Lagrangian-Eulerian formulation

The basic idea of the Arbitrary-Lagrangian-Eulerian method is that there is a priori
no reason for which the movement of the vertices should remain either fix (Eulerian de-
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scription) or should follow exactly the fluid particles (Lagrangian formulation). On the
contrary, the vertices movement and the particles movement can be totally decorrelated.
To do this, an intermediate reference configuration Ωξ = Ωξ(t) is introduced. The impor-
tant thing is that the new reference configuration can evolve with time, but not necessarily
by following the particles like in the purely Eulerian case. If φt : Ωξ(t) → Ωx(t) is the
mapping between the ALE reference configuration and the current domain at t, the ve-

locity of the mesh is given by w(ξ, t) =
∂φt
∂t
|ξ(ξ, t), which represents the instantaneous

velocity of the points of the domain. Assuming that the gas is perfect, inviscid and that
there is no thermal diffusion, the compressible Euler equations for a Newtonian fluid in
the ALE framework read, for any arbitrary closed volume C(t) of boundary ∂C(t)1:

∂

∂t
|ξ
(∫

C(t)

W dx

)
+

∫
∂C

(F(W)−W ⊗ w) ·n ds =

∫
C(t)

Fext dx

⇐⇒ ∂

∂t
|ξ
(∫

C(t)

W dx

)
+

∫
∂C

(F(W) ·n−W (w · n)) ds =

∫
C(t)

Fext dx (1)

where


W = (ρ, ρu, ρe)T is the conservative variables vector

F(W) = (ρu, ρuxu + pex, ρuyu + pey, ρuh) is the flux tensor

F (W) = F(W) ·n = (ρη, ρuxη + pnx, ρuyη + pny, ρeη + pη)T

Fext = (0, ρ fext, ρu · fext)
T is the external forces vector

and we have noted ρ the density of the fluid, p the pressure, u = (ux, uy, uz) its Eulerian
velocity, n = (nx, ny, nz) the outward normal to interface ∂C(t) of C(t), η = u · n ,
q = ‖u‖, ε the internal energy per unit mass, e = 1/2q2 + ε the total energy per unit
mass, h = e + p/ρ the enthalpy per unit mass of the flow and fext the resultant of the
volume external forces applied locally on the fluid particle.

2.2 Movement of the geometries

In this work, the ALE formulation is used to perform computations involving bodies
interacting with a surrounding fluid. Bodies are assumed to be rigid, of constant mass
and homogenous, i.e. their mass is uniformly distributed in their volume. Our bodies
will never break into different parts.

In two dimensions, each rigid body B is fully described by:

• ∂B = s(v) the parametrized surface defining its boundary

• n = n(s(v)) the inward normal to the object boundary ∂B

• xG = xG(t) = (x(t), y(t)) the position of its gravity center

1superscript T is used for the transposition operation on a vector, and −T holds for
(

( · )−1
)T
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• θ = θ(t)ez its angular displacement vector: its norm θ represents the angular dis-
placement in the two dimensional plane (ex, ey)

• ω =
dθ

dt
ez its angular speed vector

• m its mass assumed to be constant

• J(Gz) its moment of inertia along axe ez computed at G.

In two dimensions, the Euler equations for solid dynamics simplify to:

m
d2x

dt2
= Fext · ex =

(∫
∂B

p(s)n(s) ds

)
· ex +mg · ex

m
d2y

dt2
= Fext · ey =

(∫
∂B

p(s)n(s) ds

)
· ey +mg · ey

J(Gz)
d2θ

dt2
= MG (Fext) · ez =

(∫
∂B

(s− xG) ∧ p(s)n(s) ds

)
· ez

(2)

and the kinetic moment of the gravity forces is zero when computed at point G. If one
point A of the object must remain fixed, the moment equation must be rewritten at
fixed-point A and, as dxA

dt
= 0 and dyA

dt
= 0, the system is reduced to only one scalar

equation:

J(Az)
d2θ

dt2
= MA (Fext) ·ez =

(∫
∂B

(s− xA) ∧ p(s)n(s) ds
)
·ez+m

(∫
∂B

(s− xA) ∧ g ds
)
·ez

with MA the kinetic moment of the external forces applied on ∂B computed at point A
and J(Az) the moment of inertia of the object related to axe (Az). According to Huygens
theorem, we have:

J(Az) = J(Gz) +m ‖GA‖2

3 SPATIAL DISCRETIZATION FOR THE FIXED-TOPOLOGY CASE

Semi-discretization. Domain Ω is discretized by a tetrahedral unstructured mesh H.
The vertex-centered Finite Volume formulation consists in associating with each vertex
Pi of the mesh and at each time t a control volume or Finite Volume cell, denoted Ci(t).
The dual Finite Volume cell mesh is built by the rule of medians. The common boundary
∂Cij(t) = ∂Ci(t) ∩ ∂Cj(t) between two neighboring cells Ci(t) and Cj(t) is decomposed
into several triangular interface facets (bi-segments in two dimensions). The normal flux
Fij(t) along each cell interface is taken constant (not in time but in space), just like the
solution Wij on the interface.
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Rewriting System (1) for C(t) = Ci(t), we get the following semi-discretization at Pi:

∂

∂t
|ξ
(∫

Ci(t)

Wi(t) dx

)
+
∑
Pj ∈Vi

∫
∂Cij(t)

(
F(Wij(t)) · nij(t) − Wij(t) [wij(t) · nij(t)]

)
ds = 0

⇐⇒ ∂ (|Ci(t) |Wi(t))

∂t
|ξ +

∑
Pj ∈Vi

| ∂Cij(t) | (Fij(t) − Wij(t)σij(t)) = 0

⇐⇒ ∂ (|Ci(t) |Wi(t))

∂t
|ξ +

∑
Pj ∈Vi

| ∂Cij(t) |Φij (Wi(t), Wj(t), nij(t), σij(t)) = 0

(3)

• Wi(t) is the mean value of state W in cell Ci at t

• Vi is the set of all neighboring vertices of Pi

• nij is the outward normalized normal (with respect to cell Ci) of cell interface ∂Cij

• Fij(t) = F(Wij(t)) ·nij(t) is an approximation of the physical flux through ∂Cij(t)
2

• σij(t) =
1

| ∂Cij(t) |

∫
∂Cij(t)

wij(t) · nij(t) ds is the normal velocity of ∂Cij(t)

• Φij (Wi(t),Wj(t),nij(t), σij(t)) ≈ Fij(t) − Wij(t)σij(t) is the numerical flux func-
tion used to approximate the flux at cell interface ∂Cij(t).

The computation of the convective fluxes is performed mono-dimensionnaly in the di-
rection normal to the each Finite Volume cell interface. Consequently, the numerical
calculation of the flux function Φij at interface ∂Cij can be achieved by the resolution at
each time step of a one-dimensional Riemann problem in direction nij = n with initial val-
ues WL = Wi on the left of the interface and WR = Wj on the right. The normal speed
of the interface is temporarily noted σ for clarity reasons. To this aim, an approximate
HLLC Riemann solver is used.

HLLC numerical flux. The methodology provided in [4] can be extended to the Euler
equations in their ALE formulation. The HLLC flux is then described by three waves
phase velocities:

SL = min (ηL − cL, η̃ − c̃) and SR = max (ηR + cR, η̃ + c̃)

SM =
ρRηR(SR − ηR)− ρLηL(SL − ηL) + pL − pR

ρR(SR − ηR)− ρL(SL − ηL)

2Our convention is that the flux is positive if it goes in the same direction as the normal. Thus,
Fij > 0 means that the flux goes from cell Ci to Cj . If σij > 0, geometrical flux −Wij(t)σij is negative
and therefore oriented from Cj to Ci, which means that cell Ci steals mass from Cj .
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and two approximate states:

W∗
L =



ρ∗L = ρL
SL − ηL
SL − SM

p∗L = p∗ = ρL (ηL − SL) (ηL − SM ) + pL

(ρu)∗L =
(SL − ηL) ρuL + (p∗ − pL) n

SL − SM

(ρ e)∗L =
(SL − ηL) ρ eL − pLηL + p∗SM

SL − SM

W∗
R =



ρ∗R = ρR
SR − ηR
SR − SM

p∗R = p∗ = ρR (ηR − SR) (ηR − SM ) + pR

(ρu)∗R =
(SR − ηR) ρuR + (p∗ − pR) n

SR − SM

(ρ e)∗R =
(SR − ηR) ρ eR − pRηR + p∗SM

SR − SM

The HLLC flux through the interface is finally given by:

ΦHllc(WL,WR, σ) =


FL − σWL if SL − σ > 0
F∗L − σW∗

L if SL − σ ≤ 0 < SM − σ
F∗R − σW∗

R if SM − σ ≤ 0 ≤ SR − σ
FR − σWR if SR − σ < 0

The HLLC approximate Riemann solver has the following properties. It automatically: (i)
satisfies the entropy inequality, (ii) resolves isolated contacts exactly, (iii) resolves isolated
shocks exactly and (iv) preserves positivity.

