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Abstract. A level-set method for computations of interfacial flows with insoluble sur-
factants with electric fields is presented. The discontinuities at the interface are captured
in a sharp manner using the ghost-fluid method. The accuracy of the method is tested
and compared to the standard level-set method. The method is then used to study the
combined effect of insoluble surfactants and electric fields on the motion and deformation
of a falling drop. It is found that the surfactant generally reduces the deformation and the
terminal velocity of the drop. This reduction is most pronounced in the nearly spherical
regime where the drop behavior is similar to a solid sphere due to the interface immobi-
lization caused by the presence of a surfactant. The electric field increases the terminal
velocity by stretching the drop in the direction of the electric field. This effect is largest for
the surfactant-covered drop, which is deformed more due to the lower average interfacial
tension.

1 INTRODUCTION

The presence of surface-active agents (surfactants) at fluid interfaces can have a consid-
erable effect on flow dynamics. Surfactants are amphiphilic organic compounds, which can
be adsorbed at liquid-gas or liquid-liquid interfaces. The presence of surfactants typically
alters the interface dynamics by a reduction in the interfacial tension. An inhomogeneous
distribution of surfactants produces gradients in interfacial tension, which again gives rise
to tangential forces along the interface. Through this so-called Marangoni effect, surfac-
tants can play an important role in several physical phenomena, for instance vortex pair
interaction50,14, fingering49,29 and drop break-up and coalescence15,17,25,12.

The authors’ interest is the influence of surfactants on the breaking of water-in-oil
emulsions. In some oil fields, heavy oils with high viscosity combined with surface-active
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components like asphaltenes and resins make it hard to extract the water using traditional
sedimentation processes. In order to accelerate the sedimentation process, an electric field
can be applied to the emulsion8. This will introduce attractive forces between the water
drops, which increase the coalescence rate and thereby also the sedimentation rate.

Both the influence of surfactants and electric fields on drops have been studied numeri-
cally. However, to the authors’ knowledge, this is the first numerical study of the combined
effect of surfactant and electric fields. The available numerical methods for detailed sim-
ulations of two-phase flows can roughly be divided into two categories: interface-tracking
and interface-capturing methods. Interface-tracking methods use either a separate grid
for the interface, or a set of interconnected points to mark the interface. Examples
of methods which have been applied to both surfactants and electric fields include the
boundary-integral method41,32,31,40,24 and the front-tracking method19,56,34,16. In general,
interface-tracking approaches can be made very accurate, but can be relatively compli-
cated to implement, especially in three dimensions and for problems involving topological
changes.

In interface-capturing methods, the interface is not tracked explicitly, but instead is
implicitly defined through a regularization of the interface. This means that the evolution
of the interface is handled independently of the underlying grid, which greatly simplifies
gridding, discretization and handling of topological changes. Well known methods in
this category include the volume-of-fluid method39,18, the phase-field method46,47 and the
level-set method54,53,52,48,3. Other novel methods are the lattice-Boltzmann method with
electric fields57 and the smoothed particle hydrodynamics method with soluble surfac-
tants2.

In this paper, we build upon the previous work of Xu et al. (2006)53, and use the
level-set method to represent the interface. However, instead of using the immersed-
interface method26 (IIM) to handle discontinuities across the interface, we employ the
ghost-fluid method9 (GFM). For the case of constant coefficients in the jump conditions,
the GFM is a lower order version of the IIM. The main disadvantage of the IIM is that
discontinuity relations for higher-order derivatives must be developed and implemented.
For more complex physical systems, these may not be available a priori, in which case an
iterative method has to be used to calculate the discontinuites, leading to a more complex
implementation and a more expensive computation. The GFM has the advantages that it
is more accurate than the standard level-set method based on a diffuse interface, the so-
called continuous surface force (CSF) method, while remaining computationally efficient
and relatively easy to implement for both two- and three-dimensional problems. A ghost-
fluid method for electric fields was presented in Hansen (2008)3, and we use the same
methodology here.

