
V European Conference on Computational Fluid Dynamics

ECCOMAS CFD 2010

J. C. F. Pereira and A. Sequeira (Eds)

Lisbon, Portugal, 14–17 June 2010

ACCELERATION OF CFD COMPUTATIONS THROUGH A

SUBSPACE DECOMPOSITION METHOD

George Pashos
*
, Nikolaos Cheimarios, Eleni D. Koronaki and

Andreas G. Boudouvis

*
 School of Chemical Engineering, National Technical University of Athens

Athens 15780, Greece

e-mail: gpashos@chemeng.ntua.gr

e-mail: nixeimar@chemeng.ntua.gr

e-mail: ekor@mail.ntua.gr

e-mail: boudouvi@chemeng.ntua.gr

Key words: GMRES, RPM, FLUENT, acceleration, lid-driven cavity

Abstract. A computational shell-like method is proposed, based on the Recursive

Projection Method (RPM) in order to accelerate large-scale CFD computations. The

method is wrapped around a home-made Galerkin/finite element code and also the

commercial finite volume code FLUENT. For both cases, it does not require any

intervention on the CFD codes. The RPM decomposes the solution subspace into two

subspaces, the one that contains the critical eigenspace and its orthogonal complement.

The former subspace contains those eigenvalues that are about to cross the unit circle

thus signaling instabilities associated with change of stability of the computed solutions

or with failures of the numerical scheme that slow down the convergence process; it is

treated separately, which results in acceleration of the numerical scheme, whether it is

FLUENT or the finite element code. The latter subspace contains the well-behaved

eigenvalues that are closer to the center of the unit circle and pose no ‘threat’ to the

numerical stability of the scheme; this subspace requires no special treatment. A

welcome by-product of the proposed method is the extraction of useful information

regarding the critical eigenspace that can trace the flow instabilities. This is

particularly interesting in the case of the commercial package since eigenvalues and

eigenvectors are not provided by FLUENT. The case study is the 2D lid-driven cavity, a

standard benchmark problem for CFD codes that has recently rekindled the scientific

interest on the aspect of tracing its instabilities. The RPM manages to accelerate the

convergence process of FLUENT, i.e. it reduces the number of total iterations required

to converge. The RPM wrapped around the finite element code, besides providing

acceleration, enables convergence on an otherwise stagnant scheme (Newton/GMRES).

The computations were performed on a 16-node computational cluster.

mailto:gpashos@chemeng.ntua.gr
mailto:nixeimar@chemeng.ntua.gr
mailto:ekor@mail.ntua.gr
mailto:boudouvi@chemeng.ntua.gr

George Pashos, Nikolaos Cheimarios, Eleni D. Koronaki and Andreas G. Boudouvis

 2

1 INTRODUCTION

In recent years, the development of CFD codes is unfolding in multiple levels in

order to accommodate the need to simulate transport phenomena in complex

geometries, multiple scales, turbulent and supersonic flows and several simultaneous

chemical reactions. Each one of these levels are more relevant to one industry than

another, leading thus inevitably to a plethora of codes: some are general-scope

commercial packages and others are ―legacy‖ codes developed over the years in a

particular industry or university focusing on a particular type of application. Whichever

the case, these codes represent a serious investment in time and money from the

viewpoint of developers and also end users who dedicate resources to purchase and train

in a particular software. Nevertheless, the particular needs of an end user may come to

include additional features such as acceleration or nonlinear features that are not readily

available by the computational package. It is often the case that the user has limited or

non-existent access to the source code in order to make the desired alterations and more

importantly this could prove highly inefficient. It therefore becomes clear that a

framework should exist that enables the expansion of the current capabilities of a given

legacy code without any intervention in the code itself.

This is essentially the scope of this work, which focuses on accelerating legacy codes

and also extracting useful nonlinear information. The legacy codes in question include a

―homemade‖ finite element code for the Navier-Stokes equations and also a wide-

spread and established computational package, FLUENT. The test problem was the

same in both cases, the well known lid-driven cavity problem which has recently

reignited interest because of its often ambivalent solution space.

