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Abstract. Crystallization is one of the most important processes in chemical and phar-
maceutical industry, as a large amount of chemical and pharmaceutical agents are produced
in crystalline form. The behaviour of industrial crystallizers is often characterised by an
intense interaction between fluid flow and particle formation. To improve the operation of
such systems requires a deepened understanding of the interaction. This can be obtained
from detailed physical process models. Models of adequate complexity comprise up to three
external (spatial) coordinates and several internal (property) coordinates. The numerical
solution of such models is challenging. To enable model based process design and process
control of systems with particle populations in fluid flow, there is a need for reduced mod-
els. The reduced models should be of considerably lower system order than the original
physical models. Their numerical solution should be much easier and faster. On the other
hand, the reduced models should be able to reproduce the system behaviour with sufficient
accuracy in the relevant window of operation conditions and in a relevant range of system
parameters.

In this contribution, the reduced model is obtained from the original model by projection
on a space of problem specific basis functions. The basis functions are computed from
snapshot solutions of the original model in a defined range of model parameters. They
are chosen such that they are able to reproduce the snapshots accurately in the chosen
parameter domain. By Galerkin approximation, a reduction in terms of system order by
a factor of about 500 is achieved. However, the reduction in terms of computational time
is not so good, when POD alone is applied. The speed-up of the reduced model is only by
a factor of 5. Therefore as a second component of the reduction procedure, the best point
interpolation method is used. This accelerates the reduced model considerably without a
noticeable loss of accuracy. The simulation of the final reduced model is about 100–200
times faster than the original model.

1



Mykhaylo Krasnyk and Michael Mangold

1 Introduction

Crystallization is one of the most important processes in chemical and pharmaceutical
industry, as a large amount of chemical and pharmaceutical agents are produced in crys-
talline form. Furthermore, crystallization is an intermediate step used for purification in
many chemical production processes.

The behaviour of industrial crystallizers is often characterised by an intense interac-
tion between fluid flow and particle formation. To improve the operation of such systems
requires a deepened understanding of the interaction. This can be obtained from detailed
physical process models. Models of adequate complexity comprise up to three external
(spatial) coordinates and several internal (property) coordinates. The numerical solution
of such models is challenging. To date, there is no chance to solve crystallizer models
with several internal and external coordinates in real time. Furthermore, the complexity
of these models prohibits their direct application to methods of advanced process con-
trol. To enable model based process design and process control of systems with particle
populations in fluid flow, there is a need for reduced models. The reduced models should
be of considerably lower system order than the original physical models. Their numerical
solution should be much easier and faster. On the other hand, the reduced models should
be able to reproduce the system behaviour with sufficient accuracy in the relevant window
of operation conditions and in a relevant range of system parameters.

The model reduction process consists of lumping in the external coordinates as well as
in the internal coordinates. For both sets of coordinates reduction techniques are available
in the literature. The most widely used class of methods to reduce internal coordinates
are generalised moment methods, see e.g. Marchisio et al. 9 , Grosch et al. 3 For the ex-
ternal coordinates, reduced-basis approximation11,4 or Proper Orthogonal Decomposition
(POD)12 has been applied successfully. The basic idea of this method is to approximate
the model solution by a linear combination of time independent basis functions weighted
by time dependent coefficients. The basis functions are constructed from numerical sim-
ulation results of a detailed reference model. The reduced model consists of ordinary
differential equations for the time dependent coefficients.

While model reduction by POD is widely used in complex fluid dynamics5,8, it has
hardly been applied to population balance systems, so far. One reason may be that the
nonlinear terms in the Navier Stokes equations can be handled rather easily by classical
POD methods that result to quadratic polynomial terms in the reduced model. Crys-
tallizer models describing particle formation in fluid flow contain more general nonlinear
terms whose efficient treatment requires special reduction techniques. As a new aspect in
this work, the best point interpolation method by Nguyen et al. 10 is introduced for the
reduction of a crystallizer model. The reduction process will be applied to the model of
laboratory crystallizer for the production of urea. The reference model will be presented
in the next section. The model reduction strategy is discussed in Section 3. Section 4
compares simulation results of the reduced model and the reference model.
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Figure 1: Simplified 2D geometry of the crystallizer (cross-sectional view)

2 Reference model

A tube shaped crystallizer with a rectangular cross sectional area is considered. A
schematic view is given in Figure 1.

