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Abstract. In the simulation of fluid-structure interaction problems, a strong coupling of
the solution processes for the underlying fluid and structure equations is as well desired
as a high flexibility. In this work the implicit partitioned coupling approach is extended
by applying the nonlinear geometric multigrid method globally to the coupled system. This
moves the approach even closer to the strongly coupled, monolithic case and reduces com-
putation time for the coupled algorithm without loss of flexibility. This implies the use of
a geometric multigrid scheme in the structure solver in addition to the multigrid scheme
in the flow solver.
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1 INTRODUCTION

Fluid-structure interaction (FSI) phenomena occur in many applications in industry
and science. The numerical simulation of these phenomena is an ongoing challenge and
several research groups are working on this topic. There are two main approaches to
simulate FSI problems with well known advantages and drawbacks. On the one hand the
numerically robust monolithic approach [6, 11] with its comparably low flexibility and
on the other hand the highly adaptable but numerically challenging partitioned approach
[14]. For the monolithic approaches, the entire coupled problem is solved simultaneously.
The partitioned approach is based on coupling two separate codes for fluid and structure.
The implicit partitioned coupling approach [16, 19] can be categorized as an approach in
between partitioned and monolithic. Built from the partitioned approach it inherits its
flexibility but gains more stability by several implicit coupling steps within one time step.

Subject of this contribution is the implementation of a global multigrid method in an
existing implicit partitioned approach. The aim is to move even closer to the monolithic
case and decrease computing time. Figure 2 illustrates the relation between the strength
of the coupling, robustness, and adaptivity and a classification of different coupling ap-
proaches.

Figure 1: Coupling Approaches

In the implicit partitioned approach employed, the fluid system is simulated by the
finite-volume solver FASTEST [7]. It uses the SIMPLE algorithm for pressure correction
and the SIP [17] solver for the linearized systems. The structure is solved by the finite-
element code FEAP [8] and coupling is realized by the MpCCI [12] coupling interface.
The coupled system is assembled in an Arbitrary Lagrangian Eulerian (ALE) formulation.

While the use of a geometric multigrid method is a common way to accelerate the
solution of flow solvers, this is not the case for structure solvers. Hence, in realizing the
global multigrid approach, the first step is the implementation of a geometric multigrid
into the structure solver. Afterwards, the coupling of fluid and structure on all grid levels
is realized.
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We first formulate the coupled system in the ALE framework and continue with the the-
ory of the global multigrid approach and the implemented algorithms. A validation of the
newly implemented geometric multigrid method in the structure solver is shown, as well
as a comparison between the implicit partitioned approach and the implicit partitioned
approach with global multigrid.

2 NUMERICAL METHODS

In this section the FSI system is formulated based on the conservation laws, the coupling
conditions, and the material properties. Then this system is discretized in space and time.

2.1 Coupled FSI system in ALE Framework

In order to formulate the coupled FSI system we use the conservation equations in the
ALE framework to assemble the Navier-Stokes equations for incompressible Newtonian
fluids and the elasticity equation. As structural material model the St. Venant Kirchhoff
constitutive relation is used. This can be easily exchanged by other models. Let Ω be
our computational FSI domain, described in the ALE framework, which has a disjoint
partition into the structure domain Ωs and the fluid domain Ωf with FSI boundary Γ =
Ωs ∩ Ωf . Let V , P , U be the appropriate function spaces with all boundary conditions
on the remaining boundaries ∂Ω\Γ embedded. Velocity, pressure, and displacement are
denoted by (v, p, u) ∈ V × P × U . The coupled problem can then be stated as

∂

∂t

∫
Ω
ρv dV +

∫
∂Ω
ρ(v − vg)vn dA =

∫
∂Ω
σn dA+

∫
Ω
ρf dV in Ω (1)

∂

∂t

∫
Ω
ρ dV +

∫
∂Ω
ρ(v − vg) n dA = 0 in Ωf (2)

σ = µf (∇v +∇vT )− pI in Ωf (3)
∂

∂t
u = v in Ωs (4)