The so-called Recursive Projection Method (henceforth RPM) is ―wrapped‖ around

the CFD codes as a computational shell in order to accelerate, or even enable

convergence in some cases as will be discussed in subsequent sections. The RPM was

introduced by G. Shroff and H. Keller [1] for the stabilization of time-steppers. In this

work it is implemented on steady state codes which are reformulated in order to assume

the form

U
(k+1)

= F(U
(k)

,λ) (1)

Here λ is a parameter of the physical system under investigation and U
(k+1)

 ∈ R
N
 is

the N-dimensional vector that results from a discretization in space at the k+1 iteration

of the unknown quantities. F:𝐑N × 𝐑 → 𝐑N is a function of U
(k)

 and it computes an

updated approximation of the solution. The convergence rate of the fixed point iteration

(1) deteriorates when a few eigenvalues of the Jacobian matrix FU ∈ R
N×N

 approach the

limits of the unit circle. The RPM requires consecutive iterates of F in order to

approximate this ―dangerous‖ eigenspace, separate it from the ―healthy‖ part of the

spectrum that is close to the origin and treat it with Newton‘s method using a low

dimensional Jacobian.

The RPM, which will be discussed in a subsequent section and in greater detail in [1]

has been used in conjunction with fixed-point iterative procedures resulting from time

integrators in order to accelerate stable and even mildly unstable schemes [2]. In the

thesis of H. Von Sosen [3] the RPM is applied to DAEs in incompressible flow

computations. P. Love [4] applied the RPM to Kolmogorov and Taylor-vortex flows.

The RPM has also been used successfully for detection of stable and unstable periodic

orbits of large-scale dynamical systems [5] as well as of periodically forced systems [6].

Furthermore, a RPM-based method was proposed, in order to perform ‗coarse‘ stability

analysis using microscopic evolution rules directly [7, 8, 9]. Recently the RPM has been

used to accelerate a Newton/GMRES(m) scheme [10] and this philosophy will also be

George Pashos, Nikolaos Cheimarios, Eleni D. Koronaki and Andreas G. Boudouvis

 3

demonstrated in this work in comparison to the application of the method around the

commercial CFD package FLUENT.

Finally it is worth noting that in the current version of FLUENT (ANSYS 12) the

RPM is implemented as an option for the stabilization of the solution of the linear

system in the Multigrid solver. Nevertheless the proposed approach treats FLUENT as a

―black box‖ and does not intervene in any internal solver; in fact it may be implemented

in conjunction with the RPM in the Multigrid solver. In this work the RPM is

―wrapped‖ around a parallel implementation of FLUENT for increased acceleration.

2 THE RECURSIVE PROJECTION METHOD

The solution of parameter-dependent, nonlinear steady state problems often leads to

recursive fixed-point procedures of the form of Eq. (1). In this work, the role of F ∈ R
N

is assumed by two different solvers: in the first case, it is the result of the Newton

iteration that yields the solution approximation of the nonlinear system at the (k+1)th

iteration; in this case F is provided by a home-made code of the Galerkin/finite element

discretization of the Navier-Stokes equation for the lid-driven cavity problem. In the

second case the same physical problem is solved with the finite volume code FLUENT

and F is also an updated approximation of the solution. The convergence properties of

iteration (1) are determined by the spectrum of the Jacobian matrix FU ∈ R
N×N

 and in

particular the usually few eigenvalues that reach and eventually cross the limits of the

unit circle. Due to the large number of degrees of freedom, N, it is not efficient to

compute and store FU but with the help of the RPM it is possible to approximate the part

of the spectrum that is responsible for the deterioration of the convergence rate. Here we

discuss briefly how this is done. The method is described in detail by Shroff and Keller

[1] and in a family of related ‗Newton–Picard‘ methods in several theses (e.g. [3]).

Along the same line is earlier work by Jarausch and Mackens [11] who propose a so-

called ‗adaptive condensation‘ method for symmetric systems.

Consider the invariant subspace P, that corresponds to the, usually few,

eigendirections in which the linearized map is slowly contracting or even slowly

expanding. Let Q be its orthogonal complement. By P and Q we also denote the

orthogonal projectors of R
N
 on P and Q respectively. The solution U is decomposed

into p and q such that U = p +q, where p and q are the projections of F (U,λ) onto P and

Q , respectively. Under certain assumptions, the RPM stabilizes fixed-point iterative

procedures such as (1) by first computing an approximation of P and consequently of Q.