High-order scheme. The previous formulation reaches at best a first-order accuracy. The
MUSCL type reconstruction method has been designed to increase the order of accuracy of the
scheme. The idea is to use extrapolated values Wij and Wji of W at interface ∂Cij to evaluate
the flux. The following approximation is performed:

Φij = Φ(Wij ,Wji,nij)

with Wij and Wji linearly interpolated state values on each side of the interface:
Wij = Wi +

1
2

(∇W)ij ·
−−→
PiPj ,

Wji = Wj +
1
2

(∇W)ji ·
−−→
PiPj ,

(4)

In contrast to the original MUSCL approach, the approximate ”slopes” (∇W)ij and (∇W)ji
are defined for each edge using a combination of centered, upwind and nodal gradients.
The centered gradient, which is related to edge

−−→
PiPj , is defined as:

(∇W)Cij ·
−−→
PiPj = Wj −Wi .

Upwind and downwind gradients, which are also related to edge
−−→
PiPj , are computed using

the upstream and downstream tetrahedra associated with edge
−−→
PiPj . These tetrahedra are
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respectively denoted Kij and Kji. Kij is the unique tetrahedron of the ball of Pi (resp. Pj)
the opposite face of which is crossed by the straight line prolongating edge

−−→
PiPj , see Figure 1.

Upwind and downwind gradients of edge
−−→
PiPj are then defined as:

(∇W)Uij = (∇W)|Kij and (∇W)Dij = (∇W)|Kji .

where ∇W|K =
∑
P ∈K

(∇φP ⊗ WP ) is the P1-Galerkin gradient on element K. Parametrized

nodal gradients are built by introducing the β-scheme:

∇Wij = (1− β) (∇W)Cij + β (∇W)Uij
∇Wji = (1− β) (∇W)Cij + β (∇W)Dij ,

where β ∈ [0, 1] is a parameter controlling the amount of upwinding. For instance, the scheme
is centered for β = 0 and fully upwind for β = 1.

MjMi

Pi Pj

Kij

Kji

Figure 1: Downstream Kij and upstream Kji tetrahedra associated with edge
−−→
PiPj.

Numerical dissipation of fourth-order: V4-scheme. The most accurate β-scheme is
obtained for β = 1/3. Indeed, it can be demonstrated that this scheme is third-order for the two-
dimensional linear advection problem on structured triangular meshes [6]. In our case, for the
non-linear Euler equations on unstructured meshes, a second-order scheme with a fourth-order
numerical dissipation is obtained. These high-order gradients are given by:

(∇W)V 4
ij =

2
3

(∇W)Cij +
1
3

(∇W)Uij , (∇W)V 4
ji =

2
3

(∇W)Cij +
1
3

(∇W)Dij .

Numerical dissipation of sixth-order: V6-scheme. An even less dissipative scheme
has been proposed in [6]. It is a more complex linear combination of gradients using centered,
upwind and nodal P1-Galerkin gradients. The nodal P1-Galerkin gradient of Pi is related to cell
Ci and is computed by averaging the gradients of all the tetrahedra having Pi as a vertex:

(∇W)Ni = ∇W|Pi
=

1
4 |Ci |

∑
K ∈Ci

(
|K | ∇W|K

)
.

The upwind (resp. downwind) nodal gradients (∇W)UNi = ∇W|Mi
(resp. (∇W)DNj = ∇W|Mj

)
are computed by linear interpolation from the nodal gradients attached to the three vertices of
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the face containing Mi (resp. Mj), where Mi and Mj have been defined above in Figure 1.
A sixth-order dissipation scheme is obtained by considering the following high-order gradient:

(∇W)V 6
ij = (∇W)V 4

ij −
1
30

(
(∇W)Uij − 2 (∇W)Cij + (∇W)Dij

)
− 2

15

(
(∇W)UNi − 2 (∇W)Ni + (∇W)Nj

)
(∇W)V 6

ji = (∇W)V 4
ij −

1
30

(
(∇W)Dij − 2 (∇W)Cij + (∇W)Uij

)
− 2

15

(
(∇W)DNj − 2 (∇W)Nj + (∇W)Ni

)

Limiter. The previous MUSCL schemes are not monotone. Therefore, limiting functions must
be coupled with the previous high-order gradient evaluations to guarantee the Total-Variation-
Diminishing (TVD) property of the scheme. To this aim, the gradient of Relation (4) is replaced
by a limited gradient denoted

(
∇Wlim

)
ij

. Here, we will always consider a three entries limiter
introduced by Dervieux [5] which is a generalization of the SuperBee limiter proposed by Roe :(

∇Wlim
)
ij

= Lim
((
∇WD

)
ij
,
(
∇WC

)
ij
,
(
∇WV 4/V 6

)
ij

)
with : Lim (a, b, c) = 0 if ab ≤ 0

= sign (a) min (2 | a |, 2 | b |, 2 | c |) otherwise

Mirror state boundary conditions. Mirror state boundary conditions consist in impos-
ing slipping boundary conditions in a weak manner by prescribing a flux rather than directly
enforcing a specific value for the variables on the boundary. As we are interested in the Euler
equations, the fluid is inviscid and the physically consistent boundary condition on the moving
bodies is a slipping boundary condition, i.e. (u · n)|∂B

= σ|∂B
. Mirror state W associated with

boundary state W is an imaginary state, virtually defined on the other side of the boundary.
It is built such that the extrapolated value of W|∂B

= (W + W)/2 on the boundary satisfies
(u · n)|∂B

= σ|∂B
. We consider a Finite Volume cell Ci in contact with the boundary of object

B , and we note nki the outward non-normalized normal to the kth boundary facet and σki its
normal speed, see Figure 2. The ALE mirror state of state Wk

i on the other side of boundary
interface k of cell Ci is:

Wk
i =

(
ρi = ρi, ui = ui − 2

(
ui · nki − σki

)
nki , εi = εi

)T
The numerical HLLC boundary flux between the boundary state and its mirror state across

boundary interface k of cell Ci can then be calculated and we obtain:

ΦHllc
(
Wi, σ

k
i ,n

k
i

)
= ‖nki ‖

 0
p∗in

k
i

p∗iσ
k
i

 , where p∗i = ρi
(
ηi − σki

)
max

(
ci, c̃i + ηi − σki

)
+ pi

with c̃i = (γ − 1)

hi − σki ηi −
(
ηtan,ki

)2

2
+

(
σki
)2

2


and ηtan,ki = ‖u−

(
ui · nki

)
nki ‖ the norm of the component of u tangent to the boundary.
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BJ

∂BJ

Wi

Wi
n1

i

σ1n1
i

ui

ui + ui

2

ui

n1
i

Figure 2: Mirror state across boundary interface k of cell Ci.

4 ALE SPECIFIC ISSUES REGARDING TIME DISCRETIZATION

4.1 The GCL law

We need to check that the movement of the mesh is not responsible for any artificial alteration
of the physical phenomena at stake. Or at least, to make our best from a numerical point of
view for the mesh movement to introduce an error of the same order as the one introduced by
the numerical scheme. If System (1) is written for a constant state, assuming Fext = 0, we get,
for any arbitrary closed volume C = C(t) with boundary ∂C(t):

∂ (|C(t) |)
∂t

|ξ −
∫
∂C(t)

(w · n) ds = 0 .

