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Abstract. Most turbulent flows cannot be computed directly from the incompressible
Navier-Stokes equations, because the convective term produces too many scales of motion.
In the quest for a dynamically less complex mathematical formulation, we consider reg-
ularizations of the nonlinearity. The obtained regularized system is more amenable to
approximate numerically, while its solution approximates the dynamically relevant part
of the Navier-Stokes solution. Hereby, we propose to preserve the symmetry and conser-
vation properties of the original convective term. The underlying idea is to restrain the
convective production of small scales in an unconditionally stable manner, meaning that
the regularized solution can not blow up in the energy norm. By analysing the regular-
ized triad interactions in detail, a filter length is determined dynamically, such that the
vortex-stretching process stops (approximately) at the grid-scale, all through the domain,
at all times. This constitutes a parameter-free regularization model which converges to the
Navier-Stokes solution when grid resolution is sufficiently high. In this paper, as a first
step, the regularization model is tested for Burgers’ equation. This makes a more detailed
analysis possible, while important aspects of the Navier-Stokes equations remain. Energy
spectra follow DNS results for the large scale motions, whereas a much steeper power law
is found for small scales, which is precisely what a regularization model is ought to do.
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1 INTRODUCTION

It is generally accepted that the Navier-Stokes equations provide an appropriate model
for the nonlinear dynamics of turbulence. For an incompressible flow, the equations are

∂tu + C(u,u) = −∇p + D(u), (1)

where u denotes the fluid velocity, and p represents the pressure. The dissipative term
is given by D(u) = ∆u/Re, where Re denotes the Reynolds number, and the nonlinear,
convective term is defined by C(u,v) = (u · ∇)v. Attempts at solving turbulent flows
directly from the Navier-Stokes equations fail for high Reynolds numbers, because the
number of dynamically relevant scales of motion becomes too large. The computationally
almost numberless small scales result from the convective term that allows for the transfer
of energy from the large scales at which the flow is driven to the smallest scales that
can survive viscous dissipation. At the present level of computing power and numerical
algorithms, it is not yet possible to calculate the full energy cascade, i.e. all degrees of
freedom incorporated in a high Reynolds turbulent flow, see e.g. [1].
In quest of a dynamically less complex mathematical formulation, approximate models
have been devised for representing the interaction between the almost uncomputable small
scales and the larger ones. In large-eddy simulation (LES), this it done by applying a
spatial filter to the Navier-Stokes equations:

∂tu + C(u,u) = −∇p + D(u) + model(u), (2)

where the filtered (read: large-scale) velocity is denoted by u. The subgrid-scale or
closure model in the right-hand side of (2) models the commutator of C and the filter,
i.e. model(u) ≈ C(u,u) − C(u,u). Appropriate closure models are hard to find for a
number of reasons, see e.g. [2]. A significant reduction of the computational complexity
is not to be expected unless the spectral support of the solution is reduced, indicating
the requirement of an inexact closure. In practice, closure models are often based on
phenomenological arguments and mathematically unjustifiable assumptions. Today, a
large number of models exist, see [4] and the references therein.
In this paper, regularization is considered as a mechanism to reduce the complexity of the
dynamics [2], [3]. More specifically, we propose to regularize the convective term in the
Navier-Stokes equations directly:

∂tu + C̃(u,u) = −∇p + D(u). (3)

The above regularized system should be more amenable to approximate numerically, while
its solution has to approximate the large-scale dynamical behavior of the Navier-Stokes
solution. The first outstanding result in this direction goes back to Leray [5], who took

C̃(u,u) = C(u,u), and proved that a moderate filtering of the transport velocity is
sufficient to regularize a turbulent flow. Another example that falls into this concept is
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the Navier-Stokes-alpha model [6].
The regularization method basically alters the nonlinearity to restrain the production of
small scales of motion. In doing so, one can preserve certain fundamental properties of
the convective operator in the Navier-Stokes equations exactly. We propose to preserve
the symmetry properties that form the basis for the conservation of energy, enstrophy (in
2D) and helicity (see [7] for details):

