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Abstract. Simulation of turbulent gas-particle flows inside combustion chambers of en-
ergy systems is performed. An advanced model of turbulent particulate flow, which includes
effects of particle stochastic motion (particle dispersion) is developed. Numerical calcu-
lations are performed by the Eulerian–Lagrangian approach for the fluid and particles.
Fluid flow calculations are based on Reynolds-averaged (RANS) or filtered Navier–Stokes
(LES) equations. The solid phase is treated by the Lagrangian approach, which means
that particles are followed in time along their trajectories through the flow field. At ev-
ery given time step, the new position of the particle and its new velocity are calculated
according to the forces acting on the particle. The inclusion of particle combustion and
particle stochastic evolution in modeling of particle dynamics allows the proposed model
to realistically simulate the flow field inside a combustion chamber. Substantial knowledge
was obtained about particles dynamics as well as their interactions with internal turbulent
flow. The two-phase model developed reasonably explains computational and experimental
data, in particular, it explains the formation of regions of irregular particles concentration
in internal duct flow induced by wall injection of fluid and particles.
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1 INTRODUCTION

Aluminized propellants are used in solid rocket motors to increase specific impulse.
Aluminum particles burn in a significant portion of the chamber and produce a con-
densed phase that is carried out into the flowfield. Aluminum particles affect appreciably
combustion instabilities by acting as driving or, on the contrary, as damping mechanisms.
Therefore, a reliable stability prediction includes the description of the reactive turbulent
two-phase flow in the motor.

The flow in the channel with distributed fluid injection serves as a model for flow of
products of solid fuel decomposition in the solid rocket motors, which reflects the essential
side of the process — injection of the mass from the burning surface [1–6].

The study focuses on the numerical analysis of turbulent gas-particle flows inside com-
bustion chambers of energy systems. The objective of the study is to develop an advanced
model of turbulent particulate flow, which includes effects of particle combustion and
particle stochastic motion (particle dispersion). The inclusion of particle combustion and
particle stochastic evolution in modeling of particle dynamics allows the proposed model
to realistically simulate the flow field inside a combustion chamber.

To describe gas-particle flows, the following approaches are used: kinetic, continual
(Eulerian), and trajectory (Lagrangian). Practical realization is dictated by the range of
applicability and the possibility of predicting various characteristics of the flow [7–10].
The kinetic approach finds application in works considering the construction and sub-
stantiation of mathematical models of gas-particle flows. In solving specific problems,
kinetic models are used comparatively rarely because of their complexity. In Eulerian ap-
proach, particles are represented in the form of a continuous medium with a continuously
space distributed density. The behavior of a multi-velocity continuum is described by the
equations in Eulerian coordinates. Modeling of turbulent flows requires the solution of
problems related to determination of the degree of involvement of particles in the fluid
motion and description of the reverse effect of particles on turbulence. In Lagrangian
approach, the equations describing the motion of particles are written in Lagrangian co-
ordinates, and are integrated along the trajectories of sample particles in the fluid field.

Depending on whether or not the influence of velocity fluctuations of the fluid flow on
the particle motion is taken into account, one distinguishes two variants of the trajectory
approach [7]. In the deterministic model, the interaction of discrete inclusions with tur-
bulent moles is ignored. The position of the sample particle at the initial time completely
determines its further evolution. In flows with a large curvature of streamlines, melting
and burning of particles, the model leads to errors in determining the characteristics of
the two-phase flow. The stochastic model takes into account the influence of turbulence
by introducing a random force into the equation of particle motion. The instantaneous
velocity of the turbulent flow is a sum of the averaged and random components. The mean
component is found from the RANS equations, DNS or LES. The random component is
determined by the Monte Carlo method.
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The stochastic models described in the literature [9,11–22] are distinguished by physical
factors that are taken into account and peculiarities of generating turbulent fluctuations of
the fluid flow. In another approach, the calculation of the fluctuation velocity component
is based on the integration of a Langevin-type equation [15, 23–35].

Particle turbulent dispersion due to interaction between particles and turbulent eddies
of fluid flow is generally dealt with by two methods. The first method, mean diffusion,
characterizes only the overall mean (time-averaged) dispersion of particles caused by the
mean statistical properties of the turbulence. The second method, structural dispersion,
includes the detail of the non-uniform particle concentration structures generated by local
instantaneous features of the flow, primarily caused by the spatial-temporal turbulent
eddies and their evolution.