The paper is organized as follows: In Section 2, we state the governing equations and
briefly discuss the numerical method. In Section 3 we present simulations demonstrating
the capabilities of the method. We first compare the accuracy to a diffuse-interface method
using a test case with an available analytical solution, then we present simulations of a
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falling drop and discuss the influence of surfactants and electric fields. Section 4 concludes
the work.

2 GOVERNING EQUATIONS AND NUMERICAL METHODS

The full Navier–Stokes equations are solved in each phase, and the interface between
the two phases is captured using the level-set method. The ghost-fluid method is used to
treat discontinuities across the interface in a sharp manner.

2.1 Flow equations

The flow is governed by the incompressible Navier–Stokes equations, with added terms
for interfacial-tension forces and electric forces:

ρ

(
∂u

∂t
+ (u·∇)u

)
= −∇p+∇·[µ(∇u+∇uT )] + ρg + Fe + Fs,

∇·u = 0.
(1)

Here, ρ is the density, u is the velocity, p is the pressure, µ is the dynamic viscosity and
g is the gravitational acceleration. Fe is the force due to the presence of an electric field.
The effect of an interface, Γ, in the domain results in a singular interfacial force which
can be expressed by

Fs(x, t) =
∫

Γ(t)
F̂s(s, t)δ(x−X(s, t))ds, (2)

where s is the arc-length, X(s, t) is the parametrization of the interface, x is the spatial
position and δ is the Dirac delta function. For the present problem, F̂s is given by

F̂s = σκn−∇Γσ (3)

The first term accounts for the normal capillary force due to interfacial tension. Here,
σ is the coefficient of interfacial tension, κ the curvature and n is the outward pointing
unit normal vector. The second term is the Marangoni force, which is caused by gradients
in the interfacial tension and acts tangentially to the interface. The interfacial gradient,
∇Γ, is given by

∇Γ = (I − nn)∇, (4)
where I is the identity tensor.

2.2 Surfactants

Gradients in the interfacial tension occur due to the presence of an insoluble surfactant
on the interface. The dynamics of the surfactant concentration, f , is governed by54,53

∂f

∂t
+ u ·∇f − n ·∇u · nf

= Df
(
∇2f − n ·∇∇ · nf + κ(n ·∇f)

) (5)
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where Df is the surfactant diffusion coefficient. We employ the Langmuir equation of
state to relate the interfacial tension and surfactant concentration,

σ(f) = σ0

[
1 + β ln

(
1− f

f∞

)]
. (6)

Here, β = R̄Tf∞/σ0 is the interface elasticity number, which is a measure of the sensitivity
of interfacial tension to surfactant concentration. f∞ is the maximum surfactant packing,
R̄ is the universal gas constant, T the temperature and σ0 is the interfacial tension of a
clean interface.

In this paper, we will assume that the surfactant is restricted to the interface, i.e. it
will not be able to dissolve into the surrounding fluid. Surfactants behave as insoluble
monolayers in two limits37. The first corresponds to dilute bulk concentrations, for which
the diffusion flux from the bulk is slow compared to the interface convection flux. The
second limit corresponds to slow adsorption-desorption exchange, which can occur in
aqueous systems with long-chained surfactants.

Since we assume that the surfactant is insoluble, it is only defined on the interface.
In order to solve the evolution equation numerically, we must therefore first extend the
surfactant concentration off the interface58. This is accomplished by solving1

∂f

∂τ
+ S(φ0)n · ∇f = 0. (7)

Here, S is a sign function given by

S(φ) = φ√
φ2 + 2∆x2 . (8)

Note that this equation is hyperbolic, so it is not necessary to solve it to steady state,
since only the information a few grid points away from the interface is relevant.

2.3 Electric forces

We want to model a conductive drop in an otherwise dielectric medium, for instance a
water drop in oil. This can be achieved by assuming perfect dielectric materials with no
free charges, and then choosing a high permittivity ratio between the two phases30.