As the constant state is a solution of the Euler equations if boundaries transmit the flux towards
the outside as it comes, we find a purely geometrical relation inherent to the continuous problem.
For any arbitrary closed volume C = C(t) of boundary ∂C(t), this relation is integrated into:

|C(t+ ∆t) | − |C(t) | =
∫ t+∆t

t

∫
∂C(t)

(w · n) dsdt, with t and t+ ∆t ∈ [0, T ] . (5)

From a geometrical viewpoint, this relation states that the algebraic variation of the volume of
C between two instants equals the algebraic area swept by its boundary.

4.2 Accuracy preserving and DGCL temporal schemes

A DGCL property for each temporal scheme. The continuous GCL relation raises
several important questions: should Relation (5) be satisfied at the discrete level? What are
the effects of respecting this law at a discrete level on the consistency, stability and accuracy of
the numerical scheme? How to enforce it at a discrete level? In the following, we will restrict
ourselves to Finite Volume schemes.
Thomas and Lombard [24] were probably among the first to emphasize the importance of this
law. Since then, the subject has often proved controversial. However, there are currently two
things almost everybody agrees about:
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1. The GCL serves as an additional constraint controlling the way the computation of the
geometrical parameters is performed. Indeed, we a priori ignore how to compute geomet-
rical parameters σ and n appearing in Relation (3). For instance, should one take n at
tn? at tn+1? Or take a kind of averaged normal? The GCL can help answer this question.

2. Enforcing the GCL at the discrete level is mandatory. An exception can be made if
sufficiently small time steps are used but, in practice, it is very time consuming and it is
hard to know what ”sufficiently small” means.

In the sequel, we detail the approach developped by Yang and Mavriplis to extend well-known
temporal schemes to ALE simulations while enforcing the GCL. We show how this methodology
works on a Strong-Stability-Preserving Runge-Kutta (SSPRK ) scheme.

The approach of Yang and Mavriplis. Since 2005, Mavriplis and Yang ([26, 18, 27])
have renewed the way of thinking the GCL. The objective was initially to further clarify the link
between the DGCL nature of a temporal scheme and the preservation of its order of accuracy.
The originality of this approach consists in defining precisely which ALE parameters are true
degrees of freedom and which are not. In contrast with other approaches ([14, 11, 20]), they
consider that the times and configurations at which the fluxes are evaluated do not constitute
a new degree of freedom to be set thanks to the ALE scheme. To maintain the design accuracy
of the fixed-mesh temporal integration, the moment at which the geometrical parameters, such
as the cells interfaces normals or the upwind/downwind triangles must be computed, is entirely
determined by the intermediate configurations involved in the chosen temporal scheme. The
only degree of freedom to be set by enforcing the GCL at the discrete level is σ. Incidentally,
it is implicitly stated that w is never involved alone but only hidden in the term σ‖n‖ which
represents the instantaneous algebraic area swept.
Practically speaking, the interfaces normal speeds are found by simply rewriting the scheme for
a constant discrete solution, which leads to a small linear system which can be inverted by hand.
This procedure is detailed in the next section for one SSPRK scheme. Any fixed-mesh scheme
can be extended to the case of moving meshes thanks to this methodology, and the resulting
scheme is naturally DGCL. Even if this has not been proven theoretically, the expected order of
convergence has also been observed numerically for several schemes designed with this method.

SSPRK schemes. Runge-Kutta methods are famous multi-stages methods to integrate
ODE s. In the numerical resolution of hyperbolic PDE s, notably the Euler equations which are
widely used in aeronautics, it is desirable to exhibit among the huge family of Runge-Kutta
schemes the ones satisfying the so-called Strong Stability Preserving (SSP) property.
A Runge-Kutta scheme is said to be SSP if we have |Wn+1 | ≤ |Wn |, | · | being here a chosen
semi-norm. The semi-norm is classically the TVD norm defined by:

|Wn+1 −Wn |TV D =
N∑
i=1

|Wn+1
i −Wn

i | .

See [22, 9, 23, 12, 7] for more details on the subject.
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In the sequel, we note SSPRK(s,p) the s-stages SSPRK scheme of order p. We adopt the
following notations:

f si =
ni−1∑
k=0

Φ(Ws
i ,n

k,s
i , σk,si ) with



ni the number of facets of cell Ci

nk,si the outward non-normalized normal to facet k of cell Csi

σk,si normal speed of facet k of cell Csi .

Superscript notation Xs indicates that the considered quantity is the X obtained at stage s of
the Runge-Kutta process. For instance, Csi is the cell associated with vertex Pi when the mesh
has been moved to its sth Runge-Kutta configuration. Coefficients (cl)0≤l≤s indicate the relative
position in time of the current Runge-Kutta configuration: ts = tn + cs dt with dt = tn+1− tn.
Finally, we note Ak,si the area swept by facet k of cell Ci between the initial Runge-Kutta
configuration and the sth one.

Application of Mavriplis and Yang approach to SSPRK(4,3) scheme.

Butcher representation Shu-Osher representation ts = tn + cs dt

Yi
0 = Yi

n Yi
0 = Yi

n c0 = 0, t0 = tn

Yi
1 = Yi

0 +
dt
2

f0
i Yi

1 = Yi
0 +

dt
2

f0
i c1 =

1
2
, t1 = tn +

1
2

dt

Yi
2 = Yi

0 +
dt
2
(
f0
i + f1

i

)
Yi

2 = Yi
1 +

dt
2

f1
i c2 = 1, t2 = tn+1

Yi
3 = Yi

0 +
dt
6
(
f0
i + f1

i + f2
i

)
Yi

3 =
2
3
Yi

0 +
1
3
Yi

2 +
dt
6

f2
i c3 =

1
2
, t3 = tn +

1
2

dt

Yi
4 = Yi

0 +
dt
2

(
1
3
f0
i +

1
3
f1
i +

1
3
f2
i + f3

i

)
Yi

4 = Yi
3 +

dt
2

f3
i c4 = 1, t4 = tn+1

In the left part of the array, the SSPRK(4,3) scheme is given in its Butcher formulation, whereas
it is given in its Shu-Osher representation [22] on the right. For this scheme to be DGCL, it
must preserve a constant solution Wi = W0. In this specific case, our conservative variable

is Yi = |Ci |W0 and the purely physical fluxes vanish, leading to f si = −W0

ni−1∑
k=0

‖nk,si ‖σ
k,s
i .
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Therefore, the scheme writes:

|C0
i | = |Cni |

|C1
i |− |C0

i | =
ni−1∑
k=0

Ak,1i =
dt
2

ni−1∑
k=0

‖nk,0i ‖σ
k,0
i

|C2
i |− |C0

i | =
ni−1∑
k=0

Ak,2i =
dt
2

ni−1∑
k=0

(
‖nk,0i ‖σ

k,0
i + ‖nk,1i ‖σ

k,1
i

)
|C3

i |− |C0
i | =

ni−1∑
k=0

Ak,3i =
dt
6

ni−1∑
k=0

(
‖nk,0i ‖σ

k,0
i + ‖nk,1i ‖σ

k,1
i + ‖nk,2i ‖σ

k,2
i

)
|C4

i |− |C0
i | =

ni−1∑
k=0

Ak,4i =
dt
2

ni−1∑
k=0

(
1
3
‖nk,0i ‖σ

k,0
i +

1
3
‖nk,1i ‖σ

k,1
i +

1
3
‖nk,2i ‖σ

k,2
i + ‖nk,3i ‖σ

k,3
i

)
A necessary and natural condition for the above relations to be satisfied is to have, for each
interface k of each Finite Volume cell Ci:

Ak,1i
Ak,2i
Ak,3i
Ak,4i

 = dt


1
2 0 0 0
1
2

1
2 0 0

1
6

1
6

1
6 0

1
6

1
6

1
6

1
2



‖nk,0i ‖σ

k,0
i

‖nk,1i ‖σ
k,1
i

‖nk,2i ‖σ
k,2
i

‖nk,3i ‖σ
k,3
i

 ⇔


‖nk,0i ‖σ

k,0
i

‖nk,1i ‖σ
k,1
i

‖nk,2i ‖σ
k,2
i

‖nk,3i ‖σ
k,3
i

 =
1
dt


2 0 0 0
−2 2 0 0
0 −2 6 0
0 0 −2 2




Ak,1i
Ak,2i
Ak,3i
Ak,4i


Therefore, the normal speed of interface k of cell Ci must be updated as follows in the Runge-
Kutta process:

σk,0i =
2

dt‖nk,0i ‖
Ak,1i , σk,1i =

1

dt‖nk,1i ‖

(
−2Ak,1i + 2Ak,2i

)
σk,2i =

1

dt‖nk,2i ‖

(
−2Ak,2i + 6Ak,3i

)
, σk,3i =

1

dt‖nk,3i ‖

(
−2Ak,3i + 2Ak,4i

)
and the ‖nk,si ‖ are computed on the mesh once it has been moved to the sth Runge-Kutta
configuration. The Ak,si are computed as described in [21].