The inlet of the crystallizer is on the left-hand side, where a supersaturated urea-
ethanol solution with seeding urea crystals enters the pipe reactor. The seeding crystals
grow inside the reactor. Under the chosen operation conditions, nucleation, agglomeration
and breakage hardly play a role. At the product outlet on the right-hand side of the
reactor, a mixture of liquid and crystals is continuously removed. To model the process
a simplified two-dimensional geometry is used that presents an axial cross-section of the
reactor. A further simplifying assumption used in the reference model is that the mixture
of liquid and particle phase can be seen as a quasi-homogeneous fluid with constant
physical properties like density, viscosity and heat conductivity. This is justified, if the
particle concentration is sufficiently small.

2.1 Model equations

The crystallizer’s fluid phase is described by the incompressible Navier-Stokes equa-
tions. The fluid flow is considered to be at steady state, because previous simulations
showed that the dynamics of the fluid flow are much faster than those of the energy bal-
ance and the population balance. In addition, it is assumed that there is a narrow channel
on the left-hand side of the inlet that is not presented in the model space domain. This
is in agreement with our experimental setup and allows to treat the inlet velocity as a
fully developed laminar flow. The continuity equation and the momentum balance are
expressed by the following system of partial differential equations:

∇ · u = 0
ρ(u · ∇)u = −∇p+ µE∆u

in Ω, (1)

where u = {u, v} is the vector of flow velocities in x = {x, y} directions, p is the pressure,
µE and ρ are the fluid viscosity and the fluid density, respectively.

The energy balance defines a differential equation for the temperature T that reads

ρcp

(
∂T

∂t
+ u · ∇T

)
= λE∆T + ∆Hcryst · hgr, (2)

where cp and λE are the heat capacity and the thermal conductivity of ethanol, and
∆Hcryst is the heat of solution.
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A component mass balance for the solute gives the following convection-diffusion equa-
tion for the solute partial density ρc:

∂ρc
∂t

+ u · ∇ρc = Dc∆ρc + hgr, (3)

where Dc is the diffusion coefficient. The term hgr stands for the mass transfer between
fluid phase and particle phase due to crystal growth. It can be written as

hgr(T, ρc, f) = −3ρdkVG(T, ρc)

∫ ∞

0

L2fdL, (4)

where ρd is the density of the crystals, G is the growth rate of crystals, and f is the
number density function of the crystal population.

The dispersed particle phase is modeled by a population balance for the particle size
distribution that accounts for crystal growth and convective transport of crystals in space:

∂f

∂t
+ u · ∇f +G

∂f

∂L
= Df∆f, (5)

here Df is an artificial diffusion coefficient of particles in the solute which describes a
movement of the particles relative to the fluid flow. It is mainly introduced to increase
numerical robustness. The particle size distribution f depends on time and space and in
addition on the particle size coordinate L.

A power function is used for the growth rate:

G =

{
kgσ(T, ρc)

g, σ > 0,
0, σ ≤ 0,

(6)

where σ is the super-saturation defined as

σ(T, ρc) =
ρc − ρc,sat(T )

ρc,sat(T )
. (7)

An empirical expression for the saturation density

ρc,sat(T ) = 1.3045(T − 273.15) + 35.3642 (8)

based on experimental results7 has been chosen.
A simplified description of the particle phase follows if the size distribution function is

replaced by its moments µk defined as

µk =

∫ ∞

0

LkfdL for k = 0, 1, . . . (9)
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Inserting the definition (9) into the population balance (5) results in the following closed
equation system for the first moments:

µ̇0 + u · ∇µ0 = Df∆µ0

µ̇k + u · ∇µk = Df∆µk + k ·Gµk−1, 1 ≤ k ≤ 3.
(10)

An obvious physical interpretation can be given for the moments µk: µ0 denotes the total
number of crystals at one point in space, the ratio µ1/µ0 is a measure for the average
crystals characteristic size, and µ3/µ0 is the average crystals volume.

