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Abstract. The purpose of this investigation is to study the mixed convection heat 

transfer from a horizontal cylinder, for both situations, when the imposed flow is 

oriented parallel (parallel flow regime) and in the opposing (contra flow regime) 

direction of gravity. The continuity, momentum, and energy equations are expressed in 

the stream function/vorticity formulation and solved using a second-order accurate 

finite difference method to determine the local and surface-averaged Nusselt numbers, 

the drag coefficient and to map the flow domain in terms of the temperature and flow 

fields near the cylinder. Two different thermal boundary conditions were considered at 

the cylinder surface: constant temperature (CT) and constant heat flux (CHF). 
Extensive numerical results elucidating the dependence of the flow and heat transfer 

characteristics on the Richardson number (0 ≤ Ri ≤ 2), Prandtl number (1 ≤ Pr ≤ 100) 

and Reynolds number (5 ≤ Re ≤ 40) are presented. Over this range of conditions, the 

flow is assumed to be steady. On the whole, for parallel flow regime, an increase in the 

Richardson number led to a raise in both Nusselt number and drag coefficient, for both 

CT and CHF boundary conditions. However, for contra flow regime, these trends were 

reversed. For both parallel flow and contra flow regimes, the aforementioned 

behaviours were more pronounced for CT boundary condition than that for the CHF 

boundary condition. 
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1 INTRODUCTION 

The problem of mixed convection heat transfer from a horizontal cylinder has 
received considerable attention in view of its practical application in heat exchangers, 
modern electronic equipment cooling and solar extraction systems. 

In most practical situations free convection, how so ever small, is always present and 
thus heat transfer occurs in the mixed convection regime. In a given situation, the 
importance of mixed convection is gauged by the value of the so-called Richardson 
number (Ri) which is defined as the ratio of the Grashof number to the square of the 
Reynolds number ( 2Ri Gr Re= ) and provides a measure of the influence of free 
convection in comparison with forced convection. Thus, a small value of the 
Richardson number (Ri → 0), indicates that heat transfer occurs primarily by forced 
convection, conversely a big value of the Richardson number (Ri → ∞) indicates that 
heat transfer occurs primarily by free convection. The mixed convection is believed to 
occur in between these two limits, i.e., for Ri ~ O(1) which corresponds to the case 
when the imposed velocity and that induced by buoyancy are of comparable 
magnitudes. Further complications arise depending upon the orientation of the cylinder 
with respect to the direction of flow. Thus, for instance, when the imposed flow is 
upward over a heated cylinder, the rate of heat transfer is enhanced due to the aiding 
buoyancy, whereas the rate of heat transfer will deteriorate in case of the downward 
flow over a heated cylinder (opposing flow). Similarly, there are situations when the 
buoyancy induced velocity is oriented normal to the imposed flow, thereby resulting in 
the so-called cross-flow configuration. Obviously, the cross-flow configuration shows a 
greater degree of asymmetry in velocity field than that in aiding or opposing buoyancy 
case. This work is, however, concerned with the aiding and opposing configurations. 
Nevertheless, a terse review of the previous literature is instructive prior to the 
presentation of the present study. 

Among others, the influence of buoyancy on convective heat transfer in cross-flow at 
low Reynolds (Re < 0.4) was investigated experimentally by Collis and Williams [1], 
who derived a rough criterion for the onset of buoyancy effects as 0.351.85Re Gr= . The 
influence of free stream direction on the rate of heat transfer from a horizontal cylinder 
was investigated experimentally by Hatton et al. [2] who studied the problem for the 
range 10-2 < ReD < 45 and Rayleigh number 10-3 < RaD < 10. An experimental 
correlation based on vectorial summation of forced and free convection was deduced. 
This approach is difficult to justify on physical grounds because Nusselt numbers are 
not vectors. Fand and Keswani [3] studied the rate of heat transfer in the combined free 
and forced convection from a horizontal cylinder to cross-flow of water flowing in 
upward, downward and horizontal directions. Bard [4, 5] solved numerically the 
problem of combined heat transfer from an isothermal cylinder with its axis horizontal 
and perpendicular to the free stream direction and with free stream parallel and opposite 
to the buoyancy flow for 1< Re < 40 and 0 < Gr < 5 Re

2 keeping Prandtl number at 
constant value of 0.7. Subsequently, Badr [6] also studied the effect of flow direction 
from aiding flow to opposing flow for air. Chang and Sa [7] examined numerically the 
effects of mixed, free and forced convection heat transfer on vortex shedding in the near 
wake of a heated/cooled circular cylinder, and their findings are consistent with the 
experimental results of Noto et al. [8] and the subsequent numerical study of Hatanaka 
and Kawahara [9]. Subsequently, Ahmad and Qureshi [10] solved, for a single value of 
the Prandtl number ( 0.7Pr = ) for air, the laminar mixed convection from a uniform 
heat flux horizontal cylinder in a cross-flow by using finite difference method for 
1 60DRe≤ ≤  and 40 1.6 10