The projection p is then computed by performing a Newton‘s method step on P; q is

determined by the projection of F (U,λ) on Q. Subsequently, the Picard iteration acts on

the sum, U = p +q. The fixed-point iteration is stable when all the eigenvalues of the

matrix FU (U,λ) ≡ ∂ F /∂U, lie in the unit disk. The stabilized iterative procedure takes

the form of Algorithm 1.

Algorithm 1

(i) p
(0)

 = PU
(0)

, q
(0)

 = Q U
(0)

(ii) Do until convergence:

p
(k+1)

 = p
(k)

 + (I − P FU(U
(k)

,λ)P)
−1

(P FU(U
(k)

,λ)- p
(k)

) (Newton step)

q
(k+1

) = QF(U
(k)

,λ) (fixed-point iteration).

(iii) U
(kfinal)

 = p
(kfinal)

 +q
(kfinal)

.

George Pashos, Nikolaos Cheimarios, Eleni D. Koronaki and Andreas G. Boudouvis

 4

In practice after a prescribed number of outer — inexact Newton, or FLUENT —

iterations is performed and convergence is deemed too slow, the RPM intervenes; every

kmax iterations the RPM uses the last n + 1 iterates in order to compute, using the

modified Gram–Schmidt algorithm, an orthonormal basis of the subspace that is

spanned by the sequence of n vectors

{Δq
(i)

}≡{(q
(kmax)

 −q
(kmax−1)

), . . . ,(q
(kmax−n+1)

 −q
(kmax−n)

)}, i =kmax −n + 1, . . . ,kmax (2)

It is shown in the literature [4,26] that the above vectors asymptotically lie in the

dominant eigenspace of the matrix QFUQ which is the eigenspace of FU that

corresponds to the remaining dominant eigenvalues (i.e. the eigenvalues that are not yet

included in the subspace P). Let lZ be the number of eigenvalues close to the unit circle

and the dimension of P. If Z ∈ 𝐑𝑁×𝑙𝑍 is an orthonormal basis of the invariant subspace

P, then with the above method it is updated with new vectors.

We will briefly discuss how this is achieved (for more information cf. [1]). For n = 2,

the set of difference vectors, {Δq
(kmax)

,Δq
(kmax−1)

} is formed from the three last iterates

of q. The modified Gram–Schmidt procedure [13] is applied to construct a QR-

factorization

D≡{Δq
(kmax)

,Δq
(kmax-1)

}= 𝐷 𝑇 (3)

with T ∈ R
n×n

upper triangular and 𝐷 ∈ R
N×n

 orthogonal. If T11>>T22 then one new

vector (ndef = 1) is added to the basis Z; otherwise, it is possible that a pair of complex

eigenvalues approach the limit of stability and two new vectors (ndef = 2) are added in Z.

The effectiveness of the RPM depends greatly on the assumption that the majority of

eigenvalues of FU are clustered together whereas only a few eigenvalues (typically no

more that 10 at worst) increase in magnitude and approach the unit circle. In this work

the criterion, T11 > 10
3
T22 is used that indicates the relative magnitude of the two

eigenvalues captured by the method and is deemed an adequate measure of the

separation of scales assumed by the RPM method. The factor 10
3
 depends on the

spectrum of FU, but it has been known to work adequately for a broad range of

applications [2]. In practice, the Jacobian of the Newton step performed on the reduced-

size subspace P, can be written

T

UH Z F Z ,∈ 𝐑𝑙𝑍×𝑙𝑍 (4)

The matrix-vector product FUZ, is computed with differencing

 i

U i Z

F U εZ ,λ F U,λ
F Z ,i 1,2, , l

ε

 (5)

where lZ is the number of columns of the basis Z. As a result, for each matrix–vector

computation only an extra function estimation, i.e. the calculation of F(U+εZi,λ) is

required and not the creation of the full Jacobian (the extra function estimation initiates

a full cycle of inner iterations). Avoiding, therefore, the construction of large matrices

and the solution of large eigenvalue problems, it is possible to draw conclusions for the

stability of F by solving the small simple eigenvalue problem of the matrix H (cf. [1,2]),

the spectrum of which approximates the dominant spectrum of FU.