The use of moments reduces the rate of mass consumption due to crystal growth hgr

to
hgr(T, ρc, µ2) = −3ρdkVG(T, ρc)µ2. (11)

2.2 Boundary and initial conditions

Boundary conditions in space subject to the geometry in Figure 1 are as follows. The
boundary Γwall has the no slip flow field condition with an isolation of ρc and f . The
temperature on the upper and lower boundaries is space independent and specified by
a parameter Twall. The inlet Γin of width win = 3.3 mm has a parabolic velocity profile
u = {uin(1− (2y/win)

2), 0}T for −win/2 ≤ y ≤ win/2 with the maximal inlet speed uin,
equals 1 cm/s. The inlet liquid concentration of the solute at Γin is given by ρc = ρc,in
with the inflow temperature Tin. Further, the feed contains particle seeds of negligible
size. That is, we assume L→ 0 for all feed particles. This leads to the boundary condition
f(L = 0) = f in0 = 1010 1/m3. The second boundary condition for the internal coordinate
is a regularity condition f(L→∞) = 0. The wall boundary condition for near the
inlet is similar to Γwall except the homogeneous Neumann condition for the temperature.
The outlet presents the outflow boundary condition of the fluid with the zero reference
pressure, and convective outflow of both continuous n · ∇ρc = 0 and disperse n · ∇f = 0
phases with the normal vector n to the boundary.

The initial conditions are zero concentration and particle size distribution at the initial
temperature T0 = 18◦C.

2.3 Simulation results

The finite volume CFD tool openFOAM6 is used to simulate the described crystallizer
model. A complete list of model parameters is given in Krasnyk et al. 7

The numerical simulation shows that the system reaches a steady-state after about
2000 seconds of the simulation time. Figure 2 illustrates the development of the average
crystal size µ1/µ0 in time by some snapshots. One can see that initially crystals with
nonzero length exist only close to the inlet on the left-hand side. The seeding crystals fed
to the system move with the fluid flow. At the end of the simulation, the largest crystals
are found near the walls at the outlet because the crystals in this area have the highest
residence time in the reactor.
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t, [s] Average crystal size µ1/µ0, [µm] Max size, [µm]

200 3.5

400 9.4

600 15.5

800 21.8

1000 28.3

flow direction

Figure 2: Development in time of the average crystal size µ1/µ0 with uin = 1 cm/s (bright shading
corresponds to high values)

3 Model reduction by Proper Orthogonal Decomposition

As a first step of the model reduction procedure, the temperature T , the concentration
c, and the moments µ0..3 are approximated by the following expressions:

T ≈
∑NT

b
i=1 ϕ

T
i (t)ψTi (x) +Tinψ

Tin(x) + Twallψ
Twall(x),

ρc ≈
∑Nρc

b
i=1 ϕ

ρc

i (t)ψρc

i (x) + ρc,inψ
ρc,in(x),

µk ≈
∑N

µk
b

i=1 ϕ
µk
i (t)ψµk

i (x) +µk,inψ
µk,in(x), k = 0, . . . , 3

(12)

The first part of the approximations in (12) consists of time-dependent coefficients ϕ and
space-dependent modes ψ that represent orthonormal bases in space. The remaining terms
on the right-hand side of (12) are introduced in order to make the bases ψ independent of
the inlet and ambient conditions, as was suggested in Graham et al. 2 In this work, control
functions ψTwall and ψTin are zero everywhere in Ω except unity on the corresponding
boundaries Γwall and Γin, respectively. The control functions ψρc,in and ψµk,in can be
chosen as steady-state solutions of the reference model normalized with corresponding
parameter values at Γin.

In the case of a dynamic flow field, one could approximate the flow velocities u and
v in a similar way. However, the quasi-stationarity assumptions for the flow make this
unnecessary and lead to a trivial formulation of u with an empty basis set and one control
function that corresponds to a fluid flow steady-state solution. For the sake of simplicity,
further in text u denotes such a steady-state solution of the fluid flow.

To simplify notation a bit, some abbreviations will be introduced:

ΦT :=
(
ϕT1 , . . . , ϕ

T
NT

b
, Tin, Twall

)
, ΨT :=

(
ψT1 , . . . , ψ

T
NT

b
, ψTin , ψTwall

)
,

Φρc :=
(
ϕρc

1 , . . . , ϕ
ρc

Nρc
b
, ρc,in

)
, Ψρc :=

(
ψρc

1 , . . . , ψ
ρc

Nρc
b
, ψρc,in

)
,

Φµk :=
(
ϕµk

1 , . . . , ϕ
µk

N
µk
b

, µk,in

)
, Ψµk :=

(
ψµk

1 , . . . , ψµk

N
µk
b

, ψµk,in

)
,

(13)
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where Φl are vectors ofN l
b time-dependent coefficients andN l

c model or control parameters
(NT

c = 2, Nρc
c = Nµk

c = 1), and Ψl are corresponding basis and control functions for a
variable l = {T, ρc, µ0, . . . , µ3}.

