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Abstract. In this paper we present a new error indicator for approximate solutions of

elliptic problems. We discuss error indication with the paradigm of the diffusion problem,

however the techniques are easily adaptable to more complicated elliptic problems, for

example to linear elasticity, viscous flow models and electromagnetic models. The proposed

indicator does not contain mesh dependent constants and it admits parallelization.
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1 INTRODUCTION

Various a posteriori indicators of approximation errors are widely used in computer
simulation. Error indicators for finite element approximations are usually based either on
evaluation of a weak residual norm or on post-processing (e.g., gradient averaging) and are
applicable only to Galerkin approximations. In this paper, we discuss a different class of
error indicators that follow from a posteriori estimates of the functional type (a consequent
exposition of the corresponding theory is given in the books5,7). These estimates do not
contain mesh dependent constants, do not exploit specific properties of the numerical
method or approximations used and are valid for any conforming approximation.

In this paper, we modify some ideas of the functional approach and derive error in-
dicators of a new type. The indicators contain the corresponding numerical solution v,
problem data and an arbitary function y, which is to be selected in a suitable way. For
this task, we apply two different methods (global and local) and compare their efficiency.

Let Ω be a bounded and connected domain in R
d with Lipschitz boundary ∂Ω. Consider

the the following problem: find a scalar function u such that

−divA∇u = f in Ω, (1)

u = 0 on ∂Ω, (2)

where A is a symmetric d × d matrix with coefficients in L∞(Ω) and f ∈ L2(Ω). The

generalized solution to this problem is a function u ∈
◦

H1(Ω) that satisfies the relation

∫

Ω

A∇u · ∇w dx =

∫

Ω

fw dx, ∀w ∈
◦

H
1(Ω), (3)

where
◦

H1(Ω) is the space of functions from H1(Ω) which vanish on ∂Ω. For this problem
the natural energy norm is defined as

||| u |||2:= ‖∇u‖2
A
:=

∫

Ω

A∇u · ∇u dx.

We denote by ‖ · ‖ the L2 norm of scalar- and vector-valued functions.

2 ERROR MAJORANT AND INDICATOR

Guaranteed error bounds for the problem (1)-(2) are derived by transformations of the
integral identity (3), which lead to the following result5,7.

Proposition 2.1. Let u be the exact solution and v ∈
◦

H1(Ω) a numerical solution to the

problem (1)-(2). Then

||| u− v |||≤ M⊕(v, y) , ∀y ∈ H(div,Ω),
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where

M⊕(v, y) := CΩ‖f + div y‖ + ‖y −A∇v‖A−1 . (4)

Here CΩ is the constant in the Friedrichs inequality and y ∈ H(div,Ω) is an arbitary

function.

The quality of the majorant (4) depends on how well the arbitary function y represents
the exact flux p = A∇u. This estimate does not contain a gap between the exact error
and the estimate. This fact is easy to establish by replacing y with the exact flux. The
first term vanishes and the majorant becomes

M⊕(v, p) = ‖∇(u− v)‖A =||| u− v ||| .

Indeed, if the free function y is chosen properly, the first term of majorant (4) is small.
Therefore it is reasonable to assume that we can define the following error indicator from
the latter term of the majorant.

Proposition 2.2. Let u be the exact solution and v ∈
◦

H1(Ω) a numerical solution to the

problem (1)-(2). We define the error indicator

I(v, y) := ‖y −A∇v‖2, (5)

where y ∈ H(div,Ω) is an arbitary function. The indicator I estimates the distribution

of ||| u− v |||2 in the domain Ω.

3 OBTAINING THE ARBITARY FUNCTION y

The majorant and the indicator contain the arbitary function y, which we call the
flux. In this section we show several ways how to obtain this parameter for the diffusion
problem. These same methods can be used also for other elliptic problems.

The problem of finding y for the diffusion problem burns down to approximating the
exact flux p = A∇u. There are several ways to obtain estimates to the exact flux.
First we discuss the global minimization technique, and then we propose a (new) local
minimization procedure.

3.1 Global minimization

One way to obtain good approximations for the exact flux is to minimize the majorant
M⊕ defined by (4) globally with respect to y. For this we transform the majorant to a
quadratic form. This is done by squaring the majorant and using the algebraic inequality
(a+ b)2 ≤ (1 + β)a2 + (1 + 1

β
)b2 which holds for all β > 0. The estimate proposed in 2.1

becomes

||| u− v |||2≤ M(v, y, β) := (1 + β)C2
Ω‖f + div y‖2 +

(

1 +
1

β

)

‖y −A∇v‖2
A

−1 . (6)
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Minimizing (6) globally results in the following finite element problem for y ∈ H(div,Ω):

(1 + β)C2
Ω

∫

Ω

div y div φ dx+

(

1 +
1

β

)
∫

Ω

A−1y · φ dx =

= −(1 + β)C2
Ω

∫

Ω

fdiv φ dx+

(

1 +
1

β

)
∫

Ω

φ · ∇v dx. ∀φ ∈ H(div,Ω).