D
Gr

∗≤ ≤ × . The influence of buoyancy on heat transfer, wake 
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structure, temporal lift, and drag forces over heated/cooled cylinders at low Reynolds 
numbers (Re = 2, 40) has been investigated numerically by Patnaik et al. [11] for a 
circular cylinder placed in a vertical stream. Kieft et al. [12] have studied the effect of 
mixed convection from a heated cylinder in horizontal cross flow configuration and 
found that this configuration leads to asymmetrical flow patterns. The effects of mixed 
convection on the wake instability of a heated cylinder in contra flow have been 
investigated experimentally [13] and numerically [14]. More recently, Soares et al. [15] 
have studied the mixed convection from a cylinder to power-law fluids when the 
imposed velocity is normal to the direction of the velocity induced by the buoyancy. 
Depending upon the values of the Richardson number (Ri), Prandtl number (Pr), 
Reynolds number (Re), and the power-law index (n), they reported the contribution of 
free convection to be of the order of 10-15%. Subsequently, this work has been 
extended by Srinivas et al. [16] to stud the effects of aiding buoyancy on heat transfer 
from a cylinder in power-law fluids. Aside from the aforementioned studies based on 
the application of the complete field equations, some results have also been obtained by 
employing the standard boundary layer flow approximation, e.g. [17]. Furthermore, an 
examination of these survey articles shows that buoyancy forces enhance the heat 
transfer rate when they aid the forced flow and decrease the same when they oppose it. 
It is thus abundantly clear that, over the years, mixed convection from a heated circular 
cylinder has attracted a fair bit of attention from the experimental, analytical and 
numerical standpoints, e.g. see [18, 19], albeit most of these studies relate to air as the 
working fluid, i.e., Pr = 0.7.  

The aim of the present study is to obtain numerical solutions to the coupled Navier-
Stokes and energy equations for laminar mixed convection around a horizontal circular 
cylinder for both situations; when the imposed flow is oriented parallel and in the 
opposing direction of gravity. Two different thermal boundary conditions were 
considered at the cylinder surface: constant temperature (CT) and constant heat flux 
(CHF). In particular, the governing equations have been solved numerically for the 
following ranges of conditions: Reynolds number ( 5 40Re≤ ≤ ), Prandtl number 
(1 100Pr≤ ≤ ) and Richardson number ( 0 2Ri≤ ≤ ). 

2 MATHEMATICAL FORMULATION 

Consider the steady and incompressible flow of a Newtonian fluid normal to a 
circular heated cylinder of radius a. The constant free-stream velocity and temperature 
are U∞ and T∞ , respectively. The unconfined flow condition is simulated here by 
enclosing the heated circular cylinder in a circular outer boundary (of radius R∞), as 
shown in figure 1. The radius of the outer boundary is taken to be sufficiently large 
(54.6 radii away from the cylinder surface), to minimize the boundary effects on the 
flow and heat transfer at the cylinder surface. The imposed flow is assumed to be 
oriented parallel (vertically upward) or in the opposing (vertically downward) direction 
of gravity. The effect of temperature variation on thermo-physical fluid properties 
(density ρ, specific heat at constant pressure cp, and thermal conductivity k) is 
considered negligible except for the body force term in the momentum equation 
(Boussinesq approximation) and the viscous dissipation term in the thermal energy 
equation neglected. The buoyancy force arises from the variation of the fluid density 
with temperature in the vicinity of the cylinder.  

It needs to be emphasized here that the viscous dissipation term has been neglected 
in the energy equation used here because, for the range of conditions of 5 ≤ Re ≤ 40, the 
shear rate close to the surface cylinder is not expected to be excessively high. 
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Since the present study is restricted to an infinite length of the cylinder axis along the 
z-direction and flow conditions of 40Re ≤ , the flow across the cylinder is steady and 
two dimensional. Thus, no flow variable depends upon the z coordinate and thus vz = 0. 
The relevant governing equations (continuity, momentum, and thermal energy) can be 
expressed in their dimensionless form in terms of the polar coordinates (ε, θ) 
with ( )ln r aε = , see e.g.[15], giving: 
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where the dimensionless stream function ψ , vorticity ω  and pressure p  are related to 

their dimensional counterparts as e U a
ε ψ∞ , ( )/e U a

ε ω−
∞  and ( )2 2U pρ∞ , 

respectively. The dimensionless components of the stress tensor τij are related to their 
dimensional counterparts as ( ) ijU aη τ∞ . In the energy equation (eq.3), the 

dimensionless temperature is scaled in two different ways depending on the thermal 
boundary condition imposed at the cylinder surface (ε = 0). The two commonly used 
thermal boundary conditions at the cylinder surface are that of either a constant 
temperature (Ts) or a constant heat flux (qs). Thus, for the constant temperature (Ts) 
boundary condition the dimensionless temperature T is related to its dimensional 
counterparts as ( )se T T T

ε−
∞−  whereas, for the constant heat flux boundary condition, 

the dimensionless temperature T is related to its dimensional counterparts se T q a k
ε− .  