(C(u,v),w) = −(C(u,w),v), (4a)

(C(u,v), ∆v) = (C(∆v,v),u), (4b)

where the second equality holds only in 2D, and the brackets denote the usual scalar
product, i.e (u,v) =

∫
Ω

u ·vdx. This criterion yields a class of approximations C̃(u,v) =
Cn(u,v), with

C2(u,v) = C(u,v), (5)

C4(u,v) = C(u,v) + C(u′,v) + C(u,v′) (6)

C6(u,v) = C(u,v) + C(u′,v) + C(u,v′) + C(u′,v′), (7)

see [8]. Here, the filter operator is again denoted by a bar, and a prime is used to
indicate the residual, that is u

′ = u − u. Since properties (4) form the basis for the
conservation of energy, enstrophy (in 2D) and helicity, and the approximations Cn(u,v)
inherit these properties by construction, the regularizations are intrinsically stable. For
a symmetric filter, the difference between the approximation Cn and C is of the order ǫn

(with n = 2, 4, 6), where ǫ denotes the length of the filter. The Leray model and NSα-
model are of the order ǫ2.
The evolution of the vorticity ω = ∇× u resembles that of the Navier-Stokes equations:

∂tω + Cn(u,ω) + D(ω) = Cn(ω,u). (8)

The only difference is that C is replaced by the regularization Cn. The regularization
counteracts the production of small scales of motion by means of vortex stretching, while
ensuring stability (in the energy-norm). By analyzing the regularized triad interactions
in detail, the filter length can be determined such that the vortex stretching process stops
(approximately) at the grid-scale.
In this paper, the approximation C4 is applied to Burgers’ equation in one spatial di-
mension. This makes a more detailed analysis possible, while important aspects of the
Navier-Stokes equations remain. A spectral approach is followed, yet other solution meth-
ods may also be used.

2 BURGERS’ EQUATION

In the notation of the previous section, the Burgers equation becomes

∂tu + C(u, u) = D(u), (9)
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where the convective term and the diffusive term are now given by C(u, v) = u∂xv and
D(u) = ∂2

xxu/Re. We consider Equation (9) on an interval Ω with periodic boundary
conditions.
In Fourier space, the Burgers equation reads

∂tûk + Ck(û, û) = −(k2/Re)ûk + Fk, (10)

where the forcing term is given by Fk ≡ 0 for k > 1 and F1 such that ∂tû1 = 0 for all t.
Here, ûk(t) denotes the k-th Fourier coefficient of u(x, t) and the nonlinear term consists
of all interactions between modes ûp and ûq with p+ q = k, i.e. Ck(û, û) =

∑
p+q=k ûpiqûq.

The energy ek of mode k is obtained by taking the product of ûk with its complex conjugate
û∗

k, and the evolution of ek (without forcing) reads

∂tek = −(2k2/Re)ek − ûkCk(û, û)∗ − û∗
kCk(û, û). (11)

3 SYMMETRY AND CONSERVATION PROPERTIES

In three spatial dimensions, the convective contribution cancels from the energy equation
due to the skew-symmetry of the trilinear form (C(u,v),w). Indeed, differentiating (u,u)
with respect to time and rewriting ∂tu with the help of Equation (1) results in a convective
contribution of (C(u,u),u), which according to Equation (4a) vanishes. As a result, the
enstrophy |ω|2 determines the rate of dissipation of the energy through

∂t
1
2
|u|2 = − 1

Re
|ω|2.

Furthermore, the evolution of the enstrophy is governed by ∂t
1
2
|ω|2 = (ω,D(ω)+C(ω,u)).

For Burgers’ equation, the evolution of the energy (u, u) =
∫
Ω

u2dx is obtained by following
the same steps, resulting in

∂t
1
2
|u|2 = − 1

Re
|∂xu|

2.

