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Abstract. A computational shell-like method is proposed, based on the Recursive 

Projection Method (RPM) in order to accelerate large-scale CFD computations. The 

method is wrapped around a home-made Galerkin/finite element code and also the 

commercial finite volume code FLUENT. For both cases, it does not require any 

intervention on the CFD codes. The RPM decomposes the solution subspace into two 

subspaces, the one that contains the critical eigenspace and its orthogonal complement. 

The former subspace contains those eigenvalues that are about to cross the unit circle 

thus signaling instabilities associated with change of stability of the computed solutions 

or with failures of the numerical scheme that slow down the convergence process; it is 

treated separately, which results in acceleration of the numerical scheme, whether it is 

FLUENT or the finite element code. The latter subspace contains the well-behaved 

eigenvalues that are closer to the center of the unit circle and pose no ‘threat’ to the 

numerical stability of the scheme; this subspace requires no special treatment. A 

welcome by-product of the proposed method is the extraction of useful information 

regarding the critical eigenspace that can trace the flow instabilities. This is 

particularly interesting in the case of the commercial package since eigenvalues and 

eigenvectors are not provided by FLUENT. The case study is the 2D lid-driven cavity, a 

standard benchmark problem for CFD codes that has recently rekindled the scientific 

interest on the aspect of tracing its instabilities. The RPM manages to accelerate the 

convergence process of FLUENT, i.e. it reduces the number of total iterations required 

to converge. The RPM wrapped around the finite element code, besides providing 

acceleration, enables convergence on an otherwise stagnant scheme (Newton/GMRES). 

The computations were performed on a 16-node computational cluster. 
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1 INTRODUCTION 

In recent years, the development of CFD codes is unfolding in multiple levels in 

order to accommodate the need to simulate transport phenomena in complex 

geometries, multiple scales, turbulent and supersonic flows and several simultaneous 

chemical reactions. Each one of these levels are more relevant to one industry than 

another, leading thus inevitably to a plethora of codes: some are general-scope 

commercial packages and others are ―legacy‖ codes developed over the years in a 

particular industry or university focusing on a particular type of application. Whichever 

the case, these codes represent a serious investment in time and money from the 

viewpoint of developers and also end users who dedicate resources to purchase and train 

in a particular software. Nevertheless, the particular needs of an end user may come to 

include additional features such as acceleration or nonlinear features that are not readily 

available by the computational package. It is often the case that the user has limited or 

non-existent access to the source code in order to make the desired alterations and more 

importantly this could prove highly inefficient. It therefore becomes clear that a 

framework should exist that enables the expansion of the current capabilities of a given 

legacy code without any intervention in the code itself. 

This is essentially the scope of this work, which focuses on accelerating legacy codes 

and also extracting useful nonlinear information. The legacy codes in question include a 

―homemade‖ finite element code for the Navier-Stokes equations and also a wide-

spread and established computational package, FLUENT. The test problem was the 

same in both cases, the well known lid-driven cavity problem which has recently 

reignited interest because of its often ambivalent solution space.  

The so-called Recursive Projection Method (henceforth RPM) is ―wrapped‖ around 

the CFD codes as a computational shell in order to accelerate, or even enable 

convergence in some cases as will be discussed in subsequent sections. The RPM was 

introduced by G. Shroff and H. Keller [1] for the stabilization of time-steppers. In this 

work it is implemented on steady state codes which are reformulated in order to assume 

the form  

U
(k+1) 

= F( U
(k)

,λ) (1) 

Here λ is a parameter of the physical system under investigation and U
(k+1)

 ∈ R
N
 is 

the N-dimensional vector that results from a discretization in space at the k+1 iteration 

of the unknown quantities. F:𝐑N × 𝐑 → 𝐑N  is a function of U
(k)

 and it computes an 

updated approximation of the solution. The convergence rate of the fixed point iteration 

(1) deteriorates when a few eigenvalues of the Jacobian matrix FU ∈ R
N×N

 approach the 

limits of the unit circle. The RPM requires consecutive iterates of F in order to 

approximate this ―dangerous‖ eigenspace, separate it from the ―healthy‖ part of the 

spectrum that is close to the origin  and treat it with Newton‘s method using a low 

dimensional Jacobian. 