The Reynolds number (Re) appearing in equations (2) and (3) is defined as 
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(2 )U a
Re

ρ

η
∞= ,        (4) 

where η  denotes the viscosity.  
The Prandtl number is defined as 

pc
Pr

k

η
= .         (5) 

For the constant temperature boundary condition (CT), the Richardson number is 
defined as 

( ) ( )
2 2
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and for the constant heat flux boundary condition (CHF) we use the modified 
Richardson number which is defined as 

( ) ( )
2 2
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= = ,      (6b) 

where g is the gravitational acceleration and β is the coefficient of volumetric expansion. 

The dimensionless components of the stress tensor are written as 

ijij εητ −= ,         (7) 

where η  is the dimensionless viscosity and εij are the dimensionless components of the 
rate-of-deformation tensor. 

The vorticity in its scaled form is given as 
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Eliminating the pressure in equations (2) by the method of cross-differentiation, 
introducing the vorticity ω and doing some rearrangement, equation (8) can be 
expressed in the form 

2 2

2 2
2 2 M

ω ω ω ω
η λ µ γ ω

ε θε θ

 ∂ ∂ ∂ ∂
+ + + + = 

∂ ∂∂ ∂ 
,    (9a) 

where 

4

Re e
εη ψ

λ η
ε θ

∂ ∂
= − −

∂ ∂
,       (9b) 

4

Re e
εη ψ

µ ψ
θ ε

∂ ∂ 
= + + 

∂ ∂ 
,      (9c) 

2
2

Re e
εη ψ

γ η
ε θ

∂ ∂
= − + +

∂ ∂
      (9d) 

and 



Armando A. Soares, M. Duarte Naia, Norberto J. Gonçalves and Abel Rouboa 

 

 6 

sin cos
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Owing the symmetry of the flow, the solution is obtained in the region defined by 
0 ε ε∞≤ ≤  and 2 3 2π θ π≤ ≤ , see figure 1. 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: Real ( , )x y  and computational ( ),ε θ  plane. Variables include gravitational acceleration (g), the 

free stream fluid temperature ( T∞ ), and uniform approach velocity ( U∞ ) when the imposed flow is 

upward over a heated cylinder. 

The physically realistic boundary conditions for this flow problem are expressed as 
follows: 
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The two commonly used thermal boundary conditions at the surface of the solid 
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for the constant temperature condition (CT) and 

1
T

T
ε

∂
= −

∂
         (10d) 
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c) Far away from the cylinder surface, for 4ε∞ = : we assumed the asymptotic 

approximation for stream function and vorticity given by Imai [21], 

( ) ( )sin erf
2
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e Q

ε θ α
ψ θ α

π
− − 

≈ − + − 
 

     (10f) 

and 
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where Cd is the drag coefficient, 

2 sin
2 2
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Q e
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=  
 

       (10h) 

 and erf(Q) is the standard error function. The parameter alpha is fixed as 2α π=  and 

3 2π  for the contra flow and parallel flow regimes, respectively. 

Finally the thermal boundary condition at r r∞=  is fixed as  

0T =  for CT and CHF conditions.       (10i) 

The numerical solution of the system of coupled elliptic governing equations, given 
by equations (3), (8) and (9) together with the above-noted boundary conditions provide 
the theoretical framework for mapping the flow domain, 0 ≤ ε ≤ 4, in terms of the values 
of ω , ψ  and T, which in turn can be processed further to obtain the values of the 
integral quantities, i.e., the drag coefficient (Cd) and the local and surface-averaged 
Nusselt number (Nu) for the two thermal boundary conditions.  
The total drag coefficient, given by  
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where ω  is the dimensionless vorticity in real space ( e
εω ω−= ). 

The surface-averaged Nusselt number is given by 
3
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where Nu(θ) is the local Nusselt number on the cylinder surface. That function is given 
as (see [15]) 
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for the constant temperature boundary condition (CT), and as 
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for the constant heat flux boundary condition (CHF). 
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Thus, in summary, once the values of the stream function, vorticity and temperature 
fields are known, these can be post-processed to obtain the values of drag coefficient, 
local and surface-averaged Nusselt numbers as functions of the kinematic variables (Re, 
Ri, Pr). These results elucidate the interplay between the kinematic variables and the 
flow when the imposed flow is oriented parallel and in the opposing direction of 
gravity. 