Hence in one spatial dimension, |∂xu|
2 determines the rate of dissipation of the energy. As

in 3D, the convective contribution has vanished, now through (C(u, u), u) =
∫
Ω

u2∂xudx =
1
3
u3|∂Ω = 0. The time-rate change of |∂xu|

2 is given by ∂
∂t

1
2
|∂xu|

2 = (∂xu,D(∂xu) −
1
2
C(∂xu, u)) and resembles that of the 3D enstrophy, differing only a factor −1

2
in the

second term on the right.

4 SUBGRID-SCALE PRODUCTION

In three spatial dimensions, the production of smaller vortical structures is intimately tied
up with the intensification of the vorticity vector ω. A positive convective contribution on
the right-hand side of (8) may cause a local increase of the vorticity magnitude, implying
that fluid elements are being stretched. This phenomenon, called vortex stretching, is
responsible for the transfer of energy to smaller an smaller scales of motion.
In a numerical simulation, the production of smaller scales should stop at the smallest
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scale that can be represented correctly on the computational grid. On a 1D uniform grid
with spacing h, the smallest scale is characterized by the cut-off wavenumber kc = π/h.
Inspired by the previous section, we propose to consider ∂xu for analyzing the process
responsible for the small-scale production in one spatial dimension. The time evolution
of the spatial derivative of u is governed by

∂t(∂xu) + C(u, ∂xu) + D(∂xu) = −C(∂xu, u), (12)

which strongly resembles the evolution of ω given by equation (8), differing only a sign
in the term on the right. The k-th Fourier mode of ∂xu has coefficient ikûk. If this
coefficient is magnified (i.e. k2ûkû

∗
k increases), a smaller scale is produced since the

increase in slope leads to a steepened up velocity profile. If the mode under consideration
has wavenumber kc, a magnification of ikcûkc

produces a mode that cannot be represented
correctly on the computational grid, since it has a wavenumber larger than kc. Hence in
1D, a magnification of ikcûkc

introduces numerical error (see Fig. 1).

u

xj−1 xj xj+1 xj+2

u

xj−1 xj xj+1 xj+2

highest mode of u(x)

representation of
steepened up highest mode

steepened up highest mode

highest mode of u(x); ûkc
eikcx

magnification of ikcûkc

Figure 1: The highest mode of the velocity that can be represented correctly on the computational grid
(above) produces a steepened up profile (below), and introduces numerical error.

Motivated by this 1D-3D parallel in production of small scales we denote ω
def
= ∂xu. Its

Fourier modes have coefficients ω̂k = ikûk, and the evolution of its magnitude ω̂kω̂
∗
k at the

smallest grid scale is given by

∂t(ω̂kc
ω̂∗

kc

) = −(2k2
c/Re)ω̂kc

ω̂∗
kc

− ikc

(
ω̂∗

kc

Ckc
(û, û) − ω̂kc

Ckc
(û, û)∗

)
, (13)

where again kc denotes the cut-off wavenumber of the numerical solution, and a superscript
∗ denotes complex conjugate. No magnification of ikcûkc

requires that ∂t(ω̂kc
ω̂∗

kc

) ≤ 0.
Since the diffusive contribution −(2k2

c/Re)ω̂kc
ω̂∗

kc

is negative, this condition reads

c ≤ 0 or c ≥ 1 with c
def
=

2ikcω̂kc
ω̂∗

kc

(ω̂∗
kc

Ckc
(û, û) − ω̂kc

Ckc
(û, û)∗)Re

. (14)
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Note that this condition is necessary to stop the highest-frequency mode from producing
subgrid scales. To what extend the possible energy flow from lower-frequency modes to
subgrid scales (due to strongly nonlinear interactions) is restrained, will become clear
from the results.