σ = λs tr(E) I + 2µsE in Ωs (5) E =
1

2

(
∂x

∂X

T ∂x

∂X
− I

)
(6)

∆u = 0 in Ωf (7) ∆p = 0 in Ωs (8)

with σ the Cauchy stress tensor, µf the dynamic viscosity, λs, and µs the Lamé constants
and E The Green Lagrange strain tensor. The FSI boundary conditions for the fluid

vf = vs on Γ (9)

and for the structure
σsns = σfnf on Γ (10)

are implicitly stated in the system (1)-(8), as v and σ are defined continuously on Ω.
Note, that the FSI boundary conditions for the fluid computation are of Dirichlet type,
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thus will be incorporated into the discretized system. The FSI boundary conditions on
structure side are of von Neumann type, thus have to be treated separately.
The harmonic continuations of the pressure and displacement fields are needed for a global
description within function spaces defined on Ω.
For the fluid part equations (1) and (3) reduce to

∂

∂t

∫
Ω
ρv dV +

∫
∂Ω
ρ(v−vg)vn dA−

∫
∂Ω
µ(∇v+∇vT )n dA = −

∫
∂Ω
pn dA+

∫
Ω
ρf dV in Ωf .

(11)
For the structure part, as v = vg, the momentum equation (1) reduces to

∂

∂t

∫
Ω
ρv dV −

∫
∂Ω
σn dA =

∫
Ω
ρf dV in Ωs. (12)

2.2 Space Conservation Law

The mass conservation equation in the ALE framework has to be fulfilled in every time
step. In [3] it is shown, that this is a nontrivial task. In order to check this property the
so called Space Conservation Law is introduced:

∂

∂t

∫
Ω
ρ dV =

∫
∂Ω
ρvg n dA in Ωf (13)

which is (2) in the case of v = 0. The discrete counterpart of this equation is implemented
but will not be further discussed here.
If the Space Conservation Law is fulfilled, (2) reduces to the same form as in the Eulerian
case: ∫

∂Ω
ρv n dA = 0 , on Ωf . (14)

2.3 Spatial Discretization

In the following, the triple (v, p, u) ∈ V × P × U will be referred to as w. The Navier-
Stokes equations (9), (11), and (14) are discretized using a fully conservative finite-volume
approach. In order to improve stability, the convective and diffusive fluxes are divided into
implicit parts Ā(w) and explicit parts which contribute to the source terms. Singly the
upwind convection fluxes and normal diffusion fluxes are treated implicitly. The pressure
term is discretized into a linear form D(p) and the source terms into a nonlinear form
b̄(w).
The assembled spatially discretized system then can be written as

∂

∂t
vρ δV + Ā(w)v +D(w)p = b̄(w) (15)

B(w)v = 0 (16)

with δV being the discrete volume of the current grid cell. Note that the convective flux
of the ALE grid velocity appears in the implicitly treated parts in Ā(w) as well as the

4



Stephen M. Sachs, Dörte C. Sternel, Michael Schäfer

explicitly treated parts in b̄(w). The Dirichlet boundary conditions (9) are already inte-
grated into the system.

The elasticity equation (12) together with the stress and strain tensors (5), (6), and rela-
tionship (4) are discretized by a Galerkin finite-element approach. The resulting system
is

M
∂

∂t
v +N(σ) = f (17)

with M the mass matrix, N(σ) the stress divergence vector, and f the sum of the body
forces and the boundary loadings.

The FSI boundary condition on structure side (10) is realized by a linear operator C
defined on the interface Γ:

f = C(p). (18)

The grid movement in Ωf is realized as proposed by [15].

2.4 Temporal Discretization

The unsteady term in (15) is discretized by a second-order accurate backward difference
discretization. The discretization complies with the product rule, as proposed by [5].