3 NUMERICAL SOLUTION PROCEDURE 

The numerical solutions were obtained for the computational domain shown in figure 
1. For a (N+1)×(M+1) computational mesh, the spacing in the ε  and θ  directions are 

Nε∞  and Mπ , respectively. The set of governing stream function, vorticity and 

energy equations (8) and (9) which are coupled by the buoyant term (eq.9e) have been 
solved by a finite difference scheme using a second order upwind differencing 
technique to discretize the convective terms of T and ω  in the vorticity and energy 
equations, whereas for the diffusion terms, the central difference approximation was 
used. For all other terms in these equations, central difference approximations have also 
been employed. The resulting system of equations was solved using a Gauss-Seidel 
iterative method with an under relaxation factor between 0.5 and 1 to the temperature 
and vorticity variables. For each of the two thermal surface boundary conditions, to 
obtain consistent approximations for all variables, for each iteration a sweep is made 
through all mesh points and an updated value of the drag coefficient and of the Nusselt 
number Nu, are determined by numerical integration of eqs. (11) and (12) on the 
cylinder surface using Simpson's rule. The values of ψ , ω  and T obtained at every 
point for the pure forced convection (Ri = 0) solutions, were used as the initial guesses 
for the mixed convection ( 0Ri ≠ ). This procedure ensured accelerated convergence of 
the numerical solution. Convergence was achieved when the variation in the both values 
of the drag coefficient and Nusselt number in two successive iterations was less than a 
preset value of 10-8. In general, it is somewhat easier to meet the convergence criterion 
for constant heat flux boundary condition (CHF) than that for constant temperature 
boundary condition (CT), although in both cases, for Ri ≠ 0, the difficulty to meet the 
convergence criterion increases as the value of Pr decreases. The outer boundary was 
positioned at ε∞ = 4, corresponding to asymptotic boundary conditions at a distance of 
~54.6 radii away from the cylinder. For all range of conditions, a mesh with 201×101 
points were used in radial and angular directions, respectively. Additional tests carried 
out for the largest values of the Reynolds, Prandtl and Richardson numbers showed that 
the grid was adequate to obtain sufficient numerical resolution. 

4  RESULTS AND DISCUSSION 

The governing differential equations of flow and heat transfer for the mixed 
convection regime have been solved numerically to investigate the effects of 
Richardson numbers ( and * 0, 0.5,1, 2Ri Ri = ), Reynolds number ( 5 40Re≤ ≤ ) and 
Prandtl ( 0 100Pr≤ ≤ ) number on the flow and heat transfer characteristics for the two 
thermal boundary conditions on the cylinder surface (CT and CHF boundary 
conditions). Extensive results on the streamline patterns, surface vorticity, drag 
coefficient (Cd), isotherm patterns, and local (Nu(θ)) and surface-averaged (Nu) Nusselt 
numbers have been obtained to elucidate the influence of buoyancy effects on the rate of 
heat transfer from a circular cylinder to Newtonian fluids, when the imposed flow is 
oriented parallel and in the opposing direction of gravity.  
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For the Prandtl number values used in this work the contribution of free convection 
can be assessed over the whole range of Prandtl numbers (Pr). The 100-fold variation in 
the value of Pr covered in this work should provide an adequate guide for delineating 
the scaling of the Nusselt number (Nu) with Prandtl number. It is appropriate to add 
here that it is not at all uncommon to encounter industrial fluids possessing the value of 
Prandtl number as large as 100, or even higher. Besides, in numerical studies, the 
maximum value of the Pr is also restricted by the fact that very fine grids are required 
near the cylinder owing to the progressive thinning of the thermal boundary layer with 
increasing Prandtl number. 

The Richardson number values are chosen as and * 0, 0.5,1, 2Ri Ri = , so that Ri = 0 
case corresponds to forced convection, whereas at Ri = 1 the characteristics velocity 
induced by density variation is of the same order as the imposed flow velocity. The case 
of Ri = 2 corresponds to the situation in which strong free convection effects are 
expected. At the outset it is, however, important to validate the numerical solution 
procedure, as this will help establish the accuracy of the new results presented in this 
study. 

4.1. VALIDATION OF NUMERICAL SOLUTION PROCEDURE 

The numerical solution procedure has been benchmarked using some of the results 
available in the literature.  
For both parallel flow and contra flow regimes, the surface-averaged Nusselt number 
(Nu) of the present results using the constant temperature boundary condition (CT) are 
compared, in table 1, with the numerical predictions of Badr [5], for Re = 5, 20 and 40 
when Pr = 0.7, whereas table 2 shows the comparison between the present numerical 
results of Nusselt (Nu) and coefficient drag (Cd) with those obtained by Srivinas et al. 
[16] for Re = 5, and 40 in the range 1 ≤ Pr ≤ 100.  