Using this notation, the variables in (12) can be presented in the reduced form as

T ≈
NT

b +NT
c∑

i=1

ΦT
i ·ΨT

i , ρc ≈
Nρc

b +Nρc
c∑

i=1

Φρc

i ·Ψ
ρc

i , µk ≈
N

µk
b +N

µk
c∑

i=1

Φµk
i ·Ψµk

i . (14)

3.1 Preliminary equations of the reduced model

The reduced model will be a set of equations for the coefficients ϕ. To obtain these
equations, the approximation (12) is inserted into the equations of the reference model.
Galerkin approximation is applied, i.e. the projection of the residuals on the space spanned
by the basis functions ϕ is requested to be zero. In this work, the inlet temperature Tin
and the wall temperature Twall are assumed as varying in time, while the partial density
ρc,in and the moments µk,in at the inlet are assumed as constant, i.e. ρ̇c,in = µ̇k,in = 0. As
a result of the reduction process, one obtains the following low-order ODE model:

ρcpϕ̇
T
i = −ρcpATijΦT

j + λEB
T
ijΦ

T
j + ∆Hcryst · (ψTi , hgr)Ω, 1 ≤ i ≤ N l

b,

−(ψTi , ψ
Tin)Ω · ρcpṪin − (ψTi , ψ

Twall)Ω · ρcpṪwall 1 ≤ j ≤ N l
b +N l

c,

ϕ̇ρc

i = −Aρc

ij Φ
ρc

j +DcB
ρc

ij Φρc

j + (ψρc

i , hgr)Ω,

ϕ̇µ0

i = −Aµ0

ij Φµ0

j +DfB
µ0

ij Φµ0

j ,

ϕ̇µk
i = −Aµk

ij Φµk
j +DfB

µk
ij Φµk

j + k · (ψµk
i , Gµk−1)Ω, 1 ≤ k ≤ 3,

(15)

where (g1, g2)Ω denotes an inner product in the space domain Ω:

(g1, g2)Ω =

∫
Ω

g1 g2 dx (16)

The coefficient matrices in (15) are

Alij = (ψli,u · ∇Ψl
j)Ω, 1 ≤ i ≤ N l

b,

Bl
ij = (ψlk,∆Ψl

j)Ω, 1 ≤ j ≤ N l
b +N l

c.
(17)

The first terms on the right-hand-side of each equation correspond to the convective parts
of the original equations, and the second parts correspond to diffusion. The third terms
result from nonlinearities due to crystal growth. Therefore, the reduced model (15) is
nonlinear as the original reference model.

One can see from the first equations in (15) that a jump in Tin and Twall causes a jump
in ϕTi which may seem surprising at first glance, because the temperature T of course

7



Mykhaylo Krasnyk and Michael Mangold

does not jump in such a case. However, a closer look reveals that the jump of ϕTi exactly
compensates the jump of Tin and Twall in (12), and the temperature T is still continuous.

While the structure of the reduced model is given by (15), two important questions
are still open. The first question is how to choose suitable basis functions Φ that lead to
a low order model with a good approximation quality. The second question concerns the
efficient treatment of the inner products in the reduced model, which is crucial in order
to obtain a considerable reduction in terms of computation time. Both questions will be
discussed in the next two sections.

3.2 Construction of basis functions

The basis functions ψ are obtained from piecewise continuous reference simulations of
the detailed model, so-called snapshots, which are taken at different time points and for
different values of free model parameters or control parameters. Let ξ denote the set of the
time variable t and the control parameters, so in this case ξ = {t, Tin, Twall} ∈ M for some
box domain M. The snapshots used to construct basis functions for the temperature T ,
the partial density ρc and the moments µk are written as zT (ξ,x), zρc(ξ,x) and zµk(ξ,x),
respectively. As mentioned at the beginning of Section 3, “shifted” reference data are
used in order to obtain homogeneous boundary conditions for the basis functions, i.e.

zT (ξ,x) = T (ξ,x)− Tinψ
Tin(x)− Twallψ

Twall(x),

zρc(ξ,x) = ρc(ξ,x)− ρc,inψ
ρc,in(x),

zµk(ξ,x) = µk(ξ,x)− µk,inψ
µk,in(x).