3 THE LID-DRIVEN CAVITY PROBLEM

The test application in this work is the lid-driven cavity problem which is described

by the Navier-Stokes equations combined with the continuity equation

George Pashos, Nikolaos Cheimarios, Eleni D. Koronaki and Andreas G. Boudouvis

 5

T1

P ()
t Re

u
u u u u (6)

0 u (7)

where u is the fluid velocity vector in two dimensions, u = (u, v), P is the static pressure

and Re is the Reynolds number. Eq. (6) is the dimensionless form of the Navier–Stokes

in stress-divergence form with Re = ρu0L/μ, which is more suitable for computations in

the large Re regime [12]. Eqs. (6)–(7) are posed in the unit square domain, Ω = [0, 1] ×

[0, 1], with no-slip Dirichlet boundary conditions on the boundaries Γ1,Γ2,Γ3, u|Γ1,Γ2,Γ3=

0 and a Dirichlet moving boundary condition on Γ0, u|Γ0 = (0, 1); Γ0 = [0]×[0, 1], Γ1 =

[0, 1]×[1], Γ2 = [1]×[0, 1], Γ3 = [0, 1]×[0].

4 THE NEWTON/GMRES SCHEME

The boundary value problem (6)–(7) along with the boundary conditions is treated

with the Galerkin/finite element method and the domain Ω is tessellated into a uniform

grid of quadrilateral Q2Q1 elements, i.e. each velocity component is approximated by

continuous 2
nd

 order piecewise polynomials and the pressure by continuous 1
st
 order

piecewise polynomials in each spatial direction. A 40×40 mesh is used that results in N

= 14,803. The Galerkin/finite element weak formulation of (6)–(7) in steady state and

for Dirichlet-only boundary conditions casts

u u 1 u u v
u v 2 P dΩ 0

x y Re x x y y y x x

 (8)

v v 1 v v u
u v 2 P dΩ 0

x y Re x x y y x y y

 (9)

u v
ψ dΩ 0

x y

 (10)

where 𝜙 and ψ is a set of piecewise biquadratic basis functions and piecewise bilinear

basis functions, respectively.

The above set of nonlinear algebraic equations, can be written compactly

R(U) 0 (11)

It is solved iteratively for the vector of unknowns U ∈ R
N
, by Newton‘s method, which

updates at each step, k, the approximation of the solution. The linear system that yields

the correction for the new approximation reads

(k) (k) (k)J δU R ,
N N N NJ , R ,δU R R R (12)

R
(k)

 is the value of the residual at the k
th
 iteration, δU

(k)
 is the correction of the new

approximation of the solution and J
(k)

 ≡ ∂ R
(k)

/∂U
(k)

 is the Jacobian matrix. As N is

usually large, the linear system (12) is solved with an iterative, Krylov-type solver,

namely the restarted GMRES, or GMRES(m). In this context, m is maximum dimension

of the Krylov basis allowed to be built before the method restarts again.

The new solution approximation, U
(k+1)

, is then computed

George Pashos, Nikolaos Cheimarios, Eleni D. Koronaki and Andreas G. Boudouvis

 6

 k(k 1) (k) (k)U U δU F(U) (13)

Since the Newton iteration is an one-step method, that is, the new solution

approximation is computed using information from the previous step only, it may be

considered as a scheme similar to (1) as illustrated in Eq. (13).

The Newton/GMRES(m) scheme compactly described by Eq. (13) is known to

stagnate even for low Reynolds numbers [10, 13]. Several values for the parameter

lfinal=m×restarts are selected and the convergence process is depicted in Fig. 1. Here the

Reynolds number is very low, namely Re=10 and the total number of degrees of

freedom N=14,803. The convergence rate is generally steep until the residual of the

Newton iteration reaches 10
-4

 but subsequently the convergence rate greatly

deteriorates. Even for lfinal=150 with m=30 and restarts=5, the residual drops but not at a

satisfactory rate.

Figure 1: Convergence rates of the Newton iteration of the lid-driven cavity problem with the stand-alone
Newton/GMRES; k is the number of Newton iterations; different values of input parameters are: lfinal = 30

(m = 30, restarts = 1), lfinal = 70 (m = 70, restarts = 1), lfinal = 150 (m = 150, restarts = 1), lfinal = 150 (m =

30, restarts = 5); N = 14803; Re = 10; U(0) = 0.

Figure 2: Convergence rates of the outer iteration of the lid-driven cavity problem with the RPM-assisted
Newton/GMRES for different values of kmax; lfinal = 250 (m = 50, restarts = 5); tolnewton = 10−6; N = 14803.