For the parallel flow, an excellent correspondence can be seen to exist between the 
present results of the surface-averaged Nusselt number (Nu) and those of reference for 
Re = 5, 20 and 40, and 0.7 100Pr≤ ≤  (see table 1 and 2). The maximum difference 
being of the order of ~7% and ~4% from those of Bard and Srinivas, respectively. 
Deviations of this order are not at all uncommon in such numerical studies and these 
arise due to differences in the numerical methods (for instance finite volume method 
used by Srinivas et al. [16] versus finite difference method used here), problem 
formulations, flow schematics, grid and/or domain sizes, discretization schemes, etc. 
On the other hand, the present results for the coefficient drag values were compared 
with the literature values, e.g. [16]. Under these conditions, as expected, our results 
always showed an increase of Cd with Ri consistent with published numerical results of 
Srinivas. For Ri = 0, the two values of the coefficient drag (Cd) are in excellent 
agreement (discrepancies 2.2% and 0.1% at Re= 5 and 40, respectively). However, for 
Ri =2 and Pr = 100, the maximum discrepancies increased to 32% and 57% at Re = 5 
and 40, respectively. 

For contra flow, the present numerical results for the surface-averaged Nusselt 
number were compared with numerical predictions of Badr [5]. From table 1, it is 
clearly seen that, for Re = 5, 20 and 40, the present results deviate at most by 45%, 8%, 
and 29%, from those of Badr, respectively. Finally, attention is drawn to the fact that the 
present results for Ri = 0 are in excellent agreement with the literature values [22] where 
the discrepancy between the numerical results for Ri = 0 given by the different authors 
did not exceed 5%. On the other hand, the vorticity distribution around the cylinder 
surface at Re = 20 and 40 for different values of Ri in the parallel flow can be seen in 
figure 2. This figure can be  compared with the Bard [5] figures under the same 
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conditions and an excellent agreement is found. For instance, an increase in Ri from 0 to 
4 resulted, for Re = 20 and 40, in an increase in the maximum of surface vorticity 
magnitude from 4.03 to 11.77 and from 5.82 to 15.78, respectively. These observations 
are in excellent agreement with the figures 1(a) and (b) obtained by Bard in ref. [5]. The 
flow separation are only observed for Ri = 0 and 0.25. The comparison of the angles of 
separation between the present results and Bard´s (results) showed discrepancies of less 
than 1% for both Re = 20 and 40. 
 

 Nu  Nu 

 Parallel flow  Contra flow 

Re Ri present Badr[5]  present Badr[5] 
5 0 

0.2 
2.4 
4 
5 

1.45 
1.53 
1.87 
2.00 
2.06 

1.450 
1.499 
1.882 
1.995 
2.075 

 1.45 
1.29 

- 
- 
- 

- 
2.37 

- 
- 
- 

20 0 
0.5 
1 
2 
3 
4 

2.42 
2.61 
2.90 
3.12 
3.28 
3.41 

2.540 
2.654 
2.970 
3.227 
3.420 
3.564 

 2.42 
2.00 
1.73 
2.32 

- 
- 

- 
2.12 
1.78 
2.15 

- 
- 

40 0 
0.25 
0.5 
1 
2 
3 
4 

3.19 
3.45 

- 
3.85 
4.16 
4.39 
4.57 

3.480 
3.650 

- 
4.100 
4.420 
4.690 
4.910 

 3.19 
2.67 
2.25 
2.06 
4.16 

- 
- 

- 
3.17 
3.05 
2.70 
3.22 

- 
- 

Table 1: Comparison between the Nu results of Bard [5] and present predictions using the CT boundary 
condition for Pr = 0.7. 

 