A natural choise to solve this problem is to use Raviart-Thomas elements4,6. This method
produces good approximations for the exact flux, but is relatively time-consuming. For
error indication purposes less expensive methods are preferrable.

3.2 Averaging procedures

A very popular method to approximate the exact flux is to post-process the approxi-
mate flux A∇v1,3,8. If v belongs to the space H1(Ω), then its gradient ∇v is constant in
each element. If also the matrix A is constant in each element, we can apply very simple
averaging procedures to the approximate flux.

A common way is to average the approximate flux to nodes: for each node, calculate
A∇v in each related element and average the values weighted by the areas of respective
elements. We denote this procedure by GN .

It is also possible to average the normal components of the approximate flux. In 2D
these values are averaged to edges of elements. Let cnl denote the unknown degree of
freedom related to edge enl with edge length |enl|. Here the subindex letters n and l

denote the numbers of the nodes which define the edge. We denote by Tknl, Tnml the
elements related to this edge and by nknl, nnml their respective unit outward normals on
the boundary. This setting is visualized in Figure 1. The following equation averages the
normal component of A∇v to the edge enl:

cnl =
|enl| (A∇v|Tknl

· nknl −A∇v|Tnml
· nnml)

2
(7)

In 3D the normal components are averaged in a similiar way. The only difference is
that now we average the values to faces instead of edges. Let cnlm denote the unknown
degree of freedom related to face fnlm whose area is |fnlm|. We denote by Tknlm, Tomln the
elements related to this face and by nknlm, nomln their respective unit outward normals on
the boundary, see Figure 1. The following equation averages the normal component of
A∇v to the face fnlm:

cnlm =
|fnlm| (A∇v|Tknlm

· nknlm −A∇v|Tomln
· nomln)

2
(8)

We denote by GRT the procedure, which calculates the values of (7) for all edges or
(8) for all faces in a given mesh. It should be noted that the operator GRT essentially
produces functions from linear Raviart-Thomas finite element space.
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Figure 1: Two neighboring elements in 2D and 3D.

3.3 A post-processing method

In this section we present a post-processing method which gives even better approxi-
mations for the exact flux A∇u. Assume that the initial approximation is obained by the
averaging operator GRT defined in the previous section. In our previous paper2 we made
further post-processing of the approximate flux (for the poisson problem) by minimizing
only a part of the majorant. In this paper we take this same idea further and choose
to post-process y = GRT (A∇v) by minimizing the whole majorant M⊕ on every pair of
neghboring triangular elements. Next we show how to do this in 3D (the 2D case is very
similar).

Since y is computed by the averaging operator GRT , it can be represented as

y =
NF
∑

α=1

cαφα,

where NF is the number of faces, cα are the degrees of freedom computed by GRT , and
φα are the global basis functions for linear Raviart-Thomas finite element space. To
conveniently mark local basis functions related to two particular elements (see Figure 1)
we introduce the index-sets

I1 = {nlm,mlk, kln, nmk}, indices to faces of element Tknlm,

I2 = {mln, nlo, olm,mno}, indices to faces of element Tomln.

Our goal is to minimize the quantity

J (y) :=

∫

Tknlm∪Tomln

(

C(f + div y)2 + (y −A∇v) · (A−1y −∇v)
)

dx

by optimizing the degree of freedom cnlm (= cmln) shared by the two elments. Here
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C = (1 + β)CΩ(1 +
1
β
)−1. This one-parametric problem is easily solved:

∂J

∂cnlm
= 2

∫

Tknlm

(

C
(

f +
∑

α∈I1

cαdiv φα

)

div φnlm − φnlm · ∇v +
∑

α∈I1

cαφα ·A−1φnlm

)

dx+

+ 2

∫

Tomln

(

C
(

f +
∑

α∈I2

cαdiv φα

)

div φmln − φmln · ∇v +
∑

α∈I2

cαφα ·A−1φmln

)

dx = 0.

From the above we can solve a new value for the degree of freedom cnlm:

cnlm =
A

B
, (9)

where

A =
∫

Tknlm

(

C
(

f +
∑

α∈I1\{nlm}

cαdiv φα

)

div φnlm − φnlm · ∇v +
∑

α∈I1\{nlm}

cαφα ·A−1φnlm

)

dx+

+

∫

Tomln

(

C
(

f +
∑

α∈I2\{mln}

cαdiv φα

)

div φmln − φmln · ∇v+
∑

α∈I2\{mln}

cαφα ·A
−1φmln

)

dx,

and

B = −

∫

Tknlm

(

C(div φnlm)
2+φnlm·A

−1φnlm

)

dx−

∫

Tomln

(

C(div φmln)
2+φmln·A

−1φmln

)

dx.