∂

∂t
vρ δV ≈ 3vn+1 − 4vn + vn−1

∆t
ρ δV n+1 +

3δV n+1 − 4δV n + δV n−1

∆t
ρvn+1. (19)

Using the latter equation, the system (15) and (16) results in:

A(w)v +D(w)p = b(w) (20)

B(w)v = 0. (21)

The temporal discretization on structure side is realized by Newmarks beta method.
Equation (17) then reads:

K∆u = R (22)

un+1 = un + ∆u (23)

vv+1 = vn +
γ

β∆t
∆u (24)

an+1 = an +
1

β∆t2
∆u (25)

with R = f −M ∂

∂t
v −N(σ) , K = −

[
∂R

∂u
+
∂R

∂v

∂v

∂u
+
∂R

∂a

∂a

∂u

]
.

Finally, equations (22) to (25) yield the discrete second-order time accurate equation

K(w) = f(w). (26)

5



Stephen M. Sachs, Dörte C. Sternel, Michael Schäfer

3 MULTIGRID METHODS

Within this section the multigrid method is applied to the coupled problem. In the first
part a short motivation of the nonlinear multigrid method or full approximation scheme
(FAS) is given [2, 9]. Thereafter the coupled discrete FSI problem is solved by the FAS.

3.1 Full Approximation Scheme

A short motivation of the FAS is based on Newtons method. Considering the nonlinear
system of equations

A(x) = b(x) , R(x) = b(x)− A(x) (27)

with R(x) the residual. Let the computational domain be discretized by m successive
coarser grids gl, l = 1, . . . ,m, and let xl and Rl be the discretization of x and R on gl.
Newtons method claims (27) discretized on grid gl can be solved by iterating

−∂R
l(xl

n)

∂x
∆xl = Rl(xl

n) (28)

xl
n+1 = xl

n + ∆xl (29)

with n being the iteration number. Let x̃l be the current solution of the system (28), (29)
and the starting point for the next equation. By restricting equation (28) to gl+1 the next
step of Newtons method yields

−∂R
l+1(xl+1

n )

∂x
∆xl+1 = I l+1

l Rl(xl
n) (30)

xl
n+1 = xl

n + I l
l+1∆xl+1 (31)

with I l+1
l being the interpolation operator from grid gl to gl+1. By approximating the

gradient by finite difference this results in the coarse grid correction for the FAS:

Al+1(xl+1
n+1) = bl+1(xl+1

n+1)− bl+1(I l+1
l xl

n) + Al+1(I l+1
l xl

n) + I l+1
l Rl(x̃l) (32)

xl
n+1 = xl

n + I l
l+1(xl+1

n+1 − I l+1
l xl

n) . (33)

Note, that the second and third right hand side terms of (32) are dependent on I l+1
l xl

n.
This value can not be updated during computation of (32), as this is just one single step
in Newtons method. Application of this scheme to the coarse grid equation (32) will result
in a correction on grid gl+2. Thus, the multigrid scheme is a straightforward extension of
the two grid scheme and for further discussion only the two grid scheme will be used.

3.2 Solution Algorithm

We recall the fully discretized nonlinear system for an unsteady coupled computation
(18), (20), (21) and (26) discretized on grid size l:

Al(wl)vl +Dl(wl)pl = bl(wl) (34)
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Bl(wl)vl = 0 (35)

f l = C l(pl) (36)

K l(wl) = f l(wl) . (37)

This system has to be solved globally by the FAS embedding custom solvers locally for
each subproblem: Equations (34) and (35) are solved using the flow solver FASTEST. (34)
is linearized by fix point iteration, (35) is used as the pressure correction in the SIMPLE
algorithm, and the resulting linear problems are solved by the SIP. Equation (36) is solved
in the flow solver and the discrete loading values are interpolated in the coupling interface
MpCCI. Equation (37) is solved in the structure solver FEAP. It is linearized by Newtons
method and the resulting linear systems are solved by the Gauß-Seidel method.
The restriction in the fluid domain is done by linear interpolation of 8 adjacent grid cells,
in the structure domain it is defined similar to the Galerkin approach. As stated in [9],
linear interpolation operators are sufficient to solve second-order pdes.
After a few fine grid iterations (pre-smoothing) the entire system is restricted to the next
coarser grid level:

Al+1(wl+1)vl+1 +Dl+1(wl+1)pl+1 = bl+1(wl+1)− bl+1(I l+1
l w̃l)