 present  Srinivas et al.[16] 
Re=5 Re=40  Re=5 Re=40 

Pr Ri Cd Nu Cd Nu  Cd Nu Cd Nu 

1 0 
1 
2 

4.08 
9.90 

14.35 

1.60 
1.88 
2.02 

1.50 
4.30 
6.60 

3.58 
4.31 
4.66 

 3.9365 
8.9774 

12.1298 

1.5619 
1.9115 
2.0610 

1.4987 
2.9586 
3.8225 

3.6526 
4.4812 
4.8582 

10 0 
1 
2 

4.08 
7.89 

11.02 

3.15 
3.56 
3.78 

1.50 
3.83 
5.80 

7.79 
8.82 
9.49 

 3.9365 
6.5888 
8.3508 

3.1810 
3.6773 
3.9291 

1.4987 
2.3979 
2.8996 

8.0605 
9.2160 
9.9329 

20 0 
1 
2 

4.08 
7.47 

10.32 

3.89 
4.34 
4.59 

1.50 
3.72 
5.63 

9.89 
10.95 
11.75 

 3.9365 
6.0944 
7.5637 

3.9553 
4.4960 
4.7838 

1.4987 
2.2670 
2.6926 

10.2412 
11.4214 
12.2613 

50 0 
1 
2 

4.08 
7.02 
9.57 

5.16 
5.67 
5.97 

1.50 
3.60 
5.44 

13.67 
14.66 
15.64 

 3.9365 
5.5579 
6.7028 

5.2910 
5.8887 
6.2261 

1.4987 
2.1173 
2.4579 

14.0449 
15.1594 
16.1785 

100 0 
1 
2 

4.08 
6.75 
9.12 

6.42 
6.97 
7.31 

1.50 
3.53 
5.32 

17.51 
18.23 
19.37 

 3.9365 
5.2304 
6.1710 

6.6071 
7.2463 
7.6219 

1.4987 
2.0217 
2.3079 

17.9168 
18.7893 
19.9606 
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Table 2: Comparison between the Nu results of Srinivas et al.[16] and present predictions using the CT 
boundary condition, for parallel flow regime. 
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Figure 2: The vorticity distribution on the cylinder surface at different values of Ri for the case of parallel 
flow when Pr =0.7, using the CT boundary condition. a) Re= 20 and b) Re =40.  

4.2. FLUID FLOW CHARACTERISTICS 

Representative streamline patterns close to the cylinder for Reynolds numbers Re = 5 
and 40, Richardson numbers Ri = 0, 0.5 and 2, Prandtl number Pr = 1, 10, 20, 50 and 
100, in parallel flow and contra flow regimes are shown in figures 3 and 4, respectively. 
For constant temperature (CT) boundary condition (left half of the figures) and constant 
heat flux (CHF) boundary condition (right half of the figures).  

For the parallel flow regime, figure 3, for both thermal boundary conditions on the 
cylinder showed that for a fixed value of the Reynolds number Re an increase in 
Richardson number and/or a decrease in Prandtl number resulted in a decrease in 
distance between the streamlines. This effect is seen to be more marked in the 
downstream region than that in the upstream region and for the constant temperature 
(CT) boundary condition than that for constant heat flux (CHF) boundary condition. On 
other hand, in the case of forced convection Ri = 0, due to the decoupling between the 
momentum and energy equations, the flow field is not influenced by Prandtl number. At 
low Reynolds number (Re = 5), no separation was observed for any value of the 
Richardson number in the range of conditions studied herein. For CT boundary 
condition (left half of the figures), at Re = 40, can be seen that the size of wake 
decreases with increasing Richardson numbers (Ri) and/or Prandtl number (Pr). These 
findings are consistent with those reported in the literature [6, 11, 16]. However, for 
CHF boundary condition (right half of the figures), an opposite trend is seen for the 
behaviour of the wake with Prandtl number (Pr). 

For the contra flow regime, figure 4, for both thermal boundary conditions on the 
cylinder surface showed that for a fixed value of the Reynolds number (Re) an increase 
in Richardson number (Ri) and/or a decrease in Prandtl number (Pr) resulted in an 
increase in distance between the streamlines, and in an increase in wake. However, for a 
fixed value of Ri, as the value of the Prandtl number was progressively decreased there 
was a decreasing degree of convergence. 
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Figure 3: Influence of Richardson number (Ri) on the streamline for constant temperature (CT) boundary 
condition (left half of the figures) and constant heat flux (CHF) boundary condition (right half of the 
figures) at Re = 5 and 40 for Pr = 1, 10, 50 and 100. Parallel flow regime. 
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Figure 4: Influence of Richardson number (Ri) on the streamline for constant temperature (CT) boundary 
condition (left half of the figures) and constant heat flux (CHF) boundaryc ondition (right half of the 
figures) at Re = 5 and 40 for Pr = 1, 10, 50 and 100. Contra flow regime. 

For the parallel flow regime, figure 5, the study of the vorticity contours around the 
cylinder surface showed that an increase in the Richardson number resulted in an 
overall increase of the vorticity magnitude, except for Re = 40 in the wake, where this 
trend was reversed. This trend is qualitatively similar to that observed by Badr [5] for 
Pr = 0.7. This trend is less pronounced for higher values of Pr and for CHF condition 
than that for CT condition. For instance, for CHF condition, an increase in Ri from 0 to 
2 resulted, for Pr = 1, in an increase in maximum of the 0 ( )ω θ  of 125.4% at Re = 5 and 

51.8% at Re = 40; the corresponding increases for Pr = 100 were 7.7% and 7.1%. For 
CT condition, under the same conditions, the corresponding increases for Pr = 1 were 
137.6% and 97.3%, for Pr = 100 were 26.3% and 27.8%. Furthermore, the figure 5 
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showed that the separation angle were strongly dependent on the Richardson number 
and Prandtl number for Re = 40. 