The RPM, which will be discussed in a subsequent section and in greater detail in [1] 

has been used in conjunction with fixed-point iterative procedures resulting from time 

integrators in order to accelerate stable and even mildly unstable schemes [2]. In the 

thesis of H. Von Sosen [3] the RPM is applied to DAEs in incompressible flow 

computations. P. Love [4] applied the RPM to Kolmogorov and Taylor-vortex flows. 

The RPM has also been used successfully for detection of stable and unstable periodic 

orbits of large-scale dynamical systems [5] as well as of periodically forced systems [6]. 

Furthermore, a RPM-based method was proposed, in order to perform ‗coarse‘ stability 

analysis using microscopic evolution rules directly [7, 8, 9]. Recently the RPM has been 

used to accelerate a Newton/GMRES(m) scheme [10] and this philosophy will also be 
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demonstrated in this work in comparison to the application of the method around the 

commercial CFD package FLUENT.  

Finally it is worth noting that in the current version of FLUENT (ANSYS 12) the 

RPM is implemented as an option for the stabilization of the solution of the linear 

system in the Multigrid solver. Nevertheless the proposed approach treats FLUENT as a 

―black box‖ and does not intervene in any internal solver; in fact it may be implemented 

in conjunction with the RPM in the Multigrid solver. In this work the RPM is 

―wrapped‖ around a parallel implementation of FLUENT for increased acceleration. 

2 THE RECURSIVE PROJECTION METHOD 

The solution of parameter-dependent, nonlinear steady state problems often leads to 

recursive fixed-point procedures of the form of Eq. (1). In this work, the role of F ∈ R
N
 

is assumed by two different solvers: in the first case, it is the result of the Newton 

iteration that yields the solution approximation of the nonlinear system at the (k+1)th 

iteration; in this case F is provided by a home-made code of the Galerkin/finite element 

discretization of the Navier-Stokes equation for the lid-driven cavity problem.  In the 

second case the same physical problem is solved with the finite volume code FLUENT 

and F is also an updated approximation of the solution. The convergence properties of 

iteration (1) are determined by the spectrum of the Jacobian matrix FU ∈ R
N×N

 and in 

particular the usually few eigenvalues that reach and eventually cross the limits of the 

unit circle. Due to the large number of degrees of freedom, N, it is not efficient to 

compute and store FU but with the help of the RPM it is possible to approximate the part 

of the spectrum that is responsible for the deterioration of the convergence rate. Here we 

discuss briefly how this is done. The method is described in detail by Shroff and Keller 

[1] and in a family of related ‗Newton–Picard‘ methods in several theses (e.g. [3]). 

Along the same line is earlier work by Jarausch and Mackens [11] who propose a so-

called ‗adaptive condensation‘ method for symmetric systems. 

Consider the invariant subspace P, that corresponds to the, usually few, 

eigendirections in which the linearized map is slowly contracting or even slowly 

expanding. Let Q be its orthogonal complement. By P and Q we also denote the 

orthogonal projectors of R
N
 on P and Q respectively. The solution U is decomposed 

into p and q such that U = p +q, where p and q are the projections of F (U,λ) onto P and 

Q , respectively. Under certain assumptions, the RPM stabilizes fixed-point iterative 

procedures such as (1) by first computing an approximation of P and consequently of Q. 

The projection p is then computed by performing a Newton‘s method step on P; q is 

determined by the projection of F (U,λ) on Q. Subsequently, the Picard iteration acts on 

the sum, U = p +q. The fixed-point iteration is stable when all the eigenvalues of the 

matrix FU (U,λ) ≡ ∂ F /∂U, lie in the unit disk. The stabilized iterative procedure takes 

the form of Algorithm 1. 