+Al+1(I l+1
l w̃l)I l+1

l ṽl +Dl+1(I l+1
l w̃l)I l+1

l p̃l

+I l+1
l

[
bl(w̃l)− Al(w̃l)ṽl −Dl(w̃l)p̃l

]
(38)

Bl+1(wl+1)vl+1 = Bl+1(I l+1
l w̃l)I l+1

l ṽl − I l+1
l

[
Bl(w̃l)ṽl

]
(39)

K l+1(wl+1) = f l+1(wl+1)− f l+1(I l+1
l w̃l) +K l+1(I l+1

l w̃l)

+I l+1
l

[
f l(w̃l)−K l(w̃l)

]
. (40)

with w̃l the current fine grid solution.
Note, that for the linear relation (36) FAS reduces to the same relation discretized on a
coarser grid. This is one of the advantages of the FAS, because the same routines can be
used for several discretizations.

As the restricted mass conservation equation (39) is based on fluxes defined on the fine
grid, and therefore on the fine grid geometry, the coarse grid velocities do not necessarily
have to fulfill this equation. Therefore the coarse grid fluxes used in this equation are not
calculated from the restricted velocities, but from mass fluxes, which are restricted too.
Let w̃l+1 be the current coarse grid solution after coarse grid correction. Then the current
fine grid solution can be corrected as:

wl = w̃l + I l
l+1

(
wl+1 − I l+1

l w̃l
)

.
(41)

After correction another few fine grid iterations (post-smoothing) are needed in order to
eliminate high-frequency errors that arise from the interpolation.
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4 TEST CASE I

In this section a 2D structure problem is calculated, in order to verify the implementa-
tion of the FAS in the structure solver. As it was shown in earlier work, that the multigrid
coupling with an FAS on fluid side and a single grid computation on structure side gen-
erates a significant speedup [10], singly the geometric multigrid method on structure side
is verified here.

4.1 Problem Description

Figure 2: 2D Point load

The problem setup is a rectangular body with an applied point load. The computa-
tional domain is a 2× 1 [m2] rectangle. Boundary conditions are: Fixed in y direction at
the bottom, clamped at the bottom center node, and a point load is applied to the top
center node. The remaining boundaries have zero loading. The domain is discretized by 5
successively coarsened grids from 16,770 to 90 degrees of freedom. Linear elastic material
is used and a steady state solution is computed. This test case is based on the problem
description in [13].

4.2 Results

Two setups are investigated. The first setup Two Grid uses a two-grid scheme on all
4 grid levels. The second setup Max Grid always uses the maximum number of available
grids. As a smoother the Gauß-Seidel method has been implemented into the structure
solver FEAP, the system on the coarsest grid is solved by a LAPACK [1] direct solver.

The convergence criterion is
||R||2
||f ||2

< 10−6, with R the residual and f the applied load.

Setup n = 306 n = 1, 122 n = 4, 290 n = 16, 770
Max Grid 4.9 5.0 4.2 3.7
Two Grid 4.9 5.1 5.1 5.1

Table 1: No. of multigrid cycles to convergence
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Figure 3: y-Displacement on grid 1: 16.770 DOFs

Table 1 shows the number of multigrid cycles needed for the system to converge. The
values are not integer, as linear interpolation of the convergence criterion is used. The
Max Grid setup shows a decrease in multigrid cycles needed, which will eventually ap-
proach a constant value. The Two Grid scheme shows constant behavior. This shows the
independence of the number of multigrid cycles of the size of the underlying discretization.

5 TEST CASE II

In this section the global multigrid coupling approach is applied to a 3D FSI test case.
The geometry is taken from the FSI Benchmark [18]. The test case consists of a channel
flow around a rigid cylinder with an elastic bar attached to it. The computational cost
of the new approach is compared to the implicit partitioned coupling approach by the
number of fine grid iterations used by the flow solver.

