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Abstract. In the paper, selected inverse problems of heat convection are presented. The
main focus is put on the sensitivity coeffcients idea. The formulation and evaluation
of sensitivity coefficients are presented for several cases. The are shown in 2D and 3D
geometry. Two ways of eveluation of sesnsitivity coefficients are shown.
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1 INTRODUCTION

In the paper, the problems which contain convectional term in its mathematical de-
scription are taken under consideration. The convectional term can appear in cases with
fluid flow, or in cases with moving solid. It can also be found in the case, when the heat
source moves in the domain. Here, two cases were considered: heat transfer in fluid flow
and welding case, where heat source (electric arc) moves along solid material.

Forced and natural convection have been taken under consideration by the researchers
working with the inverse problems techniques. A number of papers are devoted to this
problem, several recent works can be found in references. They deal with the estima-
tion of steady state inlet temperature profile [5], transient inlet temperature profile [2],
estimation of axial variation of the wall heat flux in laminar flow [3], transient wall heat
flux [6], simultaneous estimation of spacewise and timewise variations of the wall heat
flux [7], inlet velocity estimation based on the velocity measurements [9, 10] or on the
temperature measurements for the potential flows [13]-[11]. In the number of cited pa-
pers, the simulated measurements have been employed. Simulated measurements based
on the solution of the direct problem with the a priori assumed values for the unknown
values of the parameters or functions to be estimated. The solution of such defined direct
problem is treated as exact measurements, and is used as the input data in the inverse
procedure. But real measurements contain measurement errors. In order to simulate
them, the random error is added to the exact measurements. Standard statistical hy-
potheses generally assumed for the measurement errors include them as being regarded
as additive, uncorrelated, normally distributed with zero mean and with constant and
known standard deviation. Employing such prepared input data in the inverse procedure
should result in stable recovery of a priori established values of the unknown functions
or parameters. This approach allows also to examine the influence of the number and
location of measurement sensors to the stability of solution, as well as to examine the
maximum measurement error which provides stable results of the inverse scheme.

In this paper, two cases are studied. In the first, the sensitivity of the fluid internal
temperature with respect to the entry fluid flow velocity is investigated. If this sensitivity
is strong enough, it gives the possibility of recovering the information regarding the veloc-
ity of fluid from the measurements of temperature field. Convection phenomena consist
of two conjugate transport mechanisms: mass transport and energy transport. Determi-
nation of temperature distribution in the considered region requires the knowledge of the
velocity field. Effective evaluation of this field is possible after the suitable assumption
of boundary conditions, what can be a source of serious troubles. The proper values
of boundary fluid flow conditions can be taken from measurements, but it is commonly
known, that measurements of fluid velocities are difficult, expensive and sometimes even
impossible to perform. On the other hand, fluid flow meaningfully perturbates the tem-
perature distribution in the nonisothermal region (e.g. with the presence of external or
internal heat sources). So, the temperature distribution of the fluid contains the infor-
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mation about the fluid velocity and about its boundary value. Referring to the fact, that
temperature measurements are much easier and cheaper than velocity measurements, the
procedure of velocity determination from the temperature measurements seems to be of
a great practical importance.

The second case shows the sensitivity of temperature of plate with moving heat sorce
to the thermal conditions on the opposite side of the plate. The knowledge about the
thermal conditions is essential in the processes of arc welding or padding. Namely, the
value of heat resistance at the bottom of the plate should be known. Its value cannot
be measured directly. There is one quantity which can be easily measured: the surface
temperature. Thus, the procedure which allows to evaluate the air gap resistance basing
on measurements of the surface temperature seems to be of great practical importance. In
the paper, the formulation of the sensitivity coefficients is presented. The whole inverse
algorithm can be found in [4].