With these assumptions, the electric force is given by

F e =∇·M , (9)

whereM is the Maxwell stress tensor,

M = εε0

[
EE − 1

2(E ·E)I
]
. (10)
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Here, E is the electric field. With the above assumptions, ∇·M = 0 everywhere except
at the interface. The electric field is divergence free, such that

E = −∇Ψ, (11)

where Ψ is the electric potential. The electric potential is found from the following Laplace
equation:

∇·(εε0∇Ψ) = 0. (12)

2.4 Interface capturing

The interface is captured using the level-set method44,36. This method allows accurate
computation of the evolution of an interface, along with automatic handling of topological
changes. The ghost-fluid method9,21 (GFM) is used to take discontinuities across the
interface into account. This method handles the jumps in physical properties directly in
the numerical stencils, without the need for any smearing of properties.

The GFM requires jump conditions, which are relations between the physical quantities
on each side of the interface. The jump conditions for the present problem are21,3,13

[u] = 0, (13)
[p] = 2[µ]n ·∇u · n+ n · [M ] · n+ σκ, (14)
[Ψ] = 0, (15)

[µ∇u] = [µ]
(
(n ·∇u · n)nn+ (n ·∇u · t)nt

− (n ·∇u · t)tn+ (t ·∇u · t)tt
)

− (t · [M ] · n)tn− (t ·∇Γσ)tn,

(16)

[∇p] = 0, (17)
[εn ·∇Ψ] = 0. (18)

A well-known issue with the level-set method is that it does not conserve mass. The
more accurate ghost-fluid discretization somewhat alleviates the problem, but for long-
running simulations it is still an issue. In particular, since we use an explicit time-
integration method in this work, simulations at low Reynolds numbers (i.e. highly viscous
fluids) suffer from severe mass loss. We therefore introduce a simple mass correction
scheme for these simulations. At each time step, we add a constant, α, to the level-set
function, where α is found by solving the equation∫

Ω
H(φ)(φ+ α)dΩ =

∫
Ω
H(φ0)φ0dΩ. (19)

Here, φ0 is the initial level-set function. The effect of this correction scheme is to add any
lost mass back globally over the entire drop. Since mass loss typically occurs in regions
of high curvature and low resolution, this scheme works well for low Reynolds number
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drops, which tend to remain nearly spherical. We note that more sophisticated approaches
for dealing with the mass loss exist. These include coupling with Lagrangian particles7,
coupling with the VOF method43,51 and using modified advection procedures35,38,28.

2.5 Numerics

A second-order projection scheme is used to solve the Navier–Stokes equations. The
evolution in time is performed using a four-step third-order, strong stability-preserving
(SSP) Runge-Kutta (RK) method23,22, while a second-order SSP RK method is employed
for the evolution of the level-set equation, the reinitialization of the level-set equation and
extrapolation of the velocity field and surfactant concentration.

The equations are spatially discretized on an equidistant staggered grid with cell spac-
ing h, where scalar values are stored in cell centers and vector values are stored at cell
boundaries. The convective terms are discretized using the fifth order Weighted Es-
sentially Non-Oscillatory (WENO) scheme20, and Laplacian and gradient terms are dis-
cretized using the ghost-fluid version of standard, second-order central differences. The
Poisson equations for pressure and electric potential are solved using a multigrid algo-
rithm.

To reduce the computational costs, we use a simple scheme to move the domain along
with the falling drop. If the mass center of the drop moves to a neighboring grid cell, the
grid is shifted one cell in the opposite direction to account for this, and data is extrapolated
to the new grid cells.

3 RESULTS

In this Section, we present some numerical results on drop dynamics using the above
method. We begin by validating the implementation of the Marangoni stresses by simu-
lating a bubble rising due to thermocapillary effects. Here, we also compare the results to
the CSF method. The implementation of electric forces has been validated and compared
against the CSF method elsewhere46. Next, we investigate the influence of surfactants
and electric fields on a viscous drop falling through a viscous medium, e.g. a water drop
falling through oil. Two representative systems are studied, one at a low Reynolds number
where the drop remains spherical, and one at a high Reynolds number where the drop
deforms significantly.