4.3 A new changing-topology ALE formulation

Context and problematics. As already mentionned, we are interested in large deformation
simulations, likely to involve shear movements. Usually, when the connectivity of the mesh must
be changed between two time steps, local or global interpolation procedures are used to get the
solution on the new mesh. It is standard practice to use a simple P1-Lagrangian projection,
even if an increasing number of research teams try to investigate and improve the accuracy
and conservativity properties of this interpolation step, [25, 17]. However, the effects of these
repeated interpolations are still not well understood, especially when they are performed locally
on the fly after each topology change.

Our opinion is that having a true changing topology ALE scheme would get us rid of this
spoiling projection step and will better fit into the global ALE framework. To our knowledge,
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only a few attempts to do this can be found in the literature, see for example [19, 13]. Indeed, it
is a very difficult subject, as designing a fully ALE procedure with topologically-variable mesh
implies that:

• the mesh data structures will be much more complex and dynamic. The number of edges
and elements is the same in two dimensions but varies in three dimensions if connectivity
changes occur. If edges collapsings and creations are authorized, the number of vertices
also evolves in time and so do the number of cells, like the number of their interfaces.

• we are able to generate four dimensional space-time meshes in three dimensions, linking
Finite Volume cells at tn with cells at tn+1 (see Figure 3); incidentally, note that this kind
of meshes is hard to handle because each element has a different number of faces and
vertices

• the space-time meshes must be generated at each solver time step

• these space-time meshes must be hybrid, involving cell-based prismatic elements in regions
were the connectivity of the mesh does not change (to be coherent with the classical ALE
framework) and tetrahedra when connectivity changes occur, see Figure 3

• a new fully ALE scheme based on the cells movement rather than on the vertices and ele-
ments movement and involving space-time Finite Volume cells and space-time interfaces.

Such an approach cannot be considered at the moment as it would imply the rewriting of
most of the Finite Volume ALE code and would necessitate the inclusion of a 4D mesher inside
the solver. As a first step, we therefore chose to simplify the problem following the line below:

• we focused on changing-topology meshes only involving swaps, i.e. neither addition nor
suppression of vertices. This choice is due to the powerfulness of this tool and the fact
that it sometimes appears as the only solution to handle shears and large deformation
movements

• once a swap has been performed, all the edges touching the swapped edge are set as
blocked until the next optimization step. Note that this is not as restrictive as it can
seem at first glance. Indeed, imagine an edge has been blocked due to a previous swap
in its neighborhood while would have wished to swap it. It is generally not a problem as
this swap might be done at the next step on a configuration which is generally not too
different from the current one.

• the space-time mesh is generated implicitly, i.e. we never actually store its entities but
they virtually exist through the way our new scheme works.

Our scheme. The swap operation is considered as a time continuous process during which
some Finite Volume cells corners are duplicated and other collapsed. The idea is to consider a
three-dimensional mesh linking the cells affected by the swap at tn and those at tn+1, the time
being the third dimension. In the classical ALE framework, all the space-time interfaces are
quadrangular and generally twisted, see Figure 3 (left). If a swap occurs, the space-time mesh

12
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in the swap region exhibits a pseudo-tetrahedral element in two-dimensions, the faces of which
are bi-planar and made of two triangles, see Figure 3 (right). Note that space-time interfaces
are straight, i.e. the bi-segment normals keep the same direction while moving along these
space-time triangles between two time steps.

t = tn

t = tn+1

Fixed topology Changing topology

Quadrangular and triangular
space-time cells interfaces

Only quadrangular space-time
cells interfaces

Figure 3: Space-time vision of the edge swapping operation and its effect on space-time Finite Volume
cells interfaces (in blue). The pseudo-tetrahedral space-time element is shown on the right, in blue lines.

By cutting the space-time mesh at an intermediate time between tn and tn+1, we see that
an evanescent cell is created just after tn and vanishes at tn+1. Consequently, some fluxes are
exchanged between this evanescent cell and its surrounding real cells between the two configura-
tions. The cells present at tn+ 1

2 are depicted in Figure 4. In Figure 5 (left), we have represented
the directions of the purely geometrical fluxes entering and going out of this evanescent cell on a
specific configuration. Two interfaces are now associated with the old green edge

−−−→
P0P1 and the

new red edge
−−−→
P2P3 instead of just one, each of these interfaces having its own ALE parameters.

In the sequel, we note a+ = max (0, a) (resp. a− = min (0, a)) the positive (resp. negative) part
of a real value a and we have trivially :

a =
a+ + a−

2
, | a | = a+ − a−

2
, a+a− = 0 .

We also define new parameters associated with each of the four interfaces of the evanescent cell,
each interface i ∈ J0, 3K being made of two bi-segments k = 1 and k = 2, see Figure 5 (right).
In fact, two of these interfaces are associated with the old swapped edge and the two others are
associated with the new edge.
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• σki , i ∈ J0, 3K, k ∈ {1, 2} is the normal speed of bi-segment k of interface i

• nki is the non-normalized normal to bi-segment k associated with interface i

• ni = n1
i + n2

i is the global non-normalized normal to interface i

• σi =
σ1
i ‖n1

i ‖+ σ2
i ‖n2

i ‖
‖ni‖

the normal speed of interface i

Regarding the four bordering edges, we only consider the bi-segment, noted ks, which is located
inside the swap area. The normal speed of bi-segment ks of bordering edge

−−→
PiPj is noted σk

s

ij .
For the moment, this normal speed does not take into account the redistribution of the mass
due to the apparition and disappearance of the evanescent cell.

1

0

3
2G3

G1

G0

G2

evanescent cell

nks

02

nks

30

nks

13

nks

12

σks

12σks

13

σks

30 σks

02

0

1

23

Figure 4: Left, evolution of the Finite Volume cells due to the swap operation: the two green bi-segments
associated with the swapped green edge vanish while two red bisegments associated with the new red edge
are created. The intermediate configuration at tn+ 1

2 is in violet. Blue arrows represent the ”standard”
ALE geometrical fluxes exchanges between the real cells. Right, a trickier swap configuration.

First, due to the specific geometric configuration of the evanescent cell, see Figure 3, the
reversed Thales theorem applies and we have the following relations:

n1
1 = −n1

0, n2
1 = −n2

0, ‖n0‖ = ‖n1‖, n1
3 = −n1

2, n2
3 = −n2

2, ‖n2‖ = ‖n3‖
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σ2
σ3

σ0

σ1

G2

n1
1

n1
2

n0
1 n0

2

n2
1

n2
2

n3
1

n3
2

G0

G1

G3 ga
gb

gc

gd

Figure 5: Left, zoom on the evanescent cell appearing during the edge-flipping operation. The geometrical
flux exchanges between the evanescent cell and its neighbors are represented with blue arrows. Right,
notations for the ALE swap scheme.

Second, the normal speeds of the bi-segments are not computed directly but rather through
Aki = σki ‖nki ‖, the area swept by the bi-segment during the swap process. These eight algebraic
swept areas are computed as follows 3:

A1
0 =

1
2
(
wga→G0 · n1

0

)
, A2

0 =
1
2
(
wgb→G0 · n2

0

)
, A1

1 =
1
2
(
wga→G1 · n1

1

)
, A2

1 =
1
2
(
wgb→G1 · n2

1

)
,

A1
2 =

1
2
(
wG2→gc · n1

2

)
, A2

2 =
1
2
(
wG2→gd

· n2
2

)
, A1

3 =
1
2
(
wG3→gc · n1

3

)
, A2

3 =
1
2
(
wG3→gd

· n2
3

)
.