(18)

For simplicity, the super-scripts T , ρc, and µk will be skipped in the further discussion.
The idea of the reduction method is to find such basis functions that a relatively small

finite subset of Nb basis functions {ψi}Nb1 will minimize a weighted total error E, defined
as a norm of a difference between the reference data and their projection on the space
spanned by the basis functions:

min
(ψi,ψj)=δij

1≤i,j≤Nb

E({ψi}) :=
1

V

∫
M
||z −

Nb∑
i=1

(z, ψi)Ωψi||2Ω dξ, (19)

where δij is the Kronecker delta, V :=
∫
M dξ is a volume of the M-domain, and the

induced norm is ||.||Ω = (., .)
1/2
Ω .

One can show8 that under the orthonormality constraint, the above optimization prob-
lem leads to the following integral equation for the orthonormal solution functions ϕk

1

V

∫
M
C(., ξ′)ϕk(ξ

′)dξ′ = λkϕk(.), k = 1, . . . , (20)

where the L2-kernel C(ξ, ξ′) is defined as

C(ξ, ξ′) := (z(ξ, .), z(ξ′, .))Ω. (21)
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Solving of the eigenvalue problem results in a set of orthonormal eigenfunctions {ϕk(ξ)}Nb
1

with corresponding real positive eigenvalues λk. The solution of the optimization prob-
lem (19) will be a set of Nb basis functions that are computed as

ψk(x) =
1√
λk

1

V

∫
M
z(ξ,x)ϕk(ξ)dξ, k = 1, . . . , Nb, (22)

for the dominant Nb eigenvalues λk and corresponding eigenfunctions ϕk.
For the finite number of snapshots and the corresponding integral approximation in

M, equation (20) transforms to an eigenvalue problem.

3.3 Interpolation of nonlinear terms

Nonlinear terms in the original model result in computationally expensive terms in
the reduced model. These are the inner products or integrals over the space domain
containing the nonlinearities, or to be precise the expressions (ψTi , hgr)Ω, (ψρc

i , hgr)Ω, and
(ψµk

i , Gµk−1)Ω in (15). An analytical solution of the integrals is not possible. A solution
by numerical quadrature is not satisfactory, as it increases the computation time of the
reduced model considerably. There is a need for an efficient approximation method that
generates low computational costs during the runtime of the reduced model. Such an
approximation may be the best point interpolation by Nguyen et al. 10 , which is used
here. The method is explained for a general function first and then it is applied to the
reduced model.

3.3.1 General method

Let g(ξ;x) by a nonlinear function on a spatial domain x ∈ Ω defined for any parameter
ξ ∈M. Assume that snapshots of this function are available at Ns discrete values of the
parameter vector ξi, i = 1, . . . , Ns. Now the objective is to find some approximation based
on the available snapshots that reproduces g(ξ;x) quite well but requires evaluation of
the nonlinearity only at a few points in space.

As a first step, an orthonormal basis {ψg1 , . . . , ψ
g
Nb
} in space is constructed for g, us-

ing the same method as described in the previous section. The result is a reasonable
approximation of g for the parameter values ξi in the ensemble of snapshots:

g(ξi;x) ≈
Nb∑
n=1

ϕn(ξi)ψ
g
n(x), i = 1, . . . , Ns. (23)

The question is how to obtain a good guess of g for some parameter value ξ that
is not in the snapshots. For high-dimensional parameter vectors ξ, this is a non-trivial
interpolation problem. A possible solution procedure suggested in Nguyen et al. 10 is as
follows. One approximates g at the parameter value ξ of interest as

g(ξ;x) ≈ gNb
(ξ;x) =

Nb∑
n=1

βn(ξ)ψ
g
n(x). (24)
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Equations for βn(ξ) are obtained by demanding that gNb
matches the original g exactly

at Nb interpolation points in space {x1 ∈ Ω, . . . ,xNb
∈ Ω}:

Nb∑
n=1

ψgn(xm) βn(ξ)
!
= g(ξ;xm), m = 1, . . . , Nb (25)

How to choose the interpolation points xm is still open. A first requirement is that the
set of interpolation points is admissible10. This means that equation (25) can be solved
uniquely for all βn(ξ) or in other words that the left-hand side matrix of (25) is invertible.
Further, it is plausible that the quality of the approximation (24) depends on the position
of the interpolation points. Therefore, the xm should be chosen such that the quadratic
error of gNb

integrated over the space and the parameter domain is minimized:

min
x1,...,xNb

J (x1, . . . ,xNb
) (26)

with

J (x1, . . . ,xNb
) =

∫
M

∫
Ω

(
g(ξ;x)−

Nb∑
n=1

βn(ξ)ψ
g
n(x)

)2

dxdξ. (27)