3.1 Bubble rising due to thermocapillary effects

As a test case for the implementation of the interfacial-tension force, we will simulate
the thermocapillary migration of a bubble. It is well known that due to the dependence of
interfacial tension on temperature, there will be a discontinuity in the tangential stresses
across the interface for a bubble in a temperature gradient55. The result is a motion of the
drop in a direction that will reduce its interfacial free energy. The flow at the interface will
be from the warmer to the cooler pole of the bubble, and therefore, the bubble will move
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in the direction of the warmer pole. This motion is known as thermocapillary migration.
We assume that the temperature varies as

T (z)
T∞

= z

L
, (20)

where L is the domain height, and the relationship between temperature and interfacial
tension is

σ(z) = σ0

(
1− βT (z)

T∞

)
. (21)

We assume that the pressure in the surrounding fluid is zero. Then the pressure inside
the bubble is given by

p(z) = 2σ(z)
R

, (22)

where R is the bubble radius. For a viscous bubble in a linear temperature gradient, an
approximation for the terminal rise velocity is55

VY BG =
2
(
σ0βR/L−∆ρgR2(µ1 + µ2)/µ2

)
(6µ1 + 9µ2) . (23)

Here, we choose a domain size 5R× 15R, and parameters µ1 = µ2 = 0.2 Pa, s, R = 0.5 m,
σ0 = 1.0 N/m and β = 1.0. Gravity effects are neglected. According to Eq. (23), this
should give a Reynolds number of Re = 0.0444, which is well within the creeping flow
regime for which the equation is valid.

We first compare the GFM and the CSF method with respect to Eq. (22) for the
pressure. Fig. 1a shows a close-up of pressure contours inside the bubble. In Fig. 1b,
the pressure along the vertical center line is compared to the analytical result for both
the GFM and the CSF method for R/h = 10. We see that with the GFM, the jump in
pressure at the interface is treated in a sharp manner, and that the pressure inside the
bubble is accurately captured. For the CSF, however, the discontinuity is smeared out,
and the jump in pressure is over-predicted. In Table 1, the relative error of the pressure
in the bubble center is given together with convergence rates for the GFM. The error
decreases in a first-order fashion, which is consistent with other results obtained with the
GFM3.

Next, we compare the simulated rise velocity to Eq. (23). The computational rise
velocity was calculated with

V (t) =
∫

ΩH(x, t)u(x, t) · ezdΩ∫
Ω H(x, t)dΩ , (24)

where H(x, t) is the smeared out Heaviside function and ez is the unit vector in the
z-direction. This integral was evaluated using the midpoint rule.
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Figure 1: Pressure after one time step for a bubble rising in a linear surfactant gradient.
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Figure 2: Velocity field at steady state and rise velocity versus time for the thermocapillary
migration test case.
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Table 1: Thermocapillary migration test case. Error and convergence for the pressure
inside the bubble after one time step.

R/h Relative error Order
(×10−2)

10 1.28 −
20 0.655 0.97
30 0.330 0.99
40 0.168 0.98

Table 2: Parameters for falling drop at low Reynolds number

Parameter Symbol Value
Drop radius R 1.03× 10−3 m
Drop density ρ1 1.128× 103 kg/m3

Matrix density ρ2 9.49× 102 kg/m3

Drop viscosity µ1 6.3× 10−3 Pa s
Matrix viscosity µ2 3.8× 10−2 Pa s
Interfacial tension σ 2.91× 10−3 N/m
Surfactant concentration f0 2.4× 10−6 mol/m2

Maximum surfactant packing f∞ 6.0× 10−6 mol/m2

Interface elasticity β 0.4
Diffusion coefficient Df 1× 10−6 m2/s
Electric field E0 8× 105 V/m
Drop relative permittivity ε1 250
Matrix relative permittivity ε2 1

The velocity field around the bubble at steady state is shown in Fig. 2a for a grid spacing
of R/h = 10. The figure is in good agreement with results from the literature34. Fig. 2b
shows the normalized rise velocity for both the GFM and the CSF method. After an initial
acceleration phase, the velocity approaches the theoretical prediction asymptotically. We
observe that the results for the GFM is closer to the theoretical value. However, the
accuracy is surprisingly good for both methods considering the relatively coarse grid
used. For the GFM, the difference between the theoretical rise velocity and the computed
at t = 0.8 s is 2.38%, while for the CSF method, the difference is 3.31%.