2 DIRECT PROBLEM

The analyzed convective heat transfer problem is described by the set of partial dif-
ferential equations that consist of the momentum equation (the Navier Stokes equations)
formulated for each direction of space, continuity equation and the energy equation (the
Fourier Kirchhoff equation). For the undertaken assumptions the governing set of equa-
tions can be presented in the form:

• potential flow

ux = −∂φ
∂x

(1)

and

uy = −∂φ
∂y

(2)

where ux and uy stand for the velocity vector components (Darcy’s velocity), and φ
denotes the velocity potential.
Continuity equation can be prescribed in the form:

∇2φ = 0 (3)

The set of equations (1) ÷ (3) describes mathematically the velocity field of the
potential flow. The temperature distribution is linked with the velocity field via
energy conservation equation:

ρc
∂

∂x
(uxT ) + ρc

∂

∂y
(uyT ) = k

∂

∂x

(
∂T

∂x

)
+ k

∂

∂y

(
∂T

∂y

)
+ qv (4)

where ρ stands for the mass density of fluid, c denotes its specyfic heat, T means the
temperature, qv stands for the internal heat source generation rate and k denotes
the heat conductivity of the material
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• laminar flow (2D)

momentum equations:

∂

∂x
(uxux) +

∂

∂y
(uyux) =

∂

∂x

(
µ

ρ

∂ux
∂x

)
+

∂

∂y

(
µ

ρ

∂ux
∂y

)
+ gx −

1

ρ

∂p

∂x
(5)

∂

∂x
(uxuy) +

∂

∂y
(uyuy) =

∂

∂x

(
µ

ρ

∂uy
∂x

)
+

∂

∂y

(
µ

ρ

∂uy
∂y

)
+ gy −

1

ρ

∂p

∂y
(6)

continuity equation:

∂ux
∂x

+
∂uy
∂y

= 0 (7)

energy equation:

ρc
∂

∂x
(uxT ) + ρc

∂

∂y
(uyT ) = k

(
∂2T

∂x2

)
+ k

(
∂2T

∂y2

)
+ qv (8)

In the above equations ux, uy stand for the velocity vector components, p is the
pressure, ρ means mass density of fluid, c denotes its specific heat, k is heat conduc-
tivity of fluid, qv stands for the internal heat source generation rate and T means
the temperature.

• solid with moving heat source (3D, semi steady state)

ρc
∂

∂x
(uxT ) + ρc

∂

∂y
(uyT ) + ρc

∂

∂z
(uzT ) =

=
∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
+ qv (9)

In the equation (9), ux, uy, uz stand for the components of the heat source movement
velocity vector, qv is the stationary heat source generation rate.

The above systems of equations can be solved using any numerical technique, home
made or commercial software. Of course, presented equations should be supplemented by
the boundary conditions appropriate for the geometry.

4



I.Szczygiel

3 INVERSE FORMULATION

In this paper, inverse problem is defined in the following way:

• flow problems: Estimate inflow velocity knowing the value of internal tem-
perature.

• moving heat source: Estimation of thermal conditions on the lower surface
basing on the measurements of the upper surface temperature

This kind of problems, usually called Inverse Problems (IP) are mathematically clas-
sified as ill-posed in general sense, because their solutions may become unstable, as the
results of the errors inherent to the measurements used in the analysis. Inverse problems
were initially taken as not of physical interest, due to their ill-posedness [20]. However,
some heuristic methods of solution for inverse problems, which were based more on pure
intuition than on mathematical formality, where development in the 50s. Later most
of the methods, which are in common use nowadays, were formalized in terms of their
capabilities to treat ill-posed problems. They basis on implementation of regularization
(stabilization) techniques, which provide the ill-posed problems to the well-posed ones.
The first works dealing with the overcoming ill-posedness of Inverse Problems were pre-
sented by J.V.Beck, A.N. Tikhonov and O.M. Alifanow.

In the paper, for the solution of the inverse problem the idea of sensitivity coefficients
was used. Sensitivity coefficients are defined as the first derivative of the measured quan-
tity with respect to the estimated one.

In linear cases the sensitivity coefficient is not a function of the calculated field. Since
it depends only on the problem geometry, the computations of the coefficient can be
performed only once. However, in the nonlinear case, as the presented one, the sensitivity
coefficients depend on the temperature field and should be calculated in each iteration of
the inverse procedure [1, 8, 12]. Sensitivity coefficients show the regions, which are the
best for carrying out measurements. When the coefficient is relatively large, it means
a high sensitivity of the desired quantity to the changes of the measured one. On the
other hand, when the values of the coefficients are relatively small our chances for a
successful solution of the inverse problem are rather poor. There are several known ways
of determining the sensitivity coefficient:
- Direct analytic solution for determining the sensitivity coefficients.
This method is utilized in the linear cases of heat transfer (mainly conduction) and when
an analytical solution is known. The sensitivity coefficient is determined by differentiation
of the analytic solution with respect to the desired quantity.
- The boundary value problem approach for determining the sensitivity coefficients
Here, the original boundary problem is differentiated with respect to the desired quantity
in order to develop a boundary value problem describing the sensitivity coefficient. When
the original problem is linear, this method leads to a simple and straightforward solution.
When nonlinearity appears, the resulting systems of the equations can be much more
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complicated as the initial one.
-Finite difference approximation for determining the sensitivity coefficients
This method assumes an evaluation of the sensitivity coefficients in the sense of finite
differences:

Z =
Y (B + ε)− Y (B)

ε
(10)

where ε is a small number. One can easily notice, that this attempt requires double
solution of the direct problem. Thus, this method can be efficiently used only if the direct
solution is not too much time consuming, especially in nonlinear cases when the iterative
procedure is employed. In the problem described herein, due to the fact, that a solution
of the direct problem can be obtained relatively fast, the third approach was used.

3.1 The boundary value problem approach - potential flow

In the considered problem one can define two types of sensitivity coefficients:

• potential sensitivity coefficient:

Zφ = ∂φ/∂un (11)

• temperature sensitivity coefficient

ZT = ∂T/∂un (12)

where un stands for the sought-for boundary velocity.
One way to obtain sensitivity coefficients values is to differentiate equation (4) with

respect to the inlet velocity un. After differentiating eq. (4) one can obtain:

∂2 (∂T/∂un)

∂x2
+
∂2 (∂T/∂un)

∂y2
=
ρc

k

(
ux
∂ (∂T/∂un)

∂x
+ uy

∂ (∂T/∂un)

∂y

)
+ SA (13)

So, after utilization eq. (12):

∂2 (ZT )

∂x2
+
∂2 (ZT )

∂y2
=
ρc

k

(
ux
∂ (ZT )

∂x
+ uy

∂ (ZT )

∂y

)
+ SA (14)

In the above equations SA has a meaning of a source term. It should be noted that the
structure of eq. (14) is the same as the eq. (4). It means, that the same computer code
can be readily utilized for evaluating ZT field.

Source term SA is described by the following formula:

SA =
ρc

k

(
∂ux
∂un

∂T

∂x
+
∂uy
∂un

∂T

∂y

)
(15)
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and after introducing eq. (11):

SA =
ρc

k

(
−∂Zφ
∂x

∂T

∂x
− ∂Zφ

∂y

∂T

∂y

)
(16)

As the above equation shows, the knowledge of the potential sensitivity coefficients is
essential.

The formula describing quantity Zφ can be derived from eq. (3). Differentiating this
equation with respect to un leads to the relation:

∇2 (∂φ/∂un) = 0 (17)

so
∇2Zφ = 0 (18)

It is worth noting, that boundary problems (3) and (18) have not only the same struc-
ture, but the superposition principle can be applied solving velocity fields versus inflow
velocity un. Moreover, the potential sensitivity coefficient field Zφ does not depend on the
inflow velocity and on the temperature field, but only on geometry of the domain. Hence,
for the selected case, it is calculated only once, and the velocity field can be computed
basing on this solution. These facts reduce computational cost.

3.2 The boundary value problem approach - laminar flow

Differentiating governing energy balance equation (8) with respect to the normal com-
ponent of inflow velocity, one arrives at:

∂

∂x

(
k
∂ZT
∂x

)
+

∂

∂y

(
k
∂ZT
∂y

)
+ SA = ρc

∂

∂x
(uxZT ) + ρc

∂

∂y
(uyZT ) (19)

where

ZT =
∂T

∂ũn
(20)

is the sensitivity coefficient of temperature with respect to the normal component of inflow
velocity. SA is the term coming from nonlinearity of energy balance equation. Normal
component of velocity acting in the definition of coefficient , ũn can be a uniform inflow
velocity, a nodal one, derivative of nodal velocity depending on an estimated boundary
quantity. Here, for the sake of simplicity, the uniform inflow velocity is assumed. The
term SA coming from the nonlinearity of energy balance can be shown as:

SA =
ρc

k

(
∂ux
∂ũn

∂T

∂x
+
∂uy
∂ũn

∂T

∂y

)
(21)
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Partial derivatives ∂ux/∂ũn and ∂uy/∂ũn acting in equation (21) are the sensitivity co-
efficients of horizontal and vertical components of velocity with respect to the normal
component of boundary one. For the sake of clarity, new parameters can be introduced:

Zu =
∂ux
∂ũn

(22)

Zv =
∂uy
∂ũn

(23)

Introducing the above definitions to the equation (21) one can get:

SA =
ρc

k

(
Zu
∂T

∂x
+ Zv

∂T

∂y

)
(24)

After differentiating the Navier-Stokes (5,6 equations come to the form:

∂

∂x
(uxZu) +

∂

∂y
(uyZu) =

∂

∂x

(
µ

ρ

∂Zu
∂x

)
+

∂

∂y

(
µ

ρ

∂Zu
∂y

)
− 1

ρ

∂2p

∂ũn∂x
− Su (25)

and
∂

∂x
(uxZv) +

∂

∂y
(uyZv) =

∂

∂x

(
µ

ρ

∂Zv
∂x

)
+

∂

∂y

(
µ

ρ

∂Zv
∂y

)
− 1

ρ

∂2p

∂ũn∂y
− Sv (26)

In the above equations terms Su and Sv result from the nonlinerarity of momentum
equation. The pressure terms in the equation (25) can be reorganized in the following
manner:

∂2p

∂ũn∂x
=

∂

∂x

(
∂p

∂ũn

)
=
∂Zp
∂x

(27)

Similar operation can be performed with pressure term taken from the equation (26).
Zp can be treated as another sensitivity coefficient which describes sensitivity of internal
pressure distribution with respect to the normal component of inflow velocity. Namely:

Zp =
∂p

∂ũn
(28)

Finally:

∂

∂x
(uxZu) +

∂

∂y
(uyZu) =

∂

∂x

(
µ

ρ

∂Zu
∂x

)
+

∂

∂y

(
µ

ρ

∂Zu
∂y

)
− 1

ρ

∂Zp
∂x
− Su (29)

and
∂

∂x
(uxZv) +

∂

∂y
(uyZv) =

∂

∂x

(
µ

ρ

∂Zv
∂x

)
+

∂

∂y

(
µ

ρ

∂Zv
∂y

)
− 1

ρ

∂Zp
∂y
− Sv (30)
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The Zp coefficients can be derived using differentiated continuity equation.
Additional source terms, which appeared in the equations (29) and (30) are the result of
nonlinearity of momentum equations. They can be presented in the form:

Su = ρ

(
Zu
∂ux
∂x

+ Zv
∂ux
∂y

)
(31)

and

Sv = ρ

(
Zu
∂uy
∂x

+ Zv
∂uy
∂y

)
(32)

Presented terms are the functions of both Zu and Zv coefficients. Solution of (29) and
(30) set requires solving all the equations simultaneously, or treat them as additional
source term and keep the structure of equations similar to the original Fourier-Kirchhoff
equations. The derivatives acting in the equations (31) and (32), as well as sensitivity
coefficients and can be evaluated basing on the magnitudes of these quantities taken
from previous iteration. So, the structure of additional source terms imposes iterative
character of solution procedure. But this approach allows to use the same numerical
program, which was used for original direct problem solution. Only redefinition of the
source term is required.

4 RESULTS OF EXEMPLARY COMPUTATIONS

The exemplary computations were performed for the each of mentioned types of flow.
The potential and laminar flow were investigated in the geometry presented in the figure
1, while the case of moving heat source were calculated for the geometry presented in the
figure 2.

Figure 1: Geometry of the problem
Figure 2: Geometry of pseudo steady state ap-
proximation

4.1 Potential flow

In order to investigate how the value of the inflow velocity influences the shape of the
sensitivity coefficients, the calculations for two Reynolds numbers, Re=0.1 and Re=1.0
were performed.
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Figure 3: Distribution of the nondimensional sensitivity coefficient Z̃T for the Reynolds number Re = 0.1

Figure 4: Distribution of the nondimensional sensitivity coefficient Z̃T for the Reynolds number Re = 1.0
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It is interesting, that in the region situated next to the inflow boundary, the sensitivity
coefficient have very low values. As a result, location of the sensors close to the inflow
boundary can involve worse estimation of the inflow velocity.