In the form (27) the optimization problem for {x1 ∈ Ω, . . . ,xNb
∈ Ω} is very hard to solve,

and simplifications are needed. The first simplification is to replace the integration in the
parameter domain by a quadrature rule with Ns function evaluations at the parameter
values ξi of the snapshots and corresponding weights wi:

J (x1, . . . ,xNb
) ≈

Ns∑
i=1

∫
Ω

(
g(ξi;x)−

Nb∑
n=1

βn(ξi)ψ
g
n(x)

)2

dx · wi. (28)

The second simplification is to substitute g(ξi;x) with the approximation (23). Using the
orthonormality of the basis functions, one can express the space integral in (28) as∫

Ω

(
g(ξi;x)−

Nb∑
n=1

βn(ξi)ψ
g
n(x)

)2

dx ≈
∫

Ω

(
Nb∑
n=1

(ϕn(ξi)− βn(ξi))ψ
g
n(x)

)2

dx

=

Nb∑
n=1

(ϕn(ξi)− βn(ξi))
2 . (29)

So the final optimization problem for obtaining the interpolation points reads

min
x1,...,xNb

Ns∑
i=1

Nb∑
n=1

(ϕn(ξi)− βn(ξi))
2 · wi, 1 ≤ m ≤ Nb. (30)

subject to the constraints (25). Note that the optimization problem has to be solved only
once to get the position of the interpolation points. It is not part of the evaluation of the
reduced model.
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Figure 3: Optimal position of the interpolation points for the approximate computation of the growth
rate G

3.3.2 Application to the reduced crystallizer model

The best point interpolation method is now applied to the nonlinear source terms
in (15). The nonlinearities are caused by the growth rate G(T, ρc). As in the reduced
model T and ρc are expressed by basis functions Ψ and weighting coefficients Φ, G(T, ρc)
is rewritten as

G(T, ρc) = G
(∑

i Φ
T
i ·ΨT

i (x),
∑

j Φρc

j ·Ψ
ρc

j (x)
)

= G
(
ΦT
i ,Φ

ρc

j ;x
)

=: g (ξ;x) . (31)

So in the notation of the previous section, ΦT
i and Φρc

j belong to the parameter vector ξ.
The series approximation of G reads

G(T, ρc) ≈
NG

b∑
n=1

βGn (ΦT
i ,Φ

ρc

j ) · ψGn (x), (32)

with basis functions ψGn obtained as described above. The coefficients βGn follow from

NG
b∑

n=1

ψGn (xm) βGn (ξ)
!
= G(T (xm), ρc(xm)), m = 1, . . . , NG

b , (33)

where the optimal location of the interpolation points xm is computed offline before solving
the reduced model. The position of the interpolation points is visualized in Figure 3.
NG
b = 21 points are found to be sufficient for an accurate approximation of the growth

rate. The position of the interpolation points corresponds to one of several local minima of
the objective function (27). The initial guess for numerical optimization is the first family
of Padua points1. Although the model domain and the initial guess of point positions are
symmetrical with respect to y = 0, the optimizer converges to an unsymmetrical solution.
This is because symmetrical interpolation points would give the same information and
hence are redundant.

The approximation ofG can now be used for an efficient evaluation of the inner products
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in the reduced model. One obtains(
ψTi , σgr

)
Ω

=
(
ψTi ,−3ρdkVGµ2

)
Ω

≈ −3ρdkV

(
ψTi ,

∑
n β

G
n ψ

G
n ·
∑

j Φµ2

j Ψµ2

j

)
Ω

= −3ρdkV
∑

n

∑
j β

G
n Φµ2

j ·
(
ψTi , ψ

G
n ·Ψ

µ2

j

)
Ω
,

(ψρc

i , σgr)Ω ≈ −3ρdkV
∑

n

∑
j β

G
n Φµ2

j ·
(
ψρc

i , ψ
G
n ·Ψ

µ2

j

)
Ω
,

(ψµk
i , Gµk−1)Ω ≈

∑
n

∑
j β

G
n Φ

µk−1

j ·
(
ψµk
i , ψ

G
n ·Ψ

µk−1

j

)
Ω

with indices 1 ≤ n ≤ NG
b , 1 ≤ i ≤ N l

b for the corresponding ψl, and 1 ≤ j ≤ Nµk

b +Nµk
c

for the corresponding Ψµk .
The big advantage of the best point interpolation is that the inner products on the right-

hand side of (34) depend only on the basis functions. Therefore they can be evaluated
during the generation of the reduced model. At run time of the reduced model, no more
numerical quadrature is required. Further, only NG

b evaluations of the nonlinear function
G are needed to get βGn .

