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Abstract. The paper considers heat transfer characteristics of thin film flow over a hot 
horizontal flat plate resulting from a cold vertical jet of liquid falling onto the surface.  
A numerical solution of high accuracy is obtained for large Reynolds numbers using the 
modified Keller box method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Jian-Jun SHU 
 

 2

1 INTRODUCTION 

As has been noted earlier the draining flow of liquid under gravity through banks of 
horizontal tubes occurs frequently in technological processes involving heat or mass 
transfer.  The mode of drainage may be in the form of droplets, columns or continuous 
sheets.  After having examined the sheet mode of drainage, it is natural to move on to a 
closer inspection of the columnar mode of drainage.  Again, if the film thickness is 
small relative to a typical tube dimension, the impact surface may be regarded as locally 
plane.  Accordingly an initial prototype model for columnar impingement is simply that 
of a vertical round jet striking a plane horizontal surface.  The flow model is thus 
axisymmetric and considerable simplification of the governing equations can be made.  
Some detailed understanding of the flow and heat transfer characteristics at the point of 
impingement may be obtained and possible methodologies identified for examining the 
non-axisymmetric flow in due course. 

Analytically Watson [1] found a similarity solution of the boundary-layer equations 
governing such a flow and also considered by approximate methods the initial growth of 
the boundary layer from the stagnation point where the similarity solution does not 
hold.  Chaudhury [2] obtained a supplementary thermal solution using an orthogonal 
polynomial.  Some recent progress [3-6] has been made in investigating various 
problems of a liquid jet impinging on a solid surface.  In this paper, an accurate 
numerical solution is obtained for the heat transfer in the flow of a cold, axisymmetric 
vertical liquid jet against a hot horizontal plate. 

2 GOVERNING EQUATIONS 

The problem to be examined concerns the film cooling which occurs when a cold 
vertically draining column strikes a hot horizontal plate.  Although a column of fluid 
draining under gravity is accelerated and thin at impact, it is reasonable to model the 
associated volume flow as a jet of uniform velocity 0U , uniform temperature 0T  and 
radius 0H  as is illustrated in Figure 1.  The notation 0

2
0 UHQ π=  is introduced for the 

flow rate and a film Reynolds number may be defined as 
ν

00
e

HU
R =  where ν  is the 

kinematic viscosity of the fluid.  When an impinging circular jet strikes a plane surface, 
it experiences on eventually inviscid radially symmetric division and deflection through 

o90 .  In the immediate vicinity of the point of impact, viscous effects begin to influence 
the flow field.  The underlying hydrodynamics of the fluid flow have been delineated 
[1].  Exactly the same physical assessment of the flow field applies as was outlined [3]. 
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Figure 1: The vertical jet and resultant film for the axisymmetric flat plate 

 

 
(i) Imbedded stagnation boundary layer 
(ii) Outer inviscid deflection region 
(iii) Quasi Blasius viscous diffusion 
(iv) Transition around viscous penetration 
(v) Similarity film flow 
The dashed line represents the hydrodynamic boundary layer. 
 

The flow under investigation has been modelled as a steady, axisymmetric flow of 
incompressible fluid.  In the absence of body forces and viscous dissipation, the 
equations expressing conservation of mass, momentum and energy are consequently 
 

0V =•∇
r

          (1) 
( ) VPVV 2

rrr
∇+−∇=∇• μρ          (2) 

( ) TkTVC p
2∇=∇•

r
ρ       (3) 

 

where ( )zr v,vV =
r

 are velocity components associated with cylindrical coordinates 
( )z,r  measured along the plate from the axis of deflection and normal to the plate 
respectively.  ρ , μ , pC  and k  are the density, dynamic viscosity, specific heat at 
constant pressure and the thermal conductivity of the cooling fluid in the jet 
respectively.  T  and P  are respectively the temperature and pressure within the fluid. 

The specific boundary conditions under which the equations are to be solved closely 
parallel those of Shu and Wilks [3].  In particular, at the wall, the no slip condition and 
the constant temperature wT  require 
 

0,0on,0 ≥==== rzTTvv wzr .      (4) 
 

On the free surface, assuming negligible shear stress and heat flux, requires 
 

( ) 0,at0,0 ≥==
∂
∂

=
∂
∂

+
∂
∂ rrHz

z
T

r
v

z
v zr .          (5) 
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The conservation of volume constraint applies at any given r  station and hence 
 

( )( )
0forconst.,2 0

2
00

≥==∫ rUHdzzrrv
rH

r ππ .           (6) 
 

Under the assumption that the film thickness remains thin relative to a characteristic 
horizontal dimension, a boundary layer treatment of the equations leads to significant 
simplification. 