 

Algorithm 1 

 

(i) p
(0)

 = PU
(0)

, q
(0)

 = Q U
(0)

 

 

(ii) Do until convergence: 

 

p
(k+1)

 = p
(k)

 + (I − P FU(U
(k)

,λ)P)
−1

(P FU(U
(k)

,λ)- p
(k)

) (Newton step) 

q
(k+1

) = QF(U
(k)

,λ) (fixed-point iteration). 

 

(iii) U
(kfinal)

 = p
(kfinal)

 +q
(kfinal)

. 
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In practice after a prescribed number of outer — inexact Newton, or FLUENT — 

iterations is performed and convergence is deemed too slow, the RPM intervenes; every 

kmax iterations the RPM uses the last n + 1 iterates in order to compute, using the 

modified Gram–Schmidt algorithm, an orthonormal basis of the subspace that is 

spanned by the sequence of n vectors 

{Δq
(i)

}≡{(q
(kmax)

 −q
(kmax−1)

), . . . ,(q
(kmax−n+1)

 −q
(kmax−n)

)}, i =kmax −n + 1, . . . ,kmax (2) 

It is shown in the literature [4,26] that the above vectors asymptotically lie in the 

dominant eigenspace of the matrix QFUQ which is the eigenspace of FU that 

corresponds to the remaining dominant eigenvalues (i.e. the eigenvalues that are not yet 

included in the subspace P). Let lZ be the number of eigenvalues close to the unit circle 

and the dimension of P. If Z ∈ 𝐑𝑁×𝑙𝑍  is an orthonormal basis of the invariant subspace 

P, then with the above method it is updated with new vectors. 

We will briefly discuss how this is achieved (for more information cf. [1]). For n = 2, 

the set of difference vectors, {Δq
(kmax)

,Δq
(kmax−1)

} is formed from the three last iterates 

of q. The modified Gram–Schmidt procedure [13] is applied to construct a QR-

factorization 

D≡{Δq
(kmax)

,Δq
(kmax-1)

}= 𝐷 𝑇 (3) 

with T ∈  R
n×n 

upper triangular and 𝐷  ∈  R
N×n

 orthogonal. If T11>>T22 then one new 

vector (ndef = 1) is added to the basis Z; otherwise, it is possible that a pair of complex 

eigenvalues approach the limit of stability and two new vectors (ndef = 2) are added in Z. 

The effectiveness of the RPM depends greatly on the assumption that the majority of 

eigenvalues of FU are clustered together whereas only a few eigenvalues (typically no 

more that 10 at worst) increase in magnitude and approach the unit circle. In this work 

the criterion, T11 > 10
3
T22 is used that indicates the relative magnitude of the two 

eigenvalues captured by the method and is deemed an adequate measure of the 

separation of scales assumed by the RPM method. The factor 10
3
 depends on the 

spectrum of FU, but it has been known to work adequately for a broad range of 

applications [2]. In practice, the Jacobian of the Newton step performed on the reduced-

size subspace P, can be written 

T

UH  Z F Z ,∈ 𝐑𝑙𝑍×𝑙𝑍  (4) 

The matrix-vector product FUZ, is computed with differencing 

   i

U i Z

F U εZ ,λ F U,λ
F Z ,i 1,2, , l

ε

 
    (5) 

where lZ is the number of columns of the basis Z. As a result, for each matrix–vector 

computation only an extra function estimation, i.e. the calculation of F(U+εZi,λ) is 

required and not the creation of the full Jacobian (the extra function estimation initiates 

a full cycle of inner iterations). Avoiding, therefore, the construction of large matrices 

and the solution of large eigenvalue problems, it is possible to draw conclusions for the 

stability of F by solving the small simple eigenvalue problem of the matrix H (cf. [1,2]), 

the spectrum of which approximates the dominant spectrum of FU. 