3.4 Final equations of the reduced model

The best point interpolation procedure, applied to the nonlinear inner products of the
model equations (15), results in the final form of the reduced model

ρcpϕ̇
T
i = −ρcpATijΦT

j + λEB
T
ijΦ

T
j − 3∆HcrystρdkV · CT

inj β
G
n Φµ2

j

−(ψTi , ψ
Tin)Ω · ρcpṪin − (ψTi , ψ

Twall)Ω · ρcpṪwall, 1 ≤ i ≤ N l
b,

ϕ̇ρc

i = −Aρc

ij Φ
ρc

j +DcB
ρc

ij Φρc

j − 3ρdkV · Cρc

inj β
G
n Φµ2

j , 1 ≤ j ≤ N l
b +N l

c,

ϕ̇µ0

i = −Aµ0

ij Φµ0

j +DfB
ρc

ij Φµ0

j , 1 ≤ n ≤ NG
b ,

ϕ̇µk
i = −Aµk

ij Φµk
j +DfB

ρc

ij Φµk
j + k · Cµk

inj β
G
n Φ

µk−1

j , 1 ≤ k ≤ 3.
(34)

where the coefficient matrices

CT
inj =

(
ψTi , ψ

G
n ·Ψ

µ2

j

)
Ω

Cρc

inj =
(
ψρc

i , ψ
G
n ·Ψ

µ2

j

)
Ω

Cµk
inj = (ψµk

i , ψ
G
n ·Ψ

µk−1

j )Ω, 1 ≤ k ≤ 3

(35)

are computed in offline. The reduced model is completed by NG
b linear equations (33) for

the coefficients βGn .
The final reduced model is nonlinear, because the βGn depend nonlinearly on ϕTi and

ϕρc

i . The chosen notation makes it a bit hard to see the influence of the control parameters
Tin and Twall, which are hidden in the vector ΦT . The control parameters enter the linear
as well as the nonlinear terms of the model equations (34). Also time derivatives of the
control parameters appear; the origin of this is the use of shifted reference data for the

12
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construction of basis functions for the temperature. If desired, one can make the model
equations independent from the time derivatives of the control parameters by choosing
the control functions ψTin and ψTwall such that they are orthogonal to the basis functions
ψTi . Such a choice was made in this work.

4 Simulation results of the reduced model

Reference simulations with the detailed model deliver a set of normalized basis functions
for the model variables T , ρc, µ0, . . . , µ3. The snapshots are solutions of the detailed model
on a non-equidistant time grid for t = 0, 20, . . . , 2000s and 2100, 2200, . . . , 5000s with wall
temperature values Twall = 18, 19, . . . , 28 ◦C. The following numbers of basis functions are
found to give a good approximation of the snapshots: NT

b = 5, Nρc

b = 40, Nµ0..3

b = 20, and
NG

b = 21. Consequently, the size of the reduced order model is 125 ordinary differential
equations plus 21 linear algebraic equations compared to 73728 differential equations of
the discretized reference model in OpenFOAM.

In a first step, the behaviour of the reduced model is studied for constant time inde-
pendent wall temperatures. Figure 4 shows a dynamic simulation of the reduced model
(34). The diagrams contain results for µ1, when different constant values are used for the
wall temperature Twall. The solid lines are the first five coefficients ϕµ1 and the markers
are projected points of the reference solutions on the basis functions ψµ1 . One can see
that at all times the reduced model agrees well with the original model and that at the
end of simulation the reduced model settles at the correct steady state. Figure 5 gives
more detailed information on the approximation error of the reduced model. It shows
time averaged relative errors for different wall temperatures in the interval between 18
and 28 ◦C. The dashed line marks the error of the original reduced model (15), the solid
line is the error of the final reduced model with best point interpolation (34). One can
see that the reduction error is bounded in time and less then 4% for all variables. The
approximation is also very good for values of the wall temperature that are not contained
in the snapshots of the reference model. This documents that the reduced model is able
to interpolate solutions of the reference model with respect to the wall temperature Twall.
Finally, there is hardly a difference in accuracy between the reduced model with numeri-
cal quadrature (15) and the reduced model with best point interpolation (34), while the
differences in computation time are quite dramatic: the best point interpolation reduced
model is at least ten times faster than the original reduced model. In conclusion, the best
point interpolation is a valuable improvement of the model reduction procedure.