4.2 Laminar flow

The laminar flow was tested for two cases: for the geometry presented in the figure 1
and for the domain containg two rotating cylinders. For the first case the sensitivity of
temperature with respect to the uniformly distributed inflow velocity was investigated.
Uniform distribution of inflow velocity causes, that only one parameter is estimated. The
calculations were performed in the geometry shown in the figure 1 for the Reynolds number
equal to 200. Results of calculations are shown in the figures 5-7.

Figure 5: Distribution of the nondimensional sensitivity coefficient Z̃u for the Reynolds number Re = 200
for the external flow around the circular profile

In the second case the sensitivity of temperature with the respect to the rotational
speed of the cylinder acting in the computational region is evaluated. The considered
domain consist of two reverse rotating isolated cylinders. The Dirichlets boundary for
temperature is assumed on the left and right wall, while top and bottom ones are isolated.
The rotating cylinders involve the fluid motion in the domain which perturbates the
temperature distribution in the fluid. Distributions of the sensitivity Zu, Zv and ZT and
are presented in the figures 8-10.

4.3 Moving heat source

In this case the influence of the value of the thermal resistance on the bottom of the
analysed plate on the magnification and distribution of the sensitivity coefficients were
investigated. The effect of the velocity of the surfacing head on the sensitivity coefficients
has also been checked.
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Figure 6: Distribution of the nondimensional sensitivity coefficient Z̃v for the Reynolds number Re = 200
for the external flow around the circular profile

Figure 7: Distribution of the nondimensional sensitivity coefficient Z̃T for the Reynolds number Re = 200
for the external flow around the circular profile
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Figure 8: Distribution of the nondimensional sensitivity coefficient Z̃u for the Reynolds number Re = 100
for the external flow around the rotating circular profile, calculated with respect to the rotational speed
of profile

Figure 9: Distribution of the nondimensional sensitivity coefficient Z̃v for the Reynolds number Re = 100
for the external flow around the rotating circular profile, calculated with respect to the rotational speed
of profile
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Figure 10: Distribution of the nondimensional sensitivity coefficient Z̃T for the Reynolds number Re = 100
for the external flow around the rotating circular profile, calculated with respect to the rotational speed
of profile

4.3.1 Influence of the thermal resistance on the sensitivity coefficients

In order to estimate the influence of the thermal resistance on the sensitivity coeffi-
cients, computations were preformed for the following values of the resistance:

• R=0.00002 m2K/W

• R=0.001 m2K/W

• R=0.02 m2K/W

The first value describes the case when the resistance is so small, that it can be practically
neglected. Results of the mentioned computations are presented in the figures 11 ÷ 13.

4.3.2 Influence of the heat source velocity on the sensitivity coefficients

The calculations were performed for the value of the thermal resistanceR = 0.004 m2K/W
and the velocity w:

• w=0.002 m/s

• w=0.00156 m/s

The results of these investigations are presented in Figures 14 and 15. It is to be noticed,
that when the heat source slows down, the region of maximum values of the sensitivity
coefficients approaches the heating zone. The values of the sensitivity coefficients grow in
this case. It can be explained by increase of the convective term with the velocity.
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Figure 11: Distribution of the Sensitivity Coefficients [W/m2] for the thermal resistance of the air gap
R = 0.00002m2K/W

Figure 12: Distribution of the Sensitivity Coefficients [W/m2] for the thermal resistance R =
0.001m2K/W

Figure 13: Distribution of the Sensitivity Coefficients [W/m2] for the thermal resistance R = 0.02m2K/W
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Figure 14: Distribution of the Sensitivity Coefficients [W/m2] for the heat source velocity w = 0.002m/s

Figure 15: Distribution of the Sensitivity Coefficients [W/m2] for the heat source velocity w = 0.00156m/s
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5 FINAL REMARKS

In the paper the procedure of evaluating sensitivity coeficients for the convection prob-
lems is presented. Particulary, the cases with potential, laminar and moving heat source
were chosen. The sensitivity coefficients can be easly utilized in inverse procedure for
estimation of desired boundary quantity. They can be also used in the preparing of ex-
epriment due to the fact, thay can show the optimum regions for measurements. Two
methods of coefficients evaluation were presented:

• boundary value approach,

• finite difference approximation for determining the sensitivity. coefficients

First approach is more complicated, but in some cases can provide to the mathematical
description similar to the direct problem. It is much quicker the the second one. On the
other hand second approach is easier in application and constitues attractive alternative
for the lighter problems from the time of computations point of view.
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