We denote by P the procedure, which calculates the values of (9) for all degrees of freedom
in a given mesh.

It should be noted, that the operator P can be applied to y as many times as wanted,
and each time the value of J (y) decreases. In other words, the process is monotone. This
post-processing method is also practical since it easily adapts parallelization.

4 NUMERICAL EXAMPLES

In this section, we test the performance of the error majorant M⊕ and indicator I

with various methods of selecting y, which were derived in the previous section. For the
purpose of measuring the performance of the majorant, we define the efficiency index

Ieff =
M⊕

||| u− v |||
.

The performance of the error indicator is tested by comparing the error distribution
provided by the indicator to the exact error distribution.
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To solve the model problem (1)-(2) we use the linear H1 finite element. For the
arbitary function y we use both the post-processing operators GN , GRT , and P and the
global minimization method. For global minimization, we use the linear Raviart-Thomas
finite element. In all numerical examples, the arbitary function y is computed on the
same mesh on which the original numerical approximation v was computed.

Example 1:

Ω = [0, 1]2, f = 2(x1(1− x1) + x2(1− x2)),

A = {a11 = a22 = 1, a12 = a21 = 0}.

For this problem the exact solution is known. Table 1 shows how the integral J (y) and
the efficiency indexes Ieff for the upper bound M⊕(v, y) behave with different y and
different mesh-sizes. Post-processing methods GN and GRT fail to produce a flux that
would satisfy the equilibrium condition, div y+f = 0. For this reason, they do not provide
a very accurate upper bound, and the values of Ieff are relatively large. By further post-
processing, the value of the efficiency index can be decreased close to the one obtained by
globally solved yglo. According to numerical experiments, five iteration rounds are enough
independent of the mesh size.

Example 2:

Ω = [0, 1]2, f = 2(10x1(1− x1) + x2(1− x2)),

A = {a11 = 1, a22 = 10, a12 = a21 = 0}.

Also for this problem the exact solution is known. Figure 2 shows how the indicator I

performs with different y in the second test example. Those elements, on which the error
is greater than the average error, are marked with black color. In the top row, the leftmost
picture is the exact error distribution. Here again yglo denotes the function obtained by
global minimization. As expected, global minimization of the upper bound gives good
results. By using the operators GN and GRT we obtain good representations of error
distributions. Moreover, further equilibration of GRT (A∇v) by using the operator P does
clearly improve the performance of I.

Example 3:

Ω = [0, 2]2,

f =

{

1 for x1 ∈ (0.5, 1.5)
0 otherwise

,

A =

{

{a11 = 1, a22 = 1, a12 = a21 = 0} for x1 ∈ (0.5, 1.5)
{a11 = 10, a22 = 1, a12 = a21 = 0} otherwise

.

For this problem we do not know the exact solution. A reference solution was calculated
in a very fine mesh to obtain a reference error distribution. From Figure 3 we see that
this example is much more difficult compared to the previous example.
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||| u - v |||2 I : y = yg l o I : y = GN (A∇v )

I : y = GR T(A∇v ) I : y = P 1GR T(A∇v ) I : y = P 15GR T(A∇v )

Figure 2: Performance of the post-processing operator P and the indicator I for Example 2.

||| u - v |||2 I : y = yg l o I : y = GN (A∇v )

I : y = GR T(A∇v ) I : y = P 1GR T(A∇v ) I : y = P 15GR T(A∇v )

Figure 3: Performance of the post-processing operator P and the indicator I for Example 3.
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82 elems 1342 elems 8562 elems
function y J Ieff J Ieff J Ieff
GN (A∇v) 2.36e-3 2.46 2.48e-4 4.02 6.09e-5 6.53
GRT (A∇v) 3.24e-3 2.88 6.42e-4 8.35 2.00e-4 16.81
P 1GRT (A∇v) 2.40e-3 2.06 3.04e-4 3.80 8.10e-5 6.59
P 2GRT (A∇v) 2.17e-3 1.85 1.80e-4 2.25 3.93e-5 3.21
P 5GRT (A∇v) 2.07e-3 1.77 1.44e-4 1.79 2.34e-5 1.91
yglo 2.00e-3 1.75 1.34e-4 1.72 2.06e-5 1.72

Table 1: Integral J (y) and efficiency index Ieff values with different mesh sizes and y for Example 1.

5 CONCLUSIONS

We conclude that in order to compute an efficient upper bound for the approximation
error, the main problem is to obtain well enough equilibrated flux (minimizer of J (y)).
This task can be done with feasible computational effort using the presented new post-
processing technique, which admits parallel processing.

For the purpose of obtaining the error distribution, the examples computed here do
demonstrate some difference between the various post-processing methods tested. The av-
eraging operators alone were able to represent the approximate flux well, but the proposed
post-processing operator P was clearly shown to improve the quality of the approximate
flux. As a natural consequence also the quality of error distributions was better after
applying the post-processing operator P .
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