5 RESTRAINING METHOD

If Condition (14) is satisfied, no scales of motion smaller than the meshsize are produced
by the convective term, and Equation (10) can be solved directly. However, when this
condition is not satisfied, the convective production of subgrid scales has to be restrained.
To that end, we consider the approximation given by Equation (6). In the spectral space
the convective term is then approximated by

C4,k(û, v̂) =
∑

p+q=k

f(Ĝk, Ĝp, Ĝq) ûpiqv̂q, (15)

where Ĝk denotes the Fourier transform of the kernel of the convolution filter and

f(Ĝk, Ĝp, Ĝq) = Ĝk(Ĝp + Ĝq) + ĜpĜq(1 − 2Ĝk) (16)

This function satisfies f(1, 1, 1) = 1 and f(0, 0, 0) = 0. Furthermore, all the first-order

partial derivatives of f(Ĝk, Ĝp, Ĝq) are strictly positive for 0 < Ĝk, Ĝp, Ĝq < 1. Hence,

the factor f(Ĝk, Ĝp, Ĝq) by which every nonlinear interaction is reduced is a monotone

function of Ĝk, Ĝp, and Ĝq.

In general, the value of the reduction factor f(Ĝk, Ĝp, Ĝq) depends on p and q; hence the
terms in the summation in the right-hand side of (15) are damped differently. To avoid
this, a discrete 5-points filter in physical space is constructed such that for k = kc the
function f(Ĝkc

, Ĝp, Ĝq) is almost independent of p and q. Then,

C4,kc
(û, v̂) ≈ f̃(Ĝkc

) Ckc
(û, v̂),

and the value of the function f̃(Ĝkc
) follows from Condition (14) with Ckc

replaced by
C4,kc

:

f̃(Ĝkc
) =

2ikcω̂kc
ω̂∗

kc

(ω̂∗
kc

Ckc
(û, û) − ω̂kc

Ckc
(û, û)∗)Re

. (17)

Note that (i) the right-hand side of (17) equals c, and (ii) the same condition can also be
derived from the energy equation, since ω̂kω̂

∗
k = k2ûkû

∗
k. With the help of this relation,

the equation for ω̂kω̂
∗
k can be easily transferred into the energy equation, and vice versa.

We continue by considering the energy: if the Burgers equation is integrated in time with
the help of the forward Euler scheme, the discrete time evolution of the energy is given
by

[ûk]
n+1[û∗

k]
n+1 − [ûk]

n[û∗
k]

n

δt
= [û∗

k]
n[Wk]

n + [û]nk [W ∗
k ]n + δt[Wk]

n[W ∗
k ]n, (18)
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where an n and n+1 denote the old and new time-level respectively, Wk
def
= −C4,k(û, û)−

(k2/Re)ûk, and δt denotes the time step. The last term in the right-hand side of (18) is
not taken into account if (17) is simply evaluated at time-level n. Therefore, we propose
to modify (17) such that the condition holds exact for the time-integration method under
consideration.

6 FILTER

As mentioned in the previous section, for k = kc the reduction factor f(Ĝkc
, Ĝp, Ĝq)

should not be highly dependent on p and q. We discuss the construction of an appropriate
filter accordingly, directly considering discrete physical space. For a symmetric filter, the
associated transfer function is given by

Ĝk = c0 + 2c1 cos(kh) + 2c2 cos(2kh) + · · · , (19)

where again h denotes the width of the computational grid, and kc = π/h. We impose

c0 +2(c1 + c2 + · · · ) = 1 to get Ĝ0 = 1. Note that for 0 ≡ c2 ≡ c3 ≡ · · · , the coefficients of

the resulting 3-points filter are completely determined by the two conditions Ĝkc
= c0−2c1

and c0 + 2c1 = 1. Then, it can be proven that the range of the function f for k = kc is
bounded by its value for the most local interaction (at p = q = 1

2
kc), and the most global

interaction (at q = 0). To illustate the dependence on p and q, Figure 2 shows the range

of f(Ĝkc
, Ĝp, Ĝq), as a function of Ĝkc

. Note that for Ĝkc
= 1

2
the bandwidth of f is zero,

implying that for this value of Ĝkc
there is no dependence of f on p and q.
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Figure 2: Range of f(Ĝkc
, Ĝp, Ĝq) for a discrete 3-points filter, for 0 ≤ Ĝkc

≤ 1.