3.2 Falling drop at low Reynolds number

We now consider a drop falling in a gravity field at a low Reynolds number. The
parameters chosen are given in Table 2. In terms of dimensionless numbers, these pa-
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rameters give an Eötvös number of Eo = ∆ρgD2/σ = 0.256 and a Morton number of
Mo = ∆ρgµ4

2/ρ
2
2σ

3 = 1.65 × 10−4. For these low values, the drop moves slowly with a
nearly spherical shape4.

At low Reynolds numbers, we can compare our numerical results to the Hadamard-
Rybczynski formula for a viscous drop in creeping flow11,

VT,HR
2∆ρgR2(µ1 + µ2)
3µ2(3µ1 + 2µ2) . (25)

For the parameters considered here, we get VT,HR = 1.53× 10−2 m/s, or Re = 0.785.
For the simulations, we choose a domain size of 16R × 32R and a grid spacing of

R/h = 20. The simulated terminal velocity is VT = 1.40× 10−2 m/s, which is close to the
predicted value. The discrepancy is most likely due to the simulation being performed in
a bounded domain, as opposed to the formula which is derived for an infinite domain.

Next, we look at the effect of having a surfactant on the interface. For the contaminated
drop, the simulated terminal velocity is reduced to VT = 0.96 × 10−2 m/s. The reason
for this becomes evident by looking at the velocity profiles given in Figure 3. For the
contaminated drop, the internal circulation nearly disappears, and the drop behaves close
to a rigid particle. The Stokes formula for a rigid, spherical particle in creeping flow,

VT,S
2∆ρgR2

9µ2
, (26)

gives VT,S = 1.09× 10−2 m/s, which is close to the terminal velocity for the contaminated
drop. Again, the discrepancy is attributed to the bounded domain.

Figure 4a shows the surfactant concentration as a function of the arc length, s, mea-
sured in the counter-clockwise direction. The surfactant concentration takes the shape of
an S-curve, and hence the Marangoni stresses are evenly distributed across the drop. The
consequence of this is illustrated in Figure 4b, which shows the interface velocity for both
the clean and the contaminated drop. The interface velocity of the contaminated drop is
greatly reduced across the entire drop interface.

We then consider the effect of an electric field. The drop is allowed to reach a steady
state before the electric field is switched on. The strength of the electric field can be
characterized by the electric capillary number, CaE = ε0ε2DE

2
0/σ. A conductive drop

submitted to an electric field becomes unstable when CaE ≈ 0.4145. However, here the
gravitational force will act to stabilize the drop, allowing the use of an even higher CaE.
We choose CaE = 0.45, which gives E0 ≈ 8× 105 V/m.

Figure 5a illustrates the drop shape for the clean drop, along with electric field lines and
velocity vectors. The drop clearly stretches into a prolate shape. This more streamlined
profile gives a reduction in drag and hence a higher terminal velocity. The terminal
velocity was calculated to be VT = 1.50 × 10−2 m/s, an increase over the clean drop
without an electric field. The aspect ratio of the drop is 0.770, while theory predicts
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(a) Clean (b) Contaminated

Figure 3: Low Re drop. Streamlines and velocity vectors in a coordinate system moving
with the drop centroid. Velocity vectors are plotted at every other grid point.
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Figure 4: Low Re drop. Surfactant concentration and interface velocities as functions of
arc length.
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(a) Clean (b) Contaminated

Figure 5: Low Re drop with electric field. The left part of the drop shows streamlines of
the electric field and contours colored by the electric field magnitude. The right part of
the drop shows velocity vectors in a coordinate system moving with the drop centroid.
Velocity vectors are plotted at every other grid point.

a minimum aspect ratio of 0.52645. Since we have an electric field stronger than the
predicted critical value for a stationary drop, this demonstrates the stabilizing effect of
the gravitational force.