3 THE LID-DRIVEN CAVITY PROBLEM 

The test application in this work is the lid-driven cavity problem which is described 

by the Navier-Stokes equations combined with the continuity equation 
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 
T1

P ( )
t Re


        



u
u u u u  (6) 

0 u  (7) 

where u is the fluid velocity vector in two dimensions, u = (u, v), P is the static pressure 

and Re is the Reynolds number. Eq. (6) is the dimensionless form of the Navier–Stokes 

in stress-divergence form with Re = ρu0L/μ, which is more suitable for computations in 

the large Re regime [12]. Eqs. (6)–(7) are posed in the unit square domain, Ω = [0, 1] × 

[0, 1], with no-slip Dirichlet boundary conditions on the boundaries Γ1,Γ2,Γ3, u|Γ1,Γ2,Γ3= 

0 and a Dirichlet moving boundary condition on Γ0, u|Γ0 = (0, 1); Γ0 = [0]×[0, 1], Γ1 = 

[0, 1]×[1], Γ2 = [1]×[0, 1], Γ3 = [0, 1]×[0]. 

4 THE NEWTON/GMRES SCHEME 

The boundary value problem (6)–(7) along with the boundary conditions is treated 

with the Galerkin/finite element method and the domain Ω is tessellated into a uniform 

grid of quadrilateral Q2Q1 elements, i.e. each velocity component is approximated by 

continuous 2
nd

 order piecewise polynomials and the pressure by continuous 1
st
 order 

piecewise polynomials in each spatial direction. A 40×40 mesh is used that results in N 

= 14,803. The Galerkin/finite element weak formulation of (6)–(7) in steady state and 

for Dirichlet-only boundary conditions casts  

 

u u 1 u u v
u v 2 P dΩ 0

x y Re x x y y y x x


   

            

         
            

   (8) 

 

v v 1 v v u
u v 2 P dΩ 0

x y Re x x y y x y y


   

            

         
            

                  (9) 

 

u v
ψ dΩ 0

x y


  
  

  
      (10) 

 

where 𝜙 and ψ is a set of piecewise biquadratic basis functions and piecewise bilinear 

basis functions, respectively. 

The above set of nonlinear algebraic equations, can be written compactly 

R(U) 0             (11) 

It is solved iteratively for the vector of unknowns U ∈  R
N
, by Newton‘s method, which 

updates at each step, k, the approximation of the solution. The linear system that yields 

the correction for the new approximation reads 

(k) (k) (k)J δU R  , 
N N N NJ , R ,δU  R R R      (12) 

R
(k)

 is the value of the residual at the k
th
 iteration, δU

(k)
 is the correction of the new 

approximation of the solution and J
(k)

 ≡ ∂ R
(k)

/∂U
(k)

 is the Jacobian matrix. As N is 

usually large, the linear system (12) is solved with an iterative, Krylov-type solver, 

namely the restarted GMRES, or GMRES(m). In this context, m is maximum dimension 

of the Krylov basis allowed to be built before the method restarts again. 

The new solution approximation, U
(k+1)

, is then computed 
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 k(k 1) (k) (k)U U δU F(U )             (13) 

Since the Newton iteration is an one-step method, that is, the new solution 

approximation is computed using information from the previous step only, it may be 

considered as a scheme similar to (1) as illustrated in Eq. (13).  

The Newton/GMRES(m) scheme compactly described by Eq. (13) is known to 

stagnate even for low Reynolds numbers [10, 13]. Several values for the parameter 

lfinal=m×restarts are selected and the convergence process is depicted in Fig. 1. Here the 

Reynolds number is very low, namely Re=10 and the total number of degrees of 

freedom N=14,803. The convergence rate is generally steep until the residual of the 

Newton iteration reaches 10
-4

 but subsequently the convergence rate greatly 

deteriorates. Even for lfinal=150 with m=30 and restarts=5, the residual drops but not at a 

satisfactory rate. 

 

 

Figure 1: Convergence rates of the Newton iteration of the lid-driven cavity problem with the stand-alone 
Newton/GMRES; k is the number of Newton iterations; different values of input parameters are: lfinal = 30 

(m = 30, restarts = 1), lfinal = 70 (m = 70, restarts = 1), lfinal = 150 (m = 150, restarts = 1), lfinal = 150 (m = 

30, restarts = 5); N = 14803; Re = 10; U(0) = 0. 