For the contra flow regime, figure 6, an opposite behaviour was observed for the 
surface vorticity to that observed for the parallel flow regime, whereas for lower 
Reynolds number (Re = 5), the increase of the 0 ( )ω θ  in the wake region with Ri was 

much pronounced for CT condition. 
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Figure 5: The vorticity distribution on the cylinder surface at different values of Ri for the case of parallel 
flow when Pr = 1 and 100 at Re = 5 and 40 using the a) CHF boundary condition and b) CT boundary 
condition. (downstream θ = 90º and upstream θ = 270º) 
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Figure 6: The vorticity distribution on the cylinder surface at different values of Ri for the case of contra 
flow when Pr = 10 and 100 at Re = 5 and 40 using the a) CHF boundary condition and b) CT boundary 
condition. (downstream θ = 270º and upstream θ = 90º) 
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The results for the normalized coefficient drag with respect to the corresponding pure 
forced convection (Cd*), using both thermal boundary conditions(CT and CHF)  is 
shown in figures 7 and 8, for the parallel flow and contra flow regimes, respectively. 
The results showed that, for parallel flow, an increase in the Ri caused an increase in the 
Cd*, whereas an increase in the Pr caused a decrease in the Cd*, for both boundary 
conditions. However, for the mixed convection (Ri ≠ 0), figures 7a) and 7b) further 
show that, for CT condition, Cd* was an increasing function of Re, whereas for CHF 
condition at Pr = 1, Cd* was a decreasing function of Re, and at Pr =100 became almost 
independent of the Re. 

For the contra flow regime, Figure 8, an opposite behaviour was observed for the 
normalized coefficient drag (Cd*). The results showed that, for contra flow, an increase 
in the Ri caused a decrease in the Cd*, whereas an increase in the Pr caused an increase 
in the Cd*, for both boundary conditions. Figures 8a) and 8b) further show that, for a 
fixed values of Ri and Pr, for CT condition Cd* was a decreasing function of Re, 
whereas for CHF condition Cd* was an increasing function of Re. Furthermore, the Cd* 
decreases with Ri and becomes negative, due to reverse flow in the wake of the 
cylinder. Also, the dependence of the Cd* on the Ri became more pronounced at higher 
Reynolds numbers for CT condition, whereas this trend was reversed for the CHF 
condition. 
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Figure 7: Variation of the normalized drag coefficient (Cd

*) with Reynolds number (Re) and Richardson 
number (Ri) for Pr =1 and 100 in parallel flow regime. a) CT condition b) CHF condition.  
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Figure 8: Variation of the normalized drag coefficient (Cd

*) with Reynolds number (Re) and Richardson 
number (Ri) for Pr =10 and 100 in contra flow regime. a) CT condition b) CHF condition.  
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4.3. HEAT TRANSFER CHARACTERISTICS 

Representative isotherm patterns close to the cylinder for Reynolds numbers Re = 5 
and 40, Richardson numbers Ri = 0, 0.5, 1 and 2, Prandtl number Pr = 1, 10, 20, 50 and 
100, in parallel flow and contra flow regimes are shown in figures 9 and 10, 
respectively. For constant temperature (CT) boundary condition (right half of the 
figures) and constant heat flux (CHF) boundary condition (left half of the figures).  

For the parallel flow regime, both thermal boundary conditions on the cylinder 
surface showed that, for a fixed value of the Reynolds number (Re), an increase in 
Richardson number (Ri) and/or Prandtl number (Pr) resulted in a decreasing distance 
between the isotherms, and the subsequent crowding of isotherms in the upstream 
direction. This behaviour means an increase temperature gradient, and, hence, the heat 
transfer rate increase with Re, Pr and Ri. This effect is seen to be more marked for the 
constant temperature (CT) boundary condition than that for constant heat flux (CHF) 
boundary condition. These findings are consistent with those reported by Srinivas et al. 

[16] for the constant temperature (CT) boundary condition in Newtonian fluids.  
For the contra flow regime, figure 10, both thermal boundary conditions on the 

cylinder surface showed that, for a fixed value of the Reynolds number Re, an increase 
in Richardson number (Ri) and/or a decrease in Prandtl number (Pr) resulted in a 
progressive detachment of the isotherms as well as in upstream convection of the 
isotherms. This behaviour can be explained in terms of the enhancement of the free 
convection contribution to the heat transfer due to the increase in the Richardson 
number (Ri) and the decrease in the Prandtl number (Pr), under the aforementioned 
conditions. 
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Figure 9: Influence of Richardson number (Ri) on the isotherms patterns for constant heat flux (CHF) 
boundary condition (left half of the figures) and constant temperature (CT) boundary condition (right half 
of the figures) at Re = 5 and 40 for Pr = 1, 10, 50 and 100. Parallel flow regime. 
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Figure 10: Influence of Richardson number (Ri) on the isotherms patterns for constant heat flux (CHF) 
boundary condition (left half of the figures) and constant temperature (CT) boundary condition (right half 
of the figures) at Re = 5 and 40 for Pr = 1, 10, 50 and 100. Contra flow regime. 