(6)

where we have noted wMn→Nn+1 =
xnN − xn+1

M

dt
and we get:

σ0 = 2
A1

0 +A2
0

‖n0‖
, σ2 = 2

A1
2 +A2

2

‖n2‖
, σ1 = 2

A1
1 +A2

1

‖n1‖
, σ3 = 2

A1
3 +A2

3

‖n3‖
. (7)

Note that the evanescent nature of the middle cell is contained in the formula:∑
i,k

Aki = 0 ⇐⇒ (σ0 + σ1) ‖n0‖+ (σ2 + σ3) ‖n2‖ = 0 .

3The factors 2 appearing in Relations (6) and (7) is due to the definition of the nk
i . Indeed, the

nk
i are the bi-segments normals taken on the configuration at tn to match with Mavriplis and Yang

approach, whereas the swept area must be computed using the normals on the configuration at tn+ 1
2 ,

which, according to Thales theorem, equal nk
i

2 .
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To finish with, we define area A by:

A = A1
0 +A2

0 +A1
1 +A2

1 = −
(
A1

2 +A2
2 +A1

3 +A2
3

)
=
(
σ+

0 + σ+
1

)
‖n0‖+

(
σ+

2 + σ+
3

)
‖n2‖ = −

(
σ−0 + σ−1

)
‖n0‖ −

(
σ−2 + σ−3

)
‖n2‖ .

We now explain how the normal speeds of the six edges involved in the swap operations (the
four bordering edges, the old swapped edge and the new one) are corrected. The geometrical
parameters of the four surrounding edges of the swap region are corrected while the new and
swapped edges are given specific parameters to take the mass redistribution between the vertices
into account. We note σk

s,∗
ij the corrected normal speed of bi-segment ks of bordering edge

−−→
PiPj , bi-segment ks still being the one located inside the swap region. Our scheme writes as
follows:

σk
s,∗

02 = σk
s

02 + (σ+
2 σ
−
0 − σ

−
2 σ

+
0 )
‖n0‖‖n2‖
‖n02‖A

n∗02 = nn02

σk
s,∗

03 = σk
s

03 + (σ+
3 σ
−
0 − σ

−
3 σ

+
0 )
‖n0‖‖n3‖
‖n03‖A

n∗03 = nn03

σk
s,∗

12 = σk
s

12 + (σ+
2 σ
−
1 − σ

−
2 σ

+
1 )
‖n1‖‖n2‖
‖n12‖A

n∗12 = nn12

σk
s,∗

13 = σk
s

13 + (σ+
3 σ
−
1 − σ

−
3 σ

+
1 )
‖n1‖‖n3‖
‖n13‖A

n∗13 = nn13

σ∗01 =
(
σ−0 σ

+
1 − σ

+
0 σ
−
1

) ‖n0‖
A

n∗01 = nn01

σ∗23 =
(
σ−2 σ

+
3 − σ

+
2 σ
−
3

) ‖n2‖
A

n∗23 = nn+1
23

(8)

By way of example, in Figure 4, σ0 > 0, σ1 > 0, σ2 < 0 and σ3 < 0, thus σ∗01 = 0 and σ∗23 = 0.
This means that all the mass sucked from cell C0 is fully redistributed to C2 and C3 and nothing
is given to C1. The same happens for C1 which receives nothing from C0. However, this case
is a very favorable one used for pedagogic purposes. For instance, for the configuration shown
in Figure 4 (right), σ2 and σ3 are of opposite signs and thus σ∗23 is non zero. In this particular
case, mass is crossing the interface from C2 to C3.

Practically speaking, the old and the new edges coexist in the mesh between tn and tn+1.
The old edge is removed only once the flux across it between tn and tn+1 has been computed.
These edges are treated exactly like the others, i.e. a complete (geometrical and physical) ALE
flux is computed across these edges. The extremities of the edges involved in the swap operation
can also move, and it will automatically be taken into account by Scheme (8). Eventually, this
scheme is of course DGCL.
Space-accuracy order can be enhanced using the MUSCL technique coupled with a limiter,
therefore guaranteeing that this truly ALE scheme is intrinsically TVD, contrary to the classi-
cal projection approach which requires a repairing step. However, if low dissipation is desired,
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one must determine how to compute upwind/downwind gradients which are necessary for the
V4/V6 schemes. It is clear that the upwind/downwind triangles must be triangles belonging to
the configuration at tn, at least if we keep on following Mavriplis and Yang method. For the
old edge, we naturally take its upwind/downwind triangles at tn and for the new one, we do
as if it belonged to the configuration at tn and compute its upwind/downwind triangles on this
configuration. Once the upwind/downwind triangles are found, the V4/V6 schemes is naturally
extended for our topology-changing ALE formulation. Therefore, this scheme is of order two in
space, with a low numerical dissipation.

Perspectives. Finally, as being DGCL is a sufficient condition for a scheme to be at least
first-order time-accurate on moving meshes according to [10], our scheme is at least of order
one in time. However, there is a priori no reason for it to be of order higher than one. The
extension to multi-step integration schemes like the implicit Backward Differentiation Formula
schemes seems quiet easy, even if we have not tested it yet. As regards the extension of ALE
DGCL Runge-Kutta schemes of Section 4.2 to meshes with time-dependent connectivity, it is
currently underway. The generalization of this scheme to the three dimensional swap is a very
difficult problem we are currently working on.

4.4 Numerical results and perspectives

Test case description. To show the usefulness and efficiency of the swap operation, we
performed a simplified turbo-machinery simulation. A fluid is emitted radially from a central
hub of radius r0 = 0.3. The emitted fluid applies a pressure on the blades, which makes them
rotate quicker and quicker. By centrifugal effects, the fluid is propelled toward the exterior. The
initial conditions, written in cylindrical coordinates (er, eθ) are as follows:

ρ = ρ(r) =
r0

r
ρ(r0) =

r0

r
ρin, ρu = ρ(r)qunifer, ρe =

punif
γ − 1

+
1
2
ρ(r)q2

unif

with ρin = ρ(r0) = 1 the inflow density on the hub, punif = 1 the initial uniform pressure
and uunif the initial uniform radial velocity. This initial state ensures that we initially have a
constant, uniform radial flow. Indeed, if we take a ring delimited by radius r0 and r > r0, all the
mass entering the ring across the inner circle is expelled through the outer circle, which means
that the initial state satisfies the stationary conservation equation div (ρu) = 0.

2Π∫
θ=0

ρ(r)u(u) · er rdθ =

2Π∫
θ=0

ρ(r0)u(r0) · er r0dθ

An inflow boundary condition is imposed on the hub, a slipping boundary condition on the
blades and a transmitting boundary condition on the bounding box. The initial mesh is shown

on Figure 6. Several sub-domains are defined: sub-domain j1 is linked to the hub and is set to

be static, sub-domain j2 is linked to the blades and so turns while sub-domain j3 is simply
the rest of the computational domain and is also set to be static.
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Figure 6: The test case geometry and the associated mesh. The three sub-domains of the mesh are
represented in violet, yellow and pink, respectively.

Results analysis. This simulation constitutes an excellent example of the efficiency of the
swap when the mesh is sheared. Indeed, if we forbid the use of the swap operation, the mesh
deteriorates very quickly because while trying to follow the blades movement, the elements
progressively stretch until the minimal altitude of the mesh is so small that the simulation
cannot advance in time anymore. Indeed, the CFL condition makes the solver time step tend to
0. In our simulation, the initial mesh has an excellent quality and during the movement, only

the layers of elements separating moving sub-domain j1 from the two other fixed sub-domains
change in time. The vertices attached to the blades are the only ones to move in time, and, as
they do it in a completely rigid manner, the initial quality of the mesh is preserved, Figure 8.
Therefore, the quality of the initial mesh has been maintained throughout the computation
and the simulation can evolve as long as desired. Besides, we note that the changing-topology
ALE scheme works well and gives a result which at least seems in accordance with the physical
intuition, Figure 7. The conservativity has also been positively checked.

5 MOVING MESH STRATEGIES

Moving mesh issues are the most problematic in large displacements simulations, especially
with non-uniform or adapted meshes. Indeed, the moving mesh algorithm must fulfill the fol-
lowing requirements:

• it must be very efficient as it is called at each solver time step.