 

Figure 2: Convergence rates of the outer iteration of the lid-driven cavity problem with the RPM-assisted 
Newton/GMRES for different values of kmax; lfinal = 250 (m = 50, restarts = 5); tolnewton = 10−6; N = 14803. 

(a) Re = 500; U(0) = 0; (b) Re = 5500; U(0)(Re = 5500) = U(kfinal)(Re = 5000). 

 

In this work (and in more detail in [10]), the RPM is wrapped around the 

Newton/GMRES scheme resulting from the discretization of the Navier-Stokes 
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equations in the lid-driven cavity problem. The RPM-assisted Newton/GMRES, with 

zero initial guess [see Fig. 2 (a)], avoids stagnation even at large values of Re (Re = 

5500) [see Fig. 2 (b)]. The parameter that affects the convergence rate is the frequency 

kmax with which Z is updated. By reducing it, the total number of outer iterations, kfinal, 

is also reduced as shown in Fig. 2(a) and Figure 2(b). However, frequent updates will 

also require evaluations of the derivative FUZ which requires that F is computed an extra 

lZ times. In turn this initiates lZ full cycles of inner iterations. Note that the basis Z, 

which is initially null, is forced to be expanded by one column each time the maximum 

number of iterations, kmax, is reached. This potentially lowers the quality of the updated 

basis but keeps the extra F calculations at a minimum. 

5 THE CFD CODE FLUENT 

The computational fluid dynamics (CFD) problem defined in Section 3 [Eqs. (6)-(7)] 

is also solved numerically with the commercial CFD code FLUENT [14] where the 

finite volume method (FVM) [15] is used. The continuity and the components of the 

momentum equation in steady state for an incompressible fluid, can be written in a 

general form in terms of a variable Φ as 

   
1


    u                                               (14) 

where ρ is the density of the fluid, u is the velocity vector and Γ the diffusion 

coefficient. The computational field is discretized in elementary control volumes. For 

the CFD problem concerned here a 120x120 mesh was used. The key step in the FVM 

is the integration of Eq. (14) over each elemental control volume (CV). The latter yileds 

   
1

   
CV CV

dV dV


     u                                  (15) 

For the solution of Eq. (15) FLUENT‘s pressure-based solver was used along with 

the ―coupled algorithm‖ [16]. The ―coupled algorithm‖ solves the momentum and 

continuity equations simultaneously. The full implicit coupling is achieved through an 

implicit discretization of pressure gradient terms in the momentum equations, and an 

implicit discretization of the face mass flux [16]. The ―algebraic‖' multigrid scheme is 

used for the solution of the coupled, discretized equations [16]. 

The RPM, programmed in MATLAB in this work, is used as a computational shell 

―wrapped around‖ FLUENT. The communication of the RPM and FLUENT is 

performed by User Defined Functions (UDFs) [16]. The information can be transferred 

directly to FLUENT by using libraries, written in C/C++ or Fortran, namely dlls on 

windows operating systems or so on linux operating systems.  

The computations were performed on a 16-node distributed memory cluster, called 

Pegasus. Each node of Pegasus has two Intel Xeon processors at 3 GHz and 2 Gb of 

RAM. The nodes are interconnected with two networks: Myrinet and Gigabit Ethernet. 

Administration is performed via the Gigabit Ethernet network and the Myrinet network 

is used only by Message Passing Interface (MPI). MPI is a library specification for the 

exchange of computational data between the processors, proposed as a standard by a 

broadly based committee of vendors, implementors and users [17, 18]. MPI can be used 

from both distributed and shared memory computers. The parallel solver of FLUENT, 

namely CORTEX [16], uses MPI. Pegasus runs under the freeware operating system 

Linux for clusters, Rocks 4.1.   
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6 THE RPM-ASSISTED IMPLEMENTATION OF FLUENT 