The following non-dimensional variables are introduced 
 

0

3
1

0
3
1 ,

H
zR

Y
HR

rx e

e

== ,      (7) 

( ) ( )
0

3
1

e

H
rHR

xH = ,             (8) 

2
000

3
2

0

,,,
U
Pp

TT
TT

U
vRV

U
vU

w

wzer

ρ
φ =

−
−

=== .          (9) 

 

In the limit +∞→eR  with x  remaining ( )1O , the following equations are obtained 
 

( ) ( ) 0Vx
Y

Ux
x

=
∂
∂

+
∂
∂      (10) 

2

2

Y
U

x
p

Y
UV

x
UU

∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂           (11) 

Y
p0

∂
∂

=      (12) 

2

2

r YY
V

x
UP

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂ φφφ         (13) 

 

where 
κ
ν

=rP  is the Prandtl number with ν  the kinematic viscosity 
ρ
μ  and κ  the 

thermometric conductivity 
pC

k
ρ

.  In common with standard boundary layer theory (12) 

implies that the pressure across the film remains constant.  In the absence of external 
pressure gradients and with zero shear assumed on the free surface, the pressure term in 
(11) is identically zero. 

In non-dimensional variables the boundary conditions now read 
 

0,0on0 ≥==== xYVU φ              (14) 

( ) 0,at0 ≥==
∂
∂

=
∂
∂ xxHY

YY
U φ     (15) 

( )
0x

2
1YdUx

xH

0
≥=∫ for .            (16) 
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3 NUMERICAL SOLUTIONS 

The continuity equation (10) is eliminated by introducing a stream function ψ  
defined by 
 

xx
V

Yx
U

∂
∂

−=
∂
∂

=
ψψ 1,1 .       (17) 

 

Owing to the geometry, ( )xH  is singular at 0x = .  To remove this singularity, y  and 
( )xh  are introduced and given by 

 

( ) ( )xHxxhYxy == , .                (18) 
 

Substituting equations (17) and (18) into (10)-(16) gives 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
∂∂

∂
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛=

∂
∂

2

22

23

3

yxyxyx
1

y
ψψψψψ               (19) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
∂
∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛=

∂
∂

yxxyx
P

y 2
r

2

2 φψφψφ           (20) 

 

subject to boundary conditions 
 

0,0on0,0,0 ≥===
∂
∂

= xy
y

φψψ        (21) 

( ) 0,at0,0,
2
1

2

2

≥==
∂
∂

=
∂
∂

= xxhy
yy
φψψ           (22) 

2
10,0on1,,

2
1

≤<==== yxyh φψ        (23) 
 

where the initial condition (23) appears due to the original initial condition 
 

r
HzrTTUv

r
HH r 2

0,0on,,
2

2
0

00

2
0 ≤<==== .         (24) 

 

In anticipation of the use of a Keller box method and its attractive extrapolation features 
the differential system (19)-(23) is re-cast as the following first order system 
 

u
y
=

∂
∂ψ  

v
y
u
=

∂
∂  

⎟
⎠
⎞

⎜
⎝
⎛
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−
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⎟
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⎞

⎜
⎝
⎛=

∂
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whose boundary conditions are 
 



Jian-Jun SHU 
 

 6

0x,0y0,0u,0 ≥==== onφψ  

( ) 0,on0,0,
2
1

≥==== xxhywvψ       (26) 

2
1y0,0x1,y,

2
1h ≤<==== onφψ . 

 

The following coordinate transformation, what simultaneously maps the film 
thickness onto the unit interval and removes the Blasius singularity at the origin, is 
introduced 
 

ηξ
ξηξ

−+
==

1
hy,x 3

2

. 
 