The contaminated drop with an electric field is shown in Figure 5b. For this drop, the
terminal velocity has increased to VT = 1.09 × 10−2 m/s compared to the contaminated
drop without an electric field. This increase in terminal velocity is much larger than for
the clean drop, which is caused by the lower average surface tension yielding a higher
degree of stretching. An aspect ratio of 0.700 is calculated for the contaminated drop
compared to 0.770 for the clean drop.

Finally, we observe that the electric field lines are close to perpendicular to the interface
at the drop interface, and that the electric field magnitude is close to zero inside the drop.
This indicates that our method of approximating a conductive drop in a dielectric medium
by simulating a dielectric/dielectric system with high permittivity ratio is satisfactory.

3.3 Falling drop at high Reynolds number

We now consider a drop at a relatively high Reynolds number. We use the same
parameters as above, with the exception of a higher radius, R = 5.15× 10−3, and a lower
matrix viscosity, µ2 = 0.19, to achieve a higher Reynolds number. The dimensionless
parameters for this case becomes Eo = 6.4 and Mo = 1.03× 10−5. For a clean drop, the
calculated terminal velocity was VT = 0.131 m/s which gives Re = 67.4. An experiment
performed with the same parameters gave Re = 67.933, which very close to the simulated
value. Since the viscosity of the matrix fluid is lower in this case, we expect the boundaries
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(a) Clean (b) Contaminated

Figure 6: High Re drop. Streamlines and velocity vectors in a coordinate system moving
with the drop centroid. Velocity vectors are plotted at every other grid point.

to have less influence for this drop. The excellent agreement with the experiment indicates
that this is indeed the case. Figure 6a shows the drop shape and velocity pattern. At this
higher Re, the drop deforms into an ellipsoidal shape, and a vortex is formed behind the
drop.

We then add surfactants to the system. It is well known that for contaminated drops
or bubbles moving at higher Reynolds numbers through an otherwise stagnant fluid, the
surfactants will be swept to the rear of the drop. This will create a region where the
interface is nearly immobile due to the resulting high Marangoni stresses, while the front
of the drop will be surfactant-free and mobile. The immobile region is often denoted the
stagnant cap. Several models have been developed which relate the cap angle to e.g. the
drag coefficient. The numerical method used here requires no assumption of a stagnant
cap, and no a priori estimate of the cap angle is necessary.

The resulting drop shape and velocity pattern for the contaminated drop is given
in Figure 6b. It is evident that the deformation is smaller than for the clean drop.
Additionally, we see that the center of the internal vortex has moved closer to the front,
and that the trailing vortex is larger for the contaminated drop. This results in a lower
terminal velocity of VT = 0.119 m/s compared to VT = 0.131 m/s for the clean drop. This
is a much lower difference than for the low Re drop.

The surfactant concentration is shown in Figure 7a. Here, the gradient in the surfactant
concentration does not vary smoothly like for the low Re drop. Instead, there is no
surfactant at the tip of the drop, followed by a sharp jump in concentration towards the
back of the drop. This jump in concentration will effectively immobilize this part of the
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Figure 7: High Re drop. Surfactant concentration and interface velocities as functions of
arc length.

drop, due to high Marangoni stresses. This is further illustrated in Figure 7b, which shows
the interface velocity for both the clean and contaminated drop. Here we clearly see that
for the contaminated drop the interface velocity is greatly reduced in the region of high
surfactant concentration.

We then consider the effect of an electric field. The electric capillary number is CaE =
0.7835, which gives an electric field of E0 = 5× 105 V/m. We use a higher CaE here since
the stabilizing convection is stronger. For the clean drop, the terminal velocity increases
to VT = 0.138 m/s. As can be seen in Figure 8a, there is little change compared to the
case without an electric field. For the contaminated drop, shown in Figure 8b, there is a
more pronounced change. This is also reflected in the terminal velocity, which increases
to the same as the clean drop, VT = 0.138 m/s. Again, this is caused by the lower surface
tension of the contaminated drop allowing a higher degree of stretching.