(a) Re = 500; U(0) = 0; (b) Re = 5500; U(0)(Re = 5500) = U(kfinal)(Re = 5000).

In this work (and in more detail in [10]), the RPM is wrapped around the

Newton/GMRES scheme resulting from the discretization of the Navier-Stokes

George Pashos, Nikolaos Cheimarios, Eleni D. Koronaki and Andreas G. Boudouvis

 7

equations in the lid-driven cavity problem. The RPM-assisted Newton/GMRES, with

zero initial guess [see Fig. 2 (a)], avoids stagnation even at large values of Re (Re =

5500) [see Fig. 2 (b)]. The parameter that affects the convergence rate is the frequency

kmax with which Z is updated. By reducing it, the total number of outer iterations, kfinal,

is also reduced as shown in Fig. 2(a) and Figure 2(b). However, frequent updates will

also require evaluations of the derivative FUZ which requires that F is computed an extra

lZ times. In turn this initiates lZ full cycles of inner iterations. Note that the basis Z,

which is initially null, is forced to be expanded by one column each time the maximum

number of iterations, kmax, is reached. This potentially lowers the quality of the updated

basis but keeps the extra F calculations at a minimum.

5 THE CFD CODE FLUENT

The computational fluid dynamics (CFD) problem defined in Section 3 [Eqs. (6)-(7)]

is also solved numerically with the commercial CFD code FLUENT [14] where the

finite volume method (FVM) [15] is used. The continuity and the components of the

momentum equation in steady state for an incompressible fluid, can be written in a

general form in terms of a variable Φ as

1

 u (14)

where ρ is the density of the fluid, u is the velocity vector and Γ the diffusion

coefficient. The computational field is discretized in elementary control volumes. For

the CFD problem concerned here a 120x120 mesh was used. The key step in the FVM

is the integration of Eq. (14) over each elemental control volume (CV). The latter yileds

1

CV CV

dV dV

 u (15)

For the solution of Eq. (15) FLUENT‘s pressure-based solver was used along with

the ―coupled algorithm‖ [16]. The ―coupled algorithm‖ solves the momentum and

continuity equations simultaneously. The full implicit coupling is achieved through an

implicit discretization of pressure gradient terms in the momentum equations, and an

implicit discretization of the face mass flux [16]. The ―algebraic‖' multigrid scheme is

used for the solution of the coupled, discretized equations [16].

The RPM, programmed in MATLAB in this work, is used as a computational shell

―wrapped around‖ FLUENT. The communication of the RPM and FLUENT is

performed by User Defined Functions (UDFs) [16]. The information can be transferred

directly to FLUENT by using libraries, written in C/C++ or Fortran, namely dlls on

windows operating systems or so on linux operating systems.

The computations were performed on a 16-node distributed memory cluster, called

Pegasus. Each node of Pegasus has two Intel Xeon processors at 3 GHz and 2 Gb of

RAM. The nodes are interconnected with two networks: Myrinet and Gigabit Ethernet.

Administration is performed via the Gigabit Ethernet network and the Myrinet network

is used only by Message Passing Interface (MPI). MPI is a library specification for the

exchange of computational data between the processors, proposed as a standard by a

broadly based committee of vendors, implementors and users [17, 18]. MPI can be used

from both distributed and shared memory computers. The parallel solver of FLUENT,

namely CORTEX [16], uses MPI. Pegasus runs under the freeware operating system

Linux for clusters, Rocks 4.1.

George Pashos, Nikolaos Cheimarios, Eleni D. Koronaki and Andreas G. Boudouvis

 8

6 THE RPM-ASSISTED IMPLEMENTATION OF FLUENT

6.1 Acceleration

The principal goal of combining the RPM with FLUENT is making the overall

solution procedure more efficient, i.e. reduce the number of iterations and the solution

time. This indeed is achieved with the proposed approach. In this implementation the

function evaluation, F(U) of (1), is the result of nFLUENT=80 iterations of the selected

FLUENT solver with initial guess U. Therefore, each fixed-point, or outer iteration

refers to this prefixed number of FLUENT or, inner iterations. The stand-alone

FLUENT code is compared to the RPM-assisted implementation over a range of

Reynolds numbers. In each case the initial guess, U
(0)

, is the solution at Re number

which is smaller by 1000 that the one sought. The achieved acceleration both in terms

of number of function evaluations and speedup, i.e. time of stand-alone iteration over

time of RPM-assisted iteration, is summarized in Table 1. The function evaluations

performed with the RPM-assisted code, include the extra evaluations needed in order to

build and update the basis. In each case the basis required by the RPM consists of 2

basis vectors. The overall speedup ranges from 1.22 to 1.37 leading to an average 25 %

reduction in CPU time.