5.1 Problem Description

Figure 4: Non matching fluid and structure grid

The channel has the dimensions 2.5 × 0.41 × 0.1 [m3], with a slightly off symmetric
positioned cylinder at (0.2[m], 0.2[m]), radius 0.05 [m] and a bar attached to the cylinder

9



Stephen M. Sachs, Dörte C. Sternel, Michael Schäfer

of size 0.35× 0.02× 0.1 [m3].
The computational domain is discretized into 2,048 elements for the structure part and
80,384 volumes for the fluid. Figure 4 shows the one time coarsened nonmatching grids for
the fluid and structure domain. Boundary conditions for the fluid are: Parabolic inflow

profile vf = 1.5 v̄
(

4.0
0.1681

y
[m]

(0.41− y
[m]

), 0
)T

, with v̄ = 0.2 [m

s
], Dirichlet outlet condition,

symmetry boundary condition in z direction and no-slip on all other faces. The structure
is clamped at the cylinder and fixed in z direction at z = 0 and z = 0.1[m].
The fluid field is initialized with constant velocity vf = (v̄, 0)T , the structure is initially
at rest without any loading.
The fluid is set to be incompressible and Newtonian with density ρ = 1 [103 kg

m3 ] and
dynamic viscosity µf = 1 [ kg

ms
]. This leads to a Reynolds number of Re = 20. The structure

is linear elastic with Youngs modulus E = 1.4 [106 kg

ms2
] and Poisson ratio ν = 0.4.

5.2 Results

Figure 5: Course of residuals using MG(left) and SG (right)

In order to compare the two approaches, two setups are specified. First, the implicit
partitioned coupling approach with global multigrid (MG). The flow solver FASTEST is
accelerated by geometric multigrid with the SIP as linear system solver. The structure
solver FEAP is accelerated by a geometric multigrid with a Gauß-Seidel linear system
solver and LAPACK direct solver on the coarsest grid. Coupling is applied at every grid
level.
Second, the implicit partitioned coupling approach (SG). The flow solver FASTEST is
accelerated by geometric multigrid with the SIP as linear system solver. The structure
solver FEAP uses a conjugate gradient method on a single grid. Coupling is only per-
formed on the finest grid.
As convergence criterion the relative displacement in the current FSI iteration n is uti-
lized: un−un−1

un−1
< 10−3. Figure 5 depicts the course of this quantity for both setups. The
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Setup # V-cycles # Fine Grid Iterations
SG 233 2330
MG 59 1180

Table 2: Numbers of iterations until convergence

coupled computation in MG as well as the flow computation in SG are both performed
on two grid levels. For MG, two coupling steps within every grid level have been found
useful.
As the initial conditions of this test case are not at physical equilibrium, underrelaxation
of the exchanged values is unavoidable. The parameters used are λu = 1.0 for the dis-
placements and λf = 0.03 for the force. In order not to alter the results, underrelaxation
is applied as fresulting = λffnew + (1− λf )fold.
Figure 6 shows the fluid velocity and structure displacement at the end of the compu-
tation. Table 2 denotes the number of V-cycles and fine grid iterations required by the
flow solver for both setups. MG needs about one quarter of the V-cycles needed by SG,
though the latter approach is using only half as many fine grid iterations per cycle. Thus
the computational work is about half.

Figure 6: x Velocity and y Displacement

6 CONCLUSIONS

A global multigrid method for coupled FSI problems has been introduced. This method
advances the implicit partitioned approach closer towards the monolithic approach. In
contrast to the implicit partitioned coupling, errors arising from the coupling procedure
are also eliminated on coarse grids, thus reducing the numbers of overall solution itera-
tions and, finally, computing time. This is achieved by extending the multigrid method,
which is an established acceleration technique in fluid solvers, to the coupled FSI system.
Utilizing the full approximation scheme as nonlinear multigrid method, the coupling sub-
routines remain, to a large extend, unchanged. Test case I shows the linear dependence of
computation cost with respect to the discretization when using the multigrid method for
structure problems. Test case II shows an application of the global multigrid method to a
3D FSI problem and very promising results in comparison with single grid coupling. The
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next step is to validate the linear dependence of the global multigrid FSI implementation
with respect to discretization and to compare it with partitioned and monolithic solvers.
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