6.1 Acceleration 

The principal goal of combining the RPM with FLUENT is making the overall 

solution procedure more efficient, i.e. reduce the number of iterations and the solution 

time. This indeed is achieved with the proposed approach. In this implementation the 

function evaluation, F(U) of (1), is the result of nFLUENT=80 iterations of the selected 

FLUENT solver with initial guess U. Therefore, each fixed-point, or outer iteration 

refers to this prefixed number of FLUENT or, inner iterations. The stand-alone 

FLUENT code is compared to the RPM-assisted implementation over a range of 

Reynolds numbers. In each case the initial guess, U
(0)

, is the solution at Re number 

which is smaller by 1000 that the one sought. The achieved acceleration both in terms 

of number of function evaluations and speedup, i.e. time of stand-alone iteration over 

time of RPM-assisted iteration, is summarized in Table 1. The function evaluations 

performed with the RPM-assisted code, include the extra evaluations needed in order to 

build and update the basis. In each case the basis required by the RPM consists of 2 

basis vectors. The overall speedup ranges from 1.22 to 1.37 leading to an average 25 % 

reduction in CPU time.   

Reynolds 

number 

Function 

evaluations, 

stand-alone 
FLUENT 

time (sec), 

stand-alone 
FLUENT 

Function 

evaluations 
with RPM 

time (sec), 

RPM-
FLUENT 

Speedup 

4000 11 315.8 8 229.7 1.37 

5000 11 315.8 9 257.8 1.22 

6000 14 373.1 10 286.4 1.30 

7000 15 401.7 11 315.1 1.27 

Table 1: Effect of RPM on the total number of function evaluations and CPU time over a range of Re 

numbers. 

Reynolds number 
Function 

evaluations, F(U) 

time 

(sec) 
speedup  

4000 8 229.7 1.37 

5000 4 117.7 2.68 

6000 4 117.7 3.17 

7000 5 145.7 2.76 

 

 

Table 2: RPM-assisted parameter continuation; time and speedup in relation to stand-alone FLUENT 

implementation. 

 

The effect of the RPM becomes more important in the context of parameter 

continuation as demonstrated in Table 2. Here, the RPM basis is built once for the first 

parameter value, i.e. Re=4000, and it is used for the subsequent Re numbers as well. As 

long as the low-dimension matrix H=Z
T
FUZ, contains an adequate approximation the 

dominant spectrum of FU, the basis Z, need not be reevaluated. The computational tools 

for evaluating the ―quality‖ of the spectrum of the matrix H are hardwired into the RPM 

and the user need not make any interventions. In this implementation the speedup 

reaches 3.1, which means that for a single Re number the iteration convergence is 70% 

quicker than the stand-alone FLUENT iteration. 
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 FLUENT RPM-FLUENT 

#CPUs 
time 

(sec) 

time 

(sec) 

1 401.7 315.1 

5 114.7 90.0 

Table 3: Execution time for stand-alone FLUENT and the RPM-assisted FLUENT using the serial and the 

parallel solver of FLUENT (CORTEX). 

Since the RPM treats the FLUENT iterations as ―black box‖, it goes without saying 

that it can be transparently applied in conjunction with the parallel solver CORTEX 

built into the FLUENT package.  It is worth noting that the RPM processes may be 

entirely serial regardless of the iteration F. Here the stand-alone FLUENT code and the 

RPM-assisted iteration are solved in 1 and 5 CPUs. Table 3 summarizes the execution 

time in each case and it becomes clear that the effect of the RPM is beneficial even for 

the parallel implementation of FLUENT reducing the solution time by more than 20 %. 

6.2 Nonlinear features 

A valuable byproduct of the RPM-accelerated procedure is the extraction of 

dominant eigenvectors of F(U) from the eigenvectors of the reduced Jacobian matrix H. 

Specifically, the eigenvectors, yi ∈ 𝐑N ,  of FU are defined as yi=Zvi, where vi ∈ 𝐑lZ  are 

the eigenvectors of H and Z ∈ 𝐑N×lZ  is the basis computed in the course of the RPM 

procedure. In principle, though, the interesting part of the spectrum in terms of 

nonlinear analysis, is the dominant spectrum of the Jacobian of the discretized physical 

problem, J, which is absolutely unavailable. Nevertheless, when the iteration F is stable, 

it is a fair assumption that the dominant spectrum of FU contains the dominant spectrum 

of the Jacobian of the discretized physical problem.  