Reynolds

number

Function

evaluations,

stand-alone
FLUENT

time (sec),

stand-alone
FLUENT

Function

evaluations
with RPM

time (sec),

RPM-
FLUENT

Speedup

4000 11 315.8 8 229.7 1.37

5000 11 315.8 9 257.8 1.22

6000 14 373.1 10 286.4 1.30

7000 15 401.7 11 315.1 1.27

Table 1: Effect of RPM on the total number of function evaluations and CPU time over a range of Re

numbers.

Reynolds number
Function

evaluations, F(U)

time

(sec)
speedup

4000 8 229.7 1.37

5000 4 117.7 2.68

6000 4 117.7 3.17

7000 5 145.7 2.76

Table 2: RPM-assisted parameter continuation; time and speedup in relation to stand-alone FLUENT

implementation.

The effect of the RPM becomes more important in the context of parameter

continuation as demonstrated in Table 2. Here, the RPM basis is built once for the first

parameter value, i.e. Re=4000, and it is used for the subsequent Re numbers as well. As

long as the low-dimension matrix H=Z
T
FUZ, contains an adequate approximation the

dominant spectrum of FU, the basis Z, need not be reevaluated. The computational tools

for evaluating the ―quality‖ of the spectrum of the matrix H are hardwired into the RPM

and the user need not make any interventions. In this implementation the speedup

reaches 3.1, which means that for a single Re number the iteration convergence is 70%

quicker than the stand-alone FLUENT iteration.

George Pashos, Nikolaos Cheimarios, Eleni D. Koronaki and Andreas G. Boudouvis

 9

 FLUENT RPM-FLUENT

#CPUs
time

(sec)

time

(sec)

1 401.7 315.1

5 114.7 90.0

Table 3: Execution time for stand-alone FLUENT and the RPM-assisted FLUENT using the serial and the

parallel solver of FLUENT (CORTEX).

Since the RPM treats the FLUENT iterations as ―black box‖, it goes without saying

that it can be transparently applied in conjunction with the parallel solver CORTEX

built into the FLUENT package. It is worth noting that the RPM processes may be

entirely serial regardless of the iteration F. Here the stand-alone FLUENT code and the

RPM-assisted iteration are solved in 1 and 5 CPUs. Table 3 summarizes the execution

time in each case and it becomes clear that the effect of the RPM is beneficial even for

the parallel implementation of FLUENT reducing the solution time by more than 20 %.

6.2 Nonlinear features

A valuable byproduct of the RPM-accelerated procedure is the extraction of

dominant eigenvectors of F(U) from the eigenvectors of the reduced Jacobian matrix H.

Specifically, the eigenvectors, yi ∈ 𝐑N , of FU are defined as yi=Zvi, where vi ∈ 𝐑lZ are

the eigenvectors of H and Z ∈ 𝐑N×lZ is the basis computed in the course of the RPM

procedure. In principle, though, the interesting part of the spectrum in terms of

nonlinear analysis, is the dominant spectrum of the Jacobian of the discretized physical

problem, J, which is absolutely unavailable. Nevertheless, when the iteration F is stable,

it is a fair assumption that the dominant spectrum of FU contains the dominant spectrum

of the Jacobian of the discretized physical problem.