• it must preserve the validity of the mesh, i.e. it should not generate reversed elements.
Remeshing must indeed remain occasional because this operation, if constantly repeated,
becomes costly and spoils the solution accuracy due to the interpolation stage it requires

• it must preserve elements quality to maintain the solution accuracy and sufficiently big
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Figure 7: The density of the fluid obtained by resolution of the complete fluid-rigid-body interaction
problem, using our changing-topology ALE scheme. Solution at t = 0.05s, 6s, 12s and 14s.

time steps

• it must handle small mesh size regions, shear and large movements

• the movement must preserve the (anisotropic) adaptation, if any.

5.1 Prescription of the movement inside the physical domain

In moving domain simulations, the whole mesh must move in order to follow the geometry
movement while keeping a valid mesh, i.e. without reversed elements. The problem is the
following: knowing the displacement of the vertices located on the moving boundaries, which
displacement should be prescribed to the inner vertices to respect at the best the above criteria?

Elasticity analogy. We chose to prescribe the vertices movement by solving the linear
elasticity equation with a P1 Finite Element method (FEM ) as suggested in [3]:

div (S(E)) = 0 , with E =
∇d +t ∇d

2
, (9)

where S and E are respectively the constraint and the deformation tensors and d = (d1, d2, d3)T

is the Lagrangian displacement of the vertices. The constraint tensor follows the linear elasticity
behavior law, where ν is the Poisson ratio, E is Young’s modulus and λ1, λ2 are the Lamé
coefficients of the material:

S(E) = λ1 trace (E) Id + 2λ2 E , or E(S) =
1 + ν

E
S − ν

E
trace (S) Id
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Figure 8: The variable-topology mesh at t = 0.05s, 12s and 14s.

The higher the Young modulus, the stiffer the material. In our context, E is typically of the
order 105 and ν ≈ 0.49, which corresponds to a very soft, nearly incompressible material. The
Finite Element system is solved by a GMRES algorithm coupled with an ILU preconditioner.
Note that the solution computed at the previous elasticity resolution step is used as initial
guess for the new resolution in order to reduce the number of iterations needed to converge the
elasticity system.

Elasticity-dedicated mesh. The resolution is performed on an elasticity dedicated mesh,
which is taken to be uniform and much coarser than the one used to solve the Euler equa-
tions. The displacement of the inner vertices of the finer Euler mesh is then obtained by a
P2-Lagrangian interpolation. This simple trick has several assets, notably in the context of
anisotropic mesh adaptation:

• it would be very hard to solve the Finite Element elasticity system on an anisotropic
mesh adapted to the physics of the Eulerian flow, due to the creation of an artificial extra-
stiffness hindering the convergence of the linear system resolution; using an elasticity-
dedicated mesh naturally gets rid of this problem

• it avoids to restructure the Finite Element elasticity matrix each time a connectivity
change is performed in the mesh, which is very frequent in our case where anisotropic
adaptation tends to create stretched elements along shock waves

• it reduces the size of the elasticity linear system, thus favorably impacting CPU time and
storage

Note that the elasticity mesh must be moved along with the computational mesh, unless other-
wise specified. However, this is generally cheap in terms of CPU time as the elasticity mesh is
coarser and uniform, which makes it much easier to move.
Eventually, the elasticity system is not solved at each solver iteration but rather at some chosen
moments. The duration between two elasticity computations is called the elasticity time step.
The trajectory between two computations is then considered as linear. The simplest choice is
to solve the elasticity system only every m ≥ 1 iterations of the flow solver but this can be
problematic if a sharp change occurs in the trajectory of some inner vertex. Besides, in [26] this
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kind of artifice is inadvisable, as a loss of temporal accuracy can stem from the lack of regularity
of the vertices numerical trajectories. A clever way to proceed consists in adapting the elasticity
time step according to the smoothness of the vertices trajectories, the most winding trajectory
driving the adaptation.

Inhomogeneous mesh. Another advantage of elasticity-like methods is to offer the oppor-
tunity to adapt the local material properties of the mesh, especially its stiffness, according to
the distortion and efforts born by each element. In our case, only basic tools are used.
On the one hand, the pure rigidification of some regions turns out to be amazingly beneficial, as
it maintains the mesh in its initial (presumably good) state in chosen critical regions. It shows
particularly efficient near objects with complex geometry features or when the mesh is adapted
near a body (see Subsection 6.5, page 27). Some regions can even be maintained completely
motionless. It also important to note that it is not necessary to solve the elasticity equation in
fully rigidified or motionless areas: these regions do not even need to appear in the elasticity
mesh, which results in an additional gain in CPU time and memory requirements. This strat-
egy actually reduces the general problem of moving arbitrary geometries in a mesh to the much
simpler problem of moving simpler objects (spheres, boxes, convex objects) encompassing them.
However, this trick cannot be used if contacts between bodies are enabled.
On the other hand, when full rigidification is not possible, element stiffness is set inversely
proportional to the shortest distance to one of the moving bodies. This enables to partly redis-
tribute the deformation of the mesh away from the bodies, thus relieving the elements in the
surrounding of the objects which are generally the ones undergoing the main damages. With all
these techniques, an average gain of 20% of CPU time can be observed (even more in 3D) as
compared to the classical methodology.

Mesh movement. Once the vertices displacements are known, vertices must be moved to
their new location. One of the safest way to proceed is to use a naive dichotomous algorithm.
This is safe but extremely slow. For this reason, we preferred to move the mesh in one shot,
checking only once that the resulting mesh is correct. The domain is directly remeshed if some
false elements have been created, without trying to find the maximal authorized displacement
before reversing an element.

5.2 Optimization process

After the mesh has been moved, the new mesh is slightly optimized to enhance its quality.

Quality criterium. The quality criterium we use is the minimal altitude of the mesh, which
is a good hint of the simulation degradation: slowdown of the simulation, degradation of the
mesh and thus of the accuracy. A more classical and also efficient criterium Q for an arbitrary
element K with edges (e1, e2, e3) is a shape criterium, [8]:

Q(K) =
12√

3
|K |M

3∑
k=1

`2M (ek)
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and index M means that the quantities are computed in metric M if metric-based mesh adap-
tation is performed (otherwise M = Id), see Sub-section 6.2, page 23.

Optimization. During the optimization phase, edge swaps and nodes relocations by Lapla-
cian smoothing as described in [8] alternate. Only the elements having a quality higher than
a prescribed threshold have one of their edge swapped. When mesh adaptation is used, the
optimization routines must be adapted, especially for node relocation, to take the metric size
prescription into consideration.

6 METRIC-BASED UNSTEADY ANISOTROPIC MESH ADAPTATION
FOR ALE SIMULATIONS

For a given continuous function u, we denote by ΠHu the P1-interpolation of u. In this
study, we start with the usual assumption in metric-based methods: mastering the Lp norm of
the P1-interpolation error of solution field u is enough to control the global approximation
error.

6.1 Metric-based generation of anisotropic adapted meshes

The metric-based generation of anisotropic adapted meshes uses the notion of Riemannian
metric space [8]. For a computational domain Ω ⊂ Rd, a Riemannian metric space (M(x))x∈Ω is
a spatial field that defines at any point of Ω a metric tensorM(x), i.e. a d×d symmetric definite
positive matrix. A mesh generator can work in this specific Riemannian metric space instead
of the usual Euclidean space, with a new dot product defined locally by: 〈u,v〉M = 〈u,Mv〉
for (u,v) ∈ Rd × Rd . The Riemmannian metric tensor M = (M(x))x∈Ω can be seen as a
mathematical object defined at each point x of Ω, that will prescribe a density, a set of anisotropy
directions and the stretching along these directions bound to govern the generation of a new
mesh. In that case, the length of edge ab and the volume of element K are computed by:

`M (ab) =
∫ 1

0

√
abT ·M(a + tab) ·ab dt , |K |M =

∫
K

√
detM(x) dx . (10)

It is important to note that, in a Riemannian metric space, computing the length of a segment
(i.e. an edge) differs from evaluating the distance between the extremities of this segment.
Indeed, the shortest path between two points is not the straight line anymore, but a generally
curved geodesic.