The dependent variables are transformed as 
 

( ) ( )

( )
( ) hhww

vvuuf

2
2

42

1,
1
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1

1,
1

,
1

ξ
ξξ
ηξφφ
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ηξ
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+
−+

=
+

=
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=
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The equations to be solved now read 
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ηξηξ

ξ
η −+

−
−+

+
=

1
f

1
hu1f  
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ηξ

ξ
η −+

+
=

1
hv1u  
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( )( )
( )

( )
( )

( )ξξ

η

ηξ
ξξ

ηξ
ξη

ηξ
ξξ

ηξ

vfuuh
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( )
ηξ

ξφη −+
+

=
1
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η
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+
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subject to 
 

0,00,0u,0f ≥==== ξηφ on  

0,10w,0v,
2
1f ≥==== ξηon      (28) 

( ) ( ) 10,0on,,
2
1

00 ≤<==== ηξηφφηffh  
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where the initial profiles ( )η0f  and ( )ηφ0  are found by putting 0=ξ  and 
2
1h =  into 

(27) and solving, subject to conditions 0uf === φ  at 0=η  and 1u = , 1=φ  at 
1=η . 

The parabolic system of equations and boundary conditions (27)-(28) has been 
solved by marching in the ξ -direction using a modification of the Keller box method.  
A non-uniform grid is placed on the domain 0≥ξ , 10 ≤≤η  and the resulting 
difference equations are solved by Newton iteration.  Solutions are obtained on different 
sized grids and Richardson's extrapolation used to produce results of high accuracy.  A 
full account of the numerical method and the details of implementation have fully been 
discussed [3]. 

4 RESULTS 

A typical run has a coarse grid of dimension 4860×  in the (ξ , η ) domain with each 
cell being divided into 1 , 2 , 3  and 4  sub-cells respectively.  Because of the coordinate 
singularity at 0=ξ , 1=η , a non-uniform grid is employed and given by 

( )[ ]5.15.1 1
3
1 ξξξ += sinh , ( ) 5.111 ηη −−=  where ξ  and η  are uniform.  When 

044618955.0≡ξΔ  and 
47
1

≡ηΔ , this gives 004.0~ξΔ  and 003.0~ηΔ  near the 

singularity, which is sufficiently small to give good accuracy, and this enabled us to 
integrate as far as 910~ξ , which is necessary for the profile at infinity to be 
determined with sufficient accuracy.  From the convergence of the extrapolation process 
the absolute error is 7109 −× .  A typical set of numerical data is presented in Table 1. 
 

Table 1: Film thickness, free surface velocity and temperature for the axisymmetric flat plate with 
2Pr =  

 

x  
film 
thickness 
( )xh  

free surface 
velocity 

( )( )xh,xu  

free surface 
temperature 

( )( )xh,xφ  
000.0  500.0  000.1  000.1  
115.0  539.0  000.1  000.1  
197.0  587.0  000.1  000.1  
294.0  659.0  000.1  000.1  
416.0  767.0  981.0  999.0  
520.0  875.0  911.0  989.0  
733.0  191.1  682.0  891.0  
072.1  206.2  368.0  660.0  
669.1  338.6  128.0  389.0  
968.1  930.9  210188.8 −×  310.0  
817.2  742.27  210931.2 −×  185.0  
228.5  210735.1 ×  310685.4 −×  210372.7 −×  
791.10  310520.1 ×  410348.5 −×  210484.2 −×  
010.25  410892.1 ×  510297.4 −×  310031.7 −×  
931.46  510250.1 ×  610504.6 −×  310734.2 −×  

210347.1 ×  610957.2 ×  710749.2 −×  410620.5 −×  
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310073.1 ×  910495.1 ×  1010438.5 −×  510500.2 −×  
410321.1 ×  1210784.2 ×  1310920.2 −×  71000.6 −×  
510385.1 ×  1510212.3 ×  1610531.2 −×  000.0  
610000.1 ×  1810209.1 ×  1910723.6 −×  000.0  

 
Figure 2 shows free surface temperature for various Prandtl numbers.  As rP  

increases, the temperature decrease becomes more gradual. 
 

Figure 2: Free surface temperature for various Prandtl numbers 
 

 
 

5 CONCLUDING REMARKS 

Numerical solutions of high accuracy for the flow of a cold axisymmetric vertical jet 
against a horizontal, flat plate have been obtained for large Reynolds numbers using the 
modified Keller box method.  Here it is to demonstrate the successful, robust Keller-box 
algorithm, which provides a satisfactory methodology for the assessment of practical 
configurations, sufficient for the purposes of engineering practice. 
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