Figure 2 points out that for a 3-points filter, f has a substantial bandwidth, i.e. has a
large dependence on p and q. In order to reduce the bandwidth of f , the stencil of the
filter can be extended. Figure 3 shows how for a 5-points filter, the range of f is reduced
using the obtained degree of freedom in c2.
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Figure 3: Range of f(Ĝkc
, Ĝp, Ĝq), for a discrete 5-points filter, for 0 ≤ Ĝkc

≤ 1. The degree of freedom
in c2 is used to minimize the bandwidth of f .

7 RESULTS

The approximation C4 is used to solve the Burgers equation with Re = 50. As initial
condition, ûk = k−1 has been taken. Since mode k = 0 has no interaction with other
modes, we assume that û0 = 0, i.e. there is no mean flow. Figure 4 shows the energy
spectrum of the steady state for kc = 20, with and without the regularization method.
A time step of δt = 0.001 has been used, and for the approximation method Eq. (17)
has been modified using the time-discrete evolution given by (18). A DNS spectrum with
kc = 100 and δt = 0.0005 has been added as a reference. Clearly, for kc = 20 the direct
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Figure 4: Energy spectrum of the steady state solution of the Burgers equation, with and without the
model, for kc = 20 and δt = 0.001. The steady state was reached at t = 3, approximately.
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Figure 5: Results using both the model with and the model without the last term in the right-hand side
of (18). Left: as Fig. 4. Right: evolution of the energy at the highest wavenumber ekc

.

simulation without the model is not able to capture the physics correctly, as the energy is
not dissipated enough at the high wavenumbers, and is reflected back towards the larger
scales. The inset in Fig. 4 illustrates that the direct simulation with kc = 20 is already
a substantial amount off the reference DNS for k = 4. The regularization model shows
a characteristic feature; due to energy conservation, the model compensates the energy
loss at the smaller scales by an additional hump in the spectrum, just before the fall-off
commences.
To investigate the influence of the last term in the right-hand side of (18), a simulation
is done with and without this term, again for kc = 20. Figure 5 shows the steady-state
energy spectrum as well as the time evolution of the highest mode ûkc

, for both simula-
tions. Using (17) without taking the time-integration method into account, the energy
at the highest mode is still able to grow; hence producing smaller scales of motion. With
modification, i.e. when f̃ is evaluated according to (18), the energy is monotonically
decreasing, and no modes smaller than ûkc

are produced. Furthermore, Fig. 5 illustrates
that for most of the simulation time, the regularization model is turned on, corresponding
with the horizontal sections in Fig. 5. Only for short periods of time the model is turned
off, and energy is dissipated at the highest wavenumber.
Also the energy spectra for a range of values for kc have been computed using the regular-
ization method with time-discrete modification. Results for kc = 20, 30, 40, 50 are shown
in Fig. 6, again using a time step of δt = 0.001. For smaller values of kc, the spectra at
the high wavenumbers show an almost identical fall-off behavior, proportional to k−20,
approximately. This rapid fall-off is a desirable feature of the method, since it yields a
small fall-off range of wavenumbers and hence the approximate solution is more likely to
collapse with the DNS for a wider wavenumber range. For larger values of kc, the tail of
the spectrum shows a more moderate behavior, converging to the k−10 tail of the spectrum
of the DNS. Also, Fig. 6 shows the number of modes that are still represented correctly
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Figure 6: Left: as Fig. 4, but now for kc = 20, 30, 40, 50. Right: number of modes represented correctly
by the model as a function of kc. Both an error tolerance of 5% and 10% of the DNS are shown.

by the model as a function of kc. Both an error tolerance of 5% and 10% are shown. Note
that the jump in the 10% tolerance at kc ≈ 40 is due to the fact that for larger values of
kc, the complete range of wavenumbers with an overshoot in the spectrum is within 10%
of the DNS. For the 5% tolerance a similar jump has been observed at kc > 50.
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