The main idea of metric-based mesh adaptation is to generate a unit mesh in the prescribed
Riemannian metric space, i.e. a mesh of Ω ⊂ R3 such that each edge has a unit length and each
element is regular for (M(x))x∈Ω: ∀e, `M(e) = 1 and ∀K, |K |M =

√
2

12 . Eventually, a
metric M is also characterized by its complexity N

[
M
]
, which is an indication of the number

of vertices of a unit mesh in this metric. The complexity operator N
[
·
]

acting on metrics is
defined by:

N
[
M
]

=
∫

Ω

{
det
(
M (x)

)} 1
2 dx .
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6.2 Metric-based multi-scale anisotropic mesh adaptation

The considered problem of mesh adaptation consists in finding the mesh H of Ω that mini-
mizes the linear interpolation error u − ΠHu controlled in Lp norm. If posed directly in terms
of discrete meshes, this problem is intractable. To overpass this difficulty, a new framework has
been designed in [16] which allows to pose the problem in terms of Riemannian metrics. The
problem of the minimization of the interpolation error in Lp norm under a given complexity
N constraint reformulated with metrics can be solved analytically. It leads to the following Lp

optimal metric operator MΩ
Lp

[
·
]
, here applied on sensor u:

MΩ
Lp

[
u
]

= DLp

(
det |H Ω

[
u
]
|
)− 1

2p+d |H Ω
[
u
]
| with DLp = N

2
d

(∫
Ω

(
det |H Ω

[
u
]
(x) |

) p
2p+d dx

)− 2
d

.

(11)
H Ω

[
·
]

is the hessian operator on domain Ω. The metrics constructed with low-p norms are more
sensitive to weaker variations of the solution whereas the L∞ norm mainly concentrates on the
strongest singularities. Now, to obtain an optimal discrete mesh HLp , it is sufficient to generate
a unit mesh with respect to MLp thanks to Relation (10). This process enables to recover a
global second-order asymptotic mesh convergence for the considered sensor variable u, even if
singularities are present.

6.3 The fixed-point mesh adaptation algorithm for unsteady flows.

The unsteady fixed-point mesh adaptation algorithm [1] is used to avoid generating a new
mesh at each solver iteration (which would imply that a remesher is coded inside the solver). It
is also an answer to the lag problem occurring when computing the solution tn and accordingly
adapt the mesh at each time step. Indeed, by doing this, the mesh is always late compared to
the solution as it is not adapted for the displacement of the solution between tn and tn+1.
The fixed-point mesh adaptation algorithm works as follow. The simulation time interval [0, T ]
is cut into m identical adaptation sub-intervals of size ∆T . The solution is computed on the
first adaptation sub-interval [0,∆T ] and sampled at regular time intervals of length δt during
this period. We now have n samples of the solution between 0 and ∆T . The metric associated

t

Tini Tfin

Fixed-point loop

metric sampling

∆T

∆t

Figure 9: Sampling of the solution during each adaptation sub-interval and fixed-point loop.
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with each of these samples is computed according to Formula (11). We now have n metric fields.
These metric fields are intersected to get a single resulting metric that will prescribe to each
vertex the maximal acceptable size guaranteeing the control of the spatial error in Lp norm
on the whole sub-interval. A new mesh adapted to this sub-interval is then generated and we
start again the sampling procedure on the same period. We loop until we reach convergence of
the couple mesh-solution for this period, hence the name ”fixed-point” algorithm. When the
solution has been well computed on [0,∆T ], we go to the next sub-interval [∆T, 2∆T ] and do
the same thing. The m sub-intervals are treated the same way.
An enhanced version of this algorithm which tries to better take into account the global space-
time error when adapting is currently under development, see [2].

6.4 Extension to the ALE framework

In this section, we want to adapt the mesh to a sensor function defined on a deforming domain.
Computational domain Ω = Ω(t) is now time-dependent and, generally, Ω(tn) 6= Ω(tn+1) between
two instants tn and tn+1 in [0, T ]. The following notations will be used in the sequel:

• Ωn and Ωn+1 denote the spatial domain at tn and tn+1, respectively

• ∇n
[
·
]

denotes the gradient operator4 performed on domain Ωn

• Hn+1
[
·
]

denotes the hessian operator performed on domain Ωn+1

• Mn+1
Lp

[
·
]

denote the Lp optimal metric operator calculated on Ωn+1.

We also note: N
(
Mn+1

Lp

[
un+1

])
= Nn+1.

Optimal ALE metric. Even if Ωn 6= Ωn+1 in general, we assume that these two spatial
domains can be mapped one onto the other, which means there exists a mapping φ such that:

φ : Ωn −→ Ωn+1

xn 7−→ xn+1 = φ (xn)

and, as φ is a diffeomorphism, we have, for any infinitesimal vector dxn ∈ Ωn:

dxn+1 =
[
∇n
[
φ
]

(xn)
]T
·dxn . (12)

Mapping φ and mesh displacement field d are linked by the following relation:

xn+1 = φ (xn) = xn + d (xn) =⇒ ∇n
[
φ
]

(xn) = Id +∇n
[
d
]

(xn) , ∀ xn ∈ Ωn

For the purpose of simplicity, sensor function u is assumed to be scalar, the extension to vectorial
functions being straightforward. Finally, we note Ĥn+1 the hessian of un+1 (computed on Ωn+1

transported on domain Ωn. This mathematically writes:

Ĥn+1 : Ωn −→ R
xn 7−→ Hn+1

[
un+1

]
(φ (xn)) .

4Here, the gradient is not the Jacobian, i.e. for an arbitrary vector field f = (f1, . . . , fd), its gradient
matrix is ∇f =

(
∂fj

∂xi

)
ij
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As stated in the previous sections, no vertex is added or suppressed during the mesh move-
ment. Consequently, the mesh complexity remains constant in time, i.e. the complexity of the
metric field defined on Ωn must be the same as the one of the metric field defined on Ωn+1.
Otherwise, the problem is not consistent.
In the sequel, the following assertion is demonstrated:

Theorem 1 (Optimal ALE Lp metric) Let metric Mn,ALE
Lp [u] be defined on Ωn by:

Mn,ALE
Lp [u] (xn) = DALE

Lp

{
det
(
Ĥn+1(xn)

)}− 1
2p+d ∇n

[
φ
]
(xn) · Ĥn+1(xn) · ∇n

[
φ
]T (xn)

= DALE
Lp

{
det
(
∇n
[
φ
])} 2

2p+d
{

det
(
H̃n+1

)}− 1
2p+d

H̃n+1

with H̃n+1 = ∇n
[
φ
]
(xn) · Ĥn+1(xn) · ∇n

[
φ
]T (xn)

and DALE
Lp =

(
Nn+1

) 2
d

(∫
Ωn+1

{
det
(
Hn+1

[
un+1

])} p
2p+d dxn+1

)− 2
d

(13)
The following properties hold:

i) Let us assume metric Mn,ALE
Lp [u] is used to generate a unit mesh Hn of Ωn and let us

denote by Hn+1 the mesh of Ωn+1 which is the image of mesh Hn by mapping φ. Then,
mesh Hn+1 is optimal to control the interpolation error in Lp norm of sensor un+1 on
Ωn+1.

ii) Metric Mn,ALE
Lp [u] has the same complexity Nn+1 as metric Mn+1

Lp

[
un+1

]
.

iii) There is no reason for mesh Hn to be optimal for the control of sensor un’s interpolation
error at tn.

Proof of i). According to the metric-based mesh adaptation theory for steady problems,
the optimal metric in Lp norm for un+1 is Mn+1

Lp

[
un+1

]
as defined in (11). Thus, an optimal

mesh of Ωn+1 adapted to un+1 can be built by generating a unit mesh Hn+1 with respect to
Mn+1

Lp

[
un+1

]
:

1 =
(
en+1

)T · Mn+1
Lp

[
un+1

]
· en+1, for each en+1 of mesh Hn+1 . (14)

For any arbitrary edge en of Hn having en+1 as image by φ in Hn+1, we write:

ên+1 (xn) = en+1 (φ(xn) ) =
[
∇n
[
φ
]

(xn)
]T

en (xn) .