In the next step, the performance of the reduced model is studied for a time varying
wall temperature Twall. This is an important scenario for control applications: The wall
temperature can be used to modify the crystal growth and to achieve a desired particle size
distribution at the reactor outlet. Therefore, the reduced model should be able to cope
well with dynamic changes of Twall. To test the reduced model a time-dependent profile
for Twall has been used. The profile is a step change of Twall from 28◦C to 18◦C at t = 1500s
and back to 28◦C at t = 3500s. Such a wall temperature pulse causes an appearance of
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Figure 4: First five coefficients ϕµ1
i during a dynamic simulation; solid lines denote solutions of the

reduced model (34), markers indicate projections of the reference solution on the basis functions
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〈|T − T ex|〉/||T ex||∞ 〈|ρc − ρex
c |〉/||ρex

c ||∞

18 20 22 24 26 28

2

2.5

3

·10−5

Twall,
◦C

18 20 22 24 26 28

9.6

9.7

·10−3

Twall,
◦C

〈|µ0 − µex
0 |〉/||µex

0 ||∞ 〈|µ1 − µex
1 |〉/||µex

1 ||∞

18 20 22 24 26 28

4.1

4.12

4.14

4.16

·10−3

Twall,
◦C

18 20 22 24 26 28
1

2

3

4
·10−2

Twall,
◦C

〈|µ2 − µex
2 |〉/||µex

2 ||∞ 〈|µ3 − µex
3 |〉/||µex

3 ||∞

18 20 22 24 26 28
0

1

2

3

·10−2

Twall,
◦C

18 20 22 24 26 28
0

1

2

3

·10−2

Twall,
◦C

Figure 5: Relative error plots for different values of Twall; solid lines: reduced model with best point
interpolation (34); dashed lines: reduced model without best point interpolation (15)
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larger crystals at the outlet for a limited time. Figure 6 presents simulation results of the
reduced model (34). To visualize the situation at the outlet, an averaging functional s(.)
on the outlet boundary Γout is introduced:

s(.) =
1

1 cm

∫
Γout

.dy. (36)

As before, the solid lines stand for the reduced model, while markers are the reference
simulations. From Figure 6 and from the corresponding error plot in Figure 7 one can
recognize a good predictive quality of the reduced model for time varying wall temper-
atures. The agreement with the reference simulation is certainly satisfactory enough to
qualify the reduced model for application to controller design. The results confirm the
findings of the first step that the reduced model responds well to dynamic changes of
control parameters. Results of both simulation scenarios show that the maximal error is
bounded in time and time-average relative errors do not exceed 5%.

5 Conclusions

A reduced order model for a crystallizer has been developed by using Proper Orthogonal
Decomposition (POD) and best point interpolation. The reduced model is obtained from
the original model by projection on a space of problem specific basis functions. The basis
functions are computed from snapshot solutions of the original model in a defined range
of wall temperatures. They are chosen such that they are able to reproduce the snapshots
accurately in this wall temperature range. By Galerkin approximation, a reduction in
terms of system order by a factor of about 500 is achieved. However, the reduction in
terms of computational time is not so good, when POD alone is applied. The speed-up
of the reduced model is only by a factor of 5. Therefore as a second component of the
reduction procedure, the best point interpolation method by Nguyen et al. 10 is used.
This accelerates the reduced model considerably without a noticeable loss of accuracy.
The simulation of the final reduced model is about 100–200 times faster than the original
model. These properties qualify the reduced model for applications in the area of process
design and process control. Especially for controller design a less accurate model may be
sufficient. This would allow the use of a smaller number of basis functions and an even
stronger reduction in system order and computation time.

In this work, POD was applied only to the external (spatial) coordinates of the crys-
tallizer, while the internal (property) coordinate was treated by the method of moments.
But actually a discrimination between internal and external coordinates is not necessary
for model reduction. Therefore, the next step will be to apply the developed reduction
methodology simultaneously to internal and external coordinates.
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Figure 6: Dynamic response of the crystallizer to a pulse of the wall temperature Twall; Twall is shown
as a dashed line in the upper left diagram; solid lines denote simulation results of the reduced model
(34), markers are simulation results of the reference model; s(.) is an averaging functional on the outlet
boundary defined in (36)
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Figure 7: Relative error of the reduced model for the pulse input test shown in Figure 6; solid lines:
reduced model with best point interpolation (34); dashed lines: reduced model without best point inter-
polation (15)
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