The distinction between the dominant eigenmodes of the iteration and those of the

physical problem has been demonstrated in detail in [2] for systems of partial

differential equations and systems of partial differential and algebraic equations. In the

current implementation, where we are dealing with a ―black box‖ type of code, we can

verify that assumption by comparing the eigenvectors yi with the ones derived from

perturbation analysis of the transient Navier-Stokes. Let),(up be a perturbation that is

added to the steady solution of the continuity equation and the transient Navier-Stokes

that gives

t

sp p e p ,
t

s e u u u (16)

where),(ssp u are the steady solutions. Eqs. (16) are replaced in the continuity equation

and the transient Navier-Stokes that yields

1

() () ()T

s s p
Re

 u u u u u u u (17)

0 u (18)

Eqs. (17)-(18) are linear and are treated with the GFEM method that yields the

generalized eigenvalue problem

0 0

0

p p
J

M

 u u
 (19)

George Pashos, Nikolaos Cheimarios, Eleni D. Koronaki and Andreas G. Boudouvis

 10

where J is the Jacobian matrix as defined in paragraph 4 and M is the mass matrix

defined as

 dM T . The solution),(ssp u is stable when the perturbation that is

applied goes to zero with time, i.e. the real parts of the eigenvalues, μ, are negative,

otherwise the solution is unstable. Working on a 200×200 mesh for Re=5000, only a

handful of eigenvalues and eigenvectors are computed using ARPACK routines [19]

(for more results and detailed analysis cf. [20]). The computed eigenmodes are the ones

closest to the origin along the imaginary axis and are shown in Fig. 3 and Fig. 4.

Figure 3: Pressure contours of the real parts of the pressure eigevector for Re=5000

Figure 4: Streamlines created from the real parts of the velocity component of the eigenvectors for

Re=5000

The eigenvectors derived by the RPM-assisted iteration, shown in Figures 5 and 6

are in agreement with the first and third eigenvector of the first row in Figures 3 and 4

and they correspond to eigenvalues that are μ1= -0,012+1,412e
-16

i and μ2=-0,083-

George Pashos, Nikolaos Cheimarios, Eleni D. Koronaki and Andreas G. Boudouvis

 11

1,639e
-15

i. The corresponding dominant eigenvalues of FU are 0.296 and 0.0099

respectively which lie far away from the limits of the unit circle. This indicates that the

iteration F ―remaps‖ the Jacobian J into the matrix FU with a more favorable spectrum

signifying that the iteration F is numerically very stable.

Figure 5: Pressure contours from RPM-derived eigenvectors; Re=5000

Figure 6: Streamlines created from the RPM-derived eigenvectors; Re=5000

7 CONCLUSIONS

The Recursive Projection method is successfully applied in conjunction with a

legacy finite element code and also a ―black box‖ commercial package, FLUENT. The

RPM enabled convergence on a Newton/GMRES(m) implementation of the

incompressible Navier-Stokes equations for the lid-driven cavity problem. The stand-

alone code results in stagnation for various parameters of GMRES(m) yet combined

with the RPM, convergence is quick and seamless over a range of parameter values for

the method, such as kmax. Wrapped around FLUENT, significant acceleration is

observed especially in the context of parameter continuation since the method retains

useful information for subsequent parameter values. Therefore it economizes on basis

building calculations which are the most computationally expensive part of the RPM.

The method can be transparently combined with the parallel FLUENT solver CORTEX.

A useful by-product of the RPM-FLUENT implementation, is the extraction of

dominant eigenmodes of the discretized physical problem which are otherwise

unavailable from FLUENT. The derived eigenvectors result from the solution of a low-

dimensional eigevalue problem for the reduced Jacobian H which is computed in the

course of iteration.

ACKNOWLEDGMENTS

 This work is part of a ΠENEΔ 2003 project, cofinanced 80% of public expenditure

through EC - European Social Fund, 20% of public expenditure through Ministry of

Development - General Secretariat for Research and Technology and through the

George Pashos, Nikolaos Cheimarios, Eleni D. Koronaki and Andreas G. Boudouvis

 12

private sector, under measure 8.3 of OPERATIONAL PROGRAM

'COMPETITIVENESS' in the 3rd Community Support Program. The work was also

partially supported by the State Scholarships Foundation, through a fellowship to N.C.

REFERENCES

[1] G.M. Shroff, and H.B. Keller, Stabilization of unstable procedures - the recursive

projection method. SIAM J. Num. Anal. 30, pp. 1099-1120 (1993).

[2] E. Koronaki, A. Boudouvis, I. Kevrekidis, Enabling stability analysis of tubular

reactor models using PDE/PDAE integrators. Comput. Chem. Eng. 27, pp. 951–964

(2003).

[3] H. Von Sosen, I. Folds and bifurcations in the solutions of semi-explicit differential-

algebraic equations. II. The recursive projection method applied to differential-algebraic

equations and incompressible fluid mechanics, PhD thesis, California Institute of

Technology (1994).