As we are only interested in controlling the prevailing term of the interpolation error, we can
use the above relation, which is true at first order, in the demonstration.
The idea of this proof is to unravel how Condition (14) writes when transposed onto mesh Hn.
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For any arbitrary edge en of Hn having en+1 as image in Hn+1, we write, using the definition
of operator Mn+1

Lp

[
·
]

deduced from Relation (11):

1 =
[
en+1 (φ(xn) )

]T
· Mn+1

Lp

[
un+1

]
(φ(xn) ) · en+1 (φ(xn) )

=
[
ên+1(xn)

]T
· Mn+1

Lp

[
un+1

]
(φ(xn) ) · ên+1(xn)

=
([
∇n
[
φ
]
(xn)

]T
· en(xn)

)T
· Mn+1

Lp

[
un+1

]
(φ(xn) ) ·

([
∇n
[
φ
]
(xn)

]T
· en(xn)

)

=
[
(en) (xn)

]T
·

{(
Nn+1

) 2
d

(∫
Ωn+1

{
det
(
Hn+1

[
un+1

])} p
2p+d dxn+1

)− 2
d

×
{

det
(
Ĥn+1

)}− 1
2p+d ∇n

[
φ
]
· Ĥn+1 · ∇n

[
φ
]T} · en(xn) .

If we create a unit mesh of Ωn with respect to metric Mn,ALE
Lp

[
u
]
, the mesh generator will

enforce: [
en(xn)

]T
·Mn,ALE

Lp (xn) · en(xn) = 1, for all edge en of Hn .

Rewritting the above calculus upside down, we get the following implication:[
en(xn)

]T
·Mn,ALE

Lp (xn) · en(xn) = 1 =⇒
[
ên+1

]T
· Mn+1

Lp

[
un+1(φ(xn) )

]
· ên+1 = 1 .

Therefore, the deformed mesh is unit for the optimal metric associated with sensor un+1, meaning
that it is optimal to control the interpolation error in Lp norm of the sensor at tn+1. �

Proof of ii). Using det
(
α ·
)

= αd det
(
·
)

for any scalar α, we get:

N
(
Mn,ALE

Lp

)
=
∫

Ωn

{
det
(
Mn,ALE

Lp (xn)
)} 1

2 dxn

=
(
DALE

Lp

) d
2

(∫
Ωn

{
det
(
∇n
[
φ
]
(xn)

)} {
det
(
Ĥn+1(xn)

)}− d
2(2p+d)

{
det
(
Ĥn+1(xn)

)} 1
2 dxn

)

= Nn+1

(∫
Ωn

{
det
(
∇n
[
φ
])} {

det
(
Ĥn+1(xn)

)} p
2p+d dxn

)−1

×

(∫
Ωn

{
det
(
∇n
[
φ
]
(xn)

)} d
2p+d

{
det
(
Ĥn+1(xn)

)} p
2p+d dxn

)
= Nn+1

= N
(
Mn+1

Lp

[
un+1

])
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The ALE fixed-point algorithm. Only few things need to be modified to extend the
fixed-point algorithm to ALE simulations. The simulation time interval [0, T ] is still cut into m
identical sub-intervals of length ∆T . The moving mesh simulation is run on the first adaptation
sub-interval and sampled at regular time intervals of length ∆t. Now that we have our n samples
of the solution between 0 and ∆T , we compute their metrics doing as if these solutions had been
computed on the initial mesh and we locally correct the metric . The metric is actually no more
associated with a fixed location in space like in the fixed mesh case, but it is rather attached to
the moving vertices. These metric fields are intersected like in the fixed-mesh case and a mesh
adapted for this period of time is generated. We are now sure that the moved adapted mesh at
tn+1 is at least unity for Mn+1. The rest of the algorithm does not change: this procedure is
repeated inside the current sub-interval until convergence. The other sub-intervals are handled
the same way.

6.5 Numerical results

Pitching NACA 0012 airfoil (AgardCT5). Figure 10 shows the fixed-point mesh adap-
tation algorithm applied to a pitching NACA airfoil the angle of attack AoA of which is pre-
scribed analytically by:

AoA(t) = AoA(t0) + max (AoA) sin (p t), with


AoA(t0) = 0.016◦

max (AoA) = 2.51◦

p = 0.1628 rad.s−1 .

The period of the movement is T = 2Π/p = 38.5945 s. The inflow Mach is 0.755. The simulation
is of spatial order 2, with a V4 scheme. The RKSSP(3,3) scheme has been chosen for the tem-
poral discretization. While the angle of attack increases to its maximum, the upper shock wave
moves towards the trailing edge and becomes sharper. On the contrary, the shock located on the
intrados moves toward the leading edge and its amplitude diminishes. Once the maximum value
of the angle of attack has been reached, it decreases and the shock wave located on the extrados
moves back to the leading edge while its amplitude is dropping. The intrados shock wave moves
to the trailing edge and becomes sharper and sharper. The same phenomenon occurs for the
second-half of the period.
We have stiffened all the elements located inside a disc containing the airfoil. All the vertices
located inside this rigid disc have therefore the same pitching movement as the NACA. First,
the rigidification process allows to preserve the quality of the initial mesh and reduces to its
bare minimum the CPU time devoted to mesh movement and optimization. Second, in the
context of anisotropic mesh adaptation, it enables to get rid of the difficulty of moving a mesh
containing highly stretched elements. The movie associated with this simulation shows how the
shock wave always evolves inside an adapted strip-shaped area of the mesh.
The adaptation is anisotropic and the density of the flow is taken as sensor. While the angle of
attack increases toward an extremum, the adaptation process naturally tends to privilege more
and more the side of the airfoil on which the shock wave becomes sharper. On the contrary,
when the angle of attack approaches zero, the flow is nearly symmetric and both shocks have
a similar amplitude. Therefore, the adaptation effort is balanced between the intrados and
the extrados. Finally, note that in rigidified and motion less areas, ALE metric Mi,ALE

Lp

[
ûk
]
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is exactly Mk
Lp

[
uk
]
, with k ∈ [0, ni − 1], i ∈ [0,m − 1] and uk a sample of the solution be-

tween ti and ti+1, as the sensor function uk has not been deformed by the transport on mesh at ti.

Figure 10: Anisotropic unsteady adaptation around a pitching NACA 0012 airfoil when the area sur-
rounding the NACA is rigidified. Left at T

4 , middle at T
2 , right at 3T

4 .

Blast test case. This unsteady adaptation algorithm was tested on a two-dimensional blast
test case proposed by Lohner [15]. A very strong shock wave at Mach 10 impacts a rectangular
object, which is blown up. The object is first maintained fixed at the lower right corner and
released when the vertical speed exceeds a given threshold. The results obtained by performing
an isotropic adaptation on the density of the flow are shown in Figure 11.
First, the ALE formulation of the swap turns out to be very useful in this simulation to handle
the mesh shearing between the ground and the bottom of the object when it is released. Second,
and it is much more striking on the movie, the ALE fixed-point algorithm really enable to take
the mesh movement into account in the adaptation process. Indeed, the reflected shock wave
not only evolves inside the adapted strip-shaped area, but the strip-shaped area itself moves
toward the shock wave.

7 CONCLUSION

There are two main new things in this paper. First, we have described a new variable-
topology ALE scheme, which enables the use of the very powerful swap operation in moving
mesh simulations where it was forbidden by the classical ALE framework. The conservativity
and efficiency of this scheme have been illustrated on a turbo-machinery simple test case. Sec-
ondly, we have generalized the so-called fixed-point algorithm used in unsteady mesh adaptation
to moving mesh simulations. Again, the feasibility and efficiency of the method have been shown
on two test cases.
Future investigations will focus on the validation of the new changing connectivity ALE for-
mulation, both in terms of accuracy and CPU time. The new ALE metric-based adaptation
methodology will be further tested, first on analytical examples and next on flows around com-
plex three-dimensional moving geometries.
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Figure 11: Isotropic adaptation with the ALE fixed-point algorithm on a blast test case. The solution
evolves inside the adapted region and the adapted region moves towards the solution.
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[15] R. Löhner, Adaptive Remeshing for Transient Problems, AIAA Journal, 75 195–214 (1989).

[16] A. Loseille and F. Alauzet, Continuous Mesh Framework. Part I: Well-Posed Continuous
Mesh and Interpolation Error Models, SIAM J. Numer. Anal., accepted for publication
(2009).

[17] L.G. Margolin and M. Shashkov, Remapping, Recovery and Repair on a Staggered Grid,
Comput. Meth. Appl. Mech. Engrg., 193 4139–4155 (2004).

[18] D. Mavriplis and Z. Yang, Construction of the Discrete Geometric Conservation Law for
High-Order Time Accurate Simulations on Dynamic Meshes, J. Comp. Phys., 213, 557–573
(2006).
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