The distinction between the dominant eigenmodes of the iteration and those of the 

physical problem has been demonstrated in detail in [2] for systems of partial 

differential equations and systems of partial differential and algebraic equations. In the 

current implementation, where we are dealing with a ―black box‖ type of code, we can 

verify that assumption by comparing the eigenvectors yi with the ones derived from 

perturbation analysis of the transient Navier-Stokes. Let ),( up  be a perturbation that is 

added to the steady solution of the continuity equation and the transient Navier-Stokes 

that gives  

t

sp p e p  , 
t

s e u u u                                         (16) 

where ),( ssp u  are the steady solutions. Eqs. (16) are replaced in the continuity equation 

and the transient Navier-Stokes that yields 

 
1

( ) ( ) ( )T

s s p
Re

           u u u u u u u         (17) 

0 u      (18) 

Eqs. (17)-(18) are linear and are treated with the GFEM method that yields the 

generalized eigenvalue problem 

0 0

0

p p
J

M


     
      

     u u
        (19) 
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where J is the Jacobian matrix as defined in paragraph 4 and M is the mass matrix 

defined as 


 dM T . The solution ),( ssp u  is stable when the perturbation that is 

applied goes to zero with time, i.e. the real parts of the eigenvalues, μ, are negative, 

otherwise the solution is unstable. Working on a 200×200 mesh for Re=5000, only a 

handful of eigenvalues and eigenvectors are computed using ARPACK routines [19] 

(for more results and detailed analysis cf. [20]). The computed eigenmodes are the ones 

closest to the origin along the imaginary axis and are shown in Fig. 3 and Fig. 4. 

 

Figure 3: Pressure contours of the real parts of the pressure eigevector for Re=5000 

 

Figure 4: Streamlines created from the real parts of the velocity component of the eigenvectors for 

Re=5000 

The eigenvectors derived by the RPM-assisted iteration, shown in Figures 5 and 6 

are in agreement with the first and third eigenvector of the first row in Figures 3 and 4 

and they correspond to eigenvalues that are μ1= -0,012+1,412e
-16

i and μ2=-0,083-
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1,639e
-15

i. The corresponding dominant eigenvalues of FU are 0.296 and 0.0099 

respectively which lie far away from the limits of the unit circle. This indicates that the 

iteration F ―remaps‖ the Jacobian J into the matrix FU with a more favorable spectrum 

signifying that the iteration F is numerically very stable. 

 

 

Figure 5: Pressure contours from RPM-derived eigenvectors; Re=5000 

 

 

Figure 6: Streamlines created from the RPM-derived eigenvectors; Re=5000 

7 CONCLUSIONS 
 

The Recursive Projection method is successfully applied in conjunction with a 

legacy finite element code and also a ―black box‖ commercial package, FLUENT. The 

RPM enabled convergence on a Newton/GMRES(m) implementation of the 

incompressible Navier-Stokes equations for the lid-driven cavity problem. The stand-

alone code results in stagnation for various parameters of GMRES(m) yet combined 

with the RPM, convergence is quick and seamless over a range of parameter values for 

the method, such as kmax. Wrapped around FLUENT, significant acceleration is 

observed especially in the context of parameter continuation since the method retains 

useful information for subsequent parameter values. Therefore it economizes on basis 

building calculations which are the most computationally expensive part of the RPM. 

The method can be transparently combined with the parallel FLUENT solver CORTEX. 

A useful by-product of the RPM-FLUENT implementation, is the extraction of 

dominant eigenmodes of the discretized physical problem which are otherwise 

unavailable from FLUENT. The derived eigenvectors result from the solution of a low-

dimensional eigevalue problem for the reduced Jacobian H which is computed in the 

course of iteration. 
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