[4] P. Love, Bifurcations in Kolmogorov and Taylor-vortex flows, PhD thesis,

California Institute of Technology (1999).

[5] K. Lust, D. Roose, A. Spence, A. Champneys, An adaptive Newton–Picard

algorithm with subspace iteration for computing periodic solutions. SIAM J. Sci.

Comput. 19, pp. 1188–1209 (1998).

[6] C. Theodoropoulos, N. Bozinis, C. Siettos, C. Pantelides, I. Kevrekidis, A

stability/bifurcation framework for process design, Presented at Annual Meeting of the

American Institute of Chemical Engineers, AIChE, (2001).

[7] C. Gear, I. Kevrekidis, C. Theodoropoulos, ‗Coarse‘ integration/bifurcation analysis

via microscopic simulators: Micro-Galerkin methods. Comput. Chem. Eng. 26, pp. 941–

963 (2002).

[8] J. Moller, O. Runborg, P. Kevrekidis, K. Lust, I. Kevrekidis, Equation-free, effective

computation for discrete systems: A time stepper based approach. Int. J. Bifurcat.

Chaos 15, pp. 975–996 (2005).

[9] C. Theodoropoulos, Y. Qian, I. Kevrekidis, ―Coarse‖ stability and bifurcation

analysis using time-steppers: A reaction–diffusion example, In Proceedings of the

National Academy of Sciences of the United States of America 97, pp. 9840–9843

(2000).

[10] G. Pashos, E.D. Koronaki, A.N. Spyropoulos, A.G. Boudouvis, Accelerating an

inexact Newton/GMRES scheme by subspace decomposition. Appl. Num. Math.,

doi:10.1016/j.apnum.2009.08.003 (2009).

[11] H. Jarausch, W. Mackens, Solving large nonlinear systems of equations by an

adaptive condensation process. Numer. Mathem. 50, pp. 633–653 (1987).

[12] P. Gresho, R. Sani, Incompressible Flow and the Finite Element Method:

Advection–Diffusion and Isothermal Laminar Flow, John Wiley and Sons (1998).

[13] A. Yeckel, J. Derby, Parallel computation of incompressible flows in materials

processing: Numerical experiments in diagonal preconditioning. Parallel Comput. 23,

pp. 1379–1400 (1997).

[14] http://www.fluent.com

[15] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid

dynamics. The finite volume method, 2
nd

 Edition, Prentice Hall (2006)

[16] FLUENT, FLUENT Documentation, User Guide, Version 6.3. (2006)

[17] http://www-unix.mcs.anl.gov/mpi/

[18] G.E. Karniadakis and R.M. Kirby II, Parallel Scientific Computing in C++ and

MPI, Cambridge University Press (2003).

http://www.fluent.com/
http://www-unix.mcs.anl.gov/mpi/

George Pashos, Nikolaos Cheimarios, Eleni D. Koronaki and Andreas G. Boudouvis

 13

[19] R.B. Lehouqc, D.C. Sorensen and C. Yang, Arpack user's Guide, solution of Large-

Scale Eigenvalue Problems with implicitly Restarted Arnoldi Methods, SIAM (1998).

[20] G. Pashos, Large-Scale, nonlinear computations with parallel iterative methods-

applications in the analysis of transport phenomena, PhD thesis, National Technical

University of Athens (2009).

	V European Conference on Computational Fluid Dynamics
	The recursive projection method
	The lid-driven cavity problem
	The newton/GMRES scheme
	the cfd code fluent
	The RPM-assisted implementation of fluent
	Acceleration
	The principal goal of combining the RPM with FLUENT is making the overall solution procedure more efficient, i.e. reduce the number of iterations and the solution time. This indeed is achieved with the proposed approach. In this implementation the fun...
	Table 1: Effect of RPM on the total number of function evaluations and CPU time over a range of Re numbers.
	Table 3: Execution time for stand-alone FLUENT and the RPM-assisted FLUENT using the serial and the parallel solver of FLUENT (CORTEX).
	Since the RPM treats the FLUENT iterations as “black box”, it goes without saying that it can be transparently applied in conjunction with the parallel solver CORTEX built into the FLUENT package. It is worth noting that the RPM processes may be enti...
	Nonlinear features