If the electric field is increased to E0 = 6 × 105 V/m, the clean drop remains stable,
while the contaminated drop becomes unstable. This is due to the stagnant cap, which
has a very low interfacial tension compared to the clean drop. This makes the drop less
resistant to the electric stresses and renders it unstable at a lower electric field strength.
The evolution of the drop is shown in Figure 9, with the drop revolved around the z-axis
and colored according to the surfactant concentration. When the electric field is switched
on, the back of the drop starts to stretch, while the front of the drop remains stable.
Eventually, the stretched part develops a pointed tip and we see the formation of a small
drop on the tip. It has been shown both experimentally and numerically that conduc-
tive drops become pointed and starts emitting small drops from the tips45,40,27,6,42. An
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(a) Clean (b) Contaminated

Figure 8: High Re drop with electric field. The left part of the drop shows streamlines
of the electric field and contours colored by the electric field magnitude. The right part
of the drop shows velocity vectors in a coordinate system moving with the drop centroid.
Velocity vectors are plotted at every other grid point.

interesting observation is that as the tip starts to form, surfactant is swept from the tip
and towards the middle of the drop. The drop formed at the tip has a very low concen-
tration of surfactants. This is a fundamentally different process from surfactant-covered
drops being stretched in extensional flows or shear flows. For these flows, surfactant is
swept to the drop tips and contributes to the tip-streaming process32,5,39,47. This creates
small drops with high surfactant concentrations which consequently are very stable. The
present simulations suggest that this is not the case for drops broken due to electric fields.

Another interesting phenomenon suggested by the experimental results of Ha & Yang10

is that the presence of a surfactant can cause the break-up mode to change from bulbous
end formation to tip-streaming. The proposed physical mechanism was the same as for
drops in shear flows. Again, our numerical results suggest that this may not be the correct
explanation for the observed behavior.

4 CONCLUSIONS

A level-set method for computations of interfacial flows with insoluble surfactants and
electric fields was presented. It was shown that the method is more accurate than the
standard level-set method at handling the pressure jump at the interface. Currently,
the method only handles insoluble surfactants. A natural extension of the method is to
include solubility. For instance, the method proposed in Teigen et al.46 for the phase-field
method is also applicable to the level-set method.

The method was used to study an axisymmetric drop falling in an otherwise quiescent
fluid. It was found that the surfactant reduced the deformation and the terminal velocity
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Figure 9: Behavior of contaminated drop above the critical field strength. The drop
surface is colored according to surfactant concentration. The first frame shows the drop
before the electric field is switched on. The subsequent frames are at times 0.7, 1.0, 1.3,
1.6 and 1.7 seconds after the field has been switched on.

of the drop. The reduction was most pronounced at low Reynolds number, where the drop
remains spherical. Here, the surfactant-covered drop behaved similarly to a solid sphere.
These results are in agreement with experiments and simulations in the literature. The
effect of an electric field was mainly to increase the terminal velocity. This is due to the
drop stretching in the direction of the electric field, which gives a lower projected interface
area and hence lower drag. This effect was also more evident at lower Reynolds numbers,
which was attributed to lower convection forces which allowed the drop to stretch more.
The effect of an electric field on the contaminated drop was also to increase the terminal
velocity. However, the effect was slightly higher here, due to the overall lower interfacial
tension of the contaminated drop which gives a lower resistance to deformation.

Only two different drops were investigated in this study, and the surfactant parameters
and electric fields were not varied. It would be instructive to investigate a wider range
of drop shapes, and study the influence of the surfactant parameters and electric fields in
more detail. In particular, the observed behavior of an unstable drop is fundamentally
different from previous results for drops in extensional flows or shear flows, and this
warrants further studies.
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