For parallel flow regime, the study of the local Nusselt number ( )Nu θ  distribution on 
the cylinder surface showed that for Pr = 1 to 100, Re = 5, 40 and Ri = 0, 0.5, 1 and 2, 
for both thermal boundary conditions on the cylinder surface, local Nusselt number 

( )Nu θ  was an increasing function of Re, Pr and/or Ri, except for Re = 40 at the rear of 
the cylinder (θ = 90º) where the dependence of ( )Nu θ  on Ri is different (figure 11). At 
first, rear of the cylinder (θ = 90º), a small increase in Ri causes a decrease in ( )Nu θ  
until reaching its minimum value. A further increase in Ri results in increasing ( )Nu θ  
rear of the cylinder. Thus, the results showed that an increase in the Ri caused an overall 
increase in the local Nusselt number. Also, for a fixed values of Re and Pr, the 
dependence of the ( )Nu θ  on the Richardson number (Ri) was more pronounced in 
downstream region and for CT boundary condition than that for CHF boundary 
condition (see figure 11). 

For the contra flow regime, shown in figure 12, it was observed the opposite 
behaviour for the local Nusselt number. Thus, the results showed that an increase in the 
Ri caused an overall decrease in the local Nusselt number, except for the wake at the 
rear of the cylinder (θ = 270º) where ( )Nu θ  increase with Ri. Furthermore, the 
dependence of the local Nusselt number on the Richardson number was more 
pronounced for the contra flow regime than that for parallel flow regime. 
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Figure 11: Local Nusselt number distribution on the cylinder surface at different values of Ri and Pr for 
the case of parallel flow at Re = 5 and 40 using the a) CHF condition and b) CT condition (downstream 
θ = 90° and upstream θ = 270°). 
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Figure 12: Local Nusselt number distribution on the cylinder surface at different values of Ri and Pr for 
the case of contra flow at Re = 5 and 40 using the a) CHF condition and b) CT condition. (downstream 
θ = 270° and upstream θ = 90°). 
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The results for the normalized surface-averaged Nusselt number with respect to the 
corresponding pure forced convection (Nu*), using both the constant temperature (CT) 
and constant heat flux boundary (CHF) conditions is shown in figures 13 and 14, for the 
parallel flow and contra flow regimes, respectively. The results showed that, for parallel 
flow, at Pr = 1 an increase in the Ri caused an increase in the Nu*, whereas at Pr = 100 
and Re > 20 this trend was only observed for 1Ri ≥  for both thermal boundary 
conditions.  

For the contra flow regime, figure 14, the opposite behaviour was observed for the 
normalized surface-averaged Nusselt number (Nu*). Hence, the results showed that an 
increase in the Ri implicated a decrease in the value of Nu*, whereas at Pr = 100 and 
Re > 20 this trend was only observed for Ri > 0.5, for both thermal boundary conditions.  
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Figure 13: Variation of the normalized surface-averaged Nusselt number with Reynolds number and 
Richardson number for Pr = 1 and 100 in parallel flow regime. a) CT boundary condition, b) CHF 
boundary condition. 
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Figure 14: Variation of the normalized surface-averaged Nusselt number with Reynolds number and 
Richardson number for Pr = 10 and 100 in contra flow regime. a) CT boundary condition, b) CHF 
boundary condition. 

5 CONCLUSIONS  

The steady cross-flow over a heated circular cylinder, for the two cases of parallel and 
contra flow regimes, has been investigated numerically to determine the effect of the 
Richardson number on the flow and heat transfer characteristics in a wide range of 
Richardson number ( 0 2Ri≤ ≤ ), Reynolds numbers ( 5 40Re≤ ≤ ) and Prandtl 
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numbers (1 100Pr≤ ≤ ). For parallel flow regime, streamline and isotherms patterns 
close to the cylinder showed that, for a fixed values of the Re and Pr, an increment in Ri 
resulted in an decrease in distance between the contour lines, for both streamlines and 
isotherms. The local Nusselt number and vorticity contours around the cylinder surface 
showed that an increase in the Ri resulted in an overall increase of the ( )Nu θ  and 
vorticity magnitude, respectively, except for in the wake, where this trend was reversed. 
Furthermore, an increase in the Ri led to the enhancement of Cd* and Nu*, for both CT 
and CHF boundary conditions. However, for contra flow regime all these trends were 
reversed. On the other hand, for both flow regimes the aforementioned behaviours was 
more pronounced in CT boundary condition case than in the CHF boundary condition. 
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