Numerical calculations are performed by the Eulerian–Lagrangian approach for the
fluid and particles. Fluid flow calculations are based on Reynolds-averaged (RANS) or
filtered Navier–Stokes (LES) equations. The solid phase is treated by the Lagrangian
approach, which means that particles are followed in time along their trajectories through
the flow field. At every given time step, the new position of the particle and its new
velocity are calculated according to the forces acting on the particle.

Substantial knowledge was obtained about particle dynamics as well as their interac-
tions with internal turbulent flow. The two-phase model developed reasonably explains
computational and experimental data. In particular, it explains the formation of regions
of irregular particles concentration in internal duct flow induced by wall injection.

2 FLUID FLOW FIELD

Let us align the x-axis of the Cartesian frame of reference with the lower wall of the
channel, and the y- and z-axes with its cross-section. The injection velocities on the lower
and upper walls are vw1 and vw2.

In Cartesian coordinates (x, y, z), an unsteady 3D flow of a viscous compressible fluid
is described by the following equation

∂Q

∂t
+

∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
= H. (1)

Equation (1) is complemented with the equation of state for perfect gas

p = (γ − 1)ρ

[

e− 1

2

(

v2x + v2y + v2z
)

]

.

The vector of conservative variables, Q, and the flux vectors Fx, Fy and Fz have the

3



Konstantin N. Volkov

following form

Q =













ρ
ρvx
ρvy
ρvz
ρe













, Fx =













ρvx
ρvxvx + p− τxx
ρvxvy − τxy
ρvxvz − τxz

(ρe+ p)vx − vxτxx − vyτxy − vzτxz + qx













,

Fy =













ρvy
ρvyvx − τyx

ρvyvy + p− τyy
ρvyvz − τyz

(ρe + p)vy − vxτyx − vyτyy − vzτyz + qy













,

Fz =













ρvz
ρvzvx − τzx
ρvzvy − τzy

ρvzvz + p− τzz
(ρe + p)vz − vxτzx − vyτzy − vzτzz + qz













.

The viscous stress tensor, τij , and heat flux, qj , are found from the relations

τij = µeff

(

∂vi
∂xj

+
∂vj
∂xi

− 2

3

∂vk
∂xk

δij

)

, qi = −λeff
∂T

∂xi
.

Here, t is the time, ρ is the density, vx, vy, and vz are the velocity components in the
coordinate directions x, y and z, p is the pressure, e is the total energy per unit mass, T
is the temperature, and γ is the specific heat ratio.

The equation (1) is suitable for both laminar and turbulent flows, and it formally
coincides with unsteady RANS. The effective viscosity, µeff, is calculated as the sum of
molecular viscosity, µ, and eddy viscosity, µsgs, and the effective thermal conductivity,
λeff, is expressed in terms of effective viscosity and Prandtl number

µeff = µ+ µsgs, λeff = cp

(

µ

Pr
+

µsgs

Prsgs

)

,

where cp is the specific heat capacity at constant pressure, and Pr = 0.72 and Prsgs = 0.9.
In the RNG model, the calculation of effective viscosity reduces to the solution of

nonlinear equation [36]

µeff = µ
[

1 +H(X − C)
]1/3

, X =
µ2
sgsµeff

µ3
, (2)
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where H(X) is the Heaviside function, and C = 100. The eddy viscosity is

µsgs = ρ (CR∆) |S|2, |S| = (2SijSij)
1/2 , Sij =

1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

, (3)

where CR = 0.157. At X ≪ C, the equation (3) yields the Smagorinsky model [37], and
CS(2CR)

1/4/2π = 0.119.
To incorporate the effects of curvature of streamlines, the eddy viscosity is multiplied

by the damping function depending on the Richardson number [38]. The RNG model is
simple and efficient, and correctly predicts the eddy viscosity in the laminar region.

The filter width, ∆, is related to the mesh step size

∆ = V 1/3 = (∆x∆y∆z)1/3,

where V is the volume of cell, and ∆x, ∆y and ∆z are mesh steps in the coordinate
directions x, y and z.

The normal fluid velocity and wall temperature are specified on lower and upper walls
(vx = vz = 0, vy = vw1, T = Tw1 at y = 0, and vx = vz = 0, vy = −vw2, T = Tw2 at
y = h). Injection velocity is constant in space, and changes in time according to Gaussian
law with imposed random fluctuations in the form of white noise [3]. No-slip and adiabatic
boundary conditions are used on the left boundary (vx = vy = vz = 0, ∂T/∂n = 0 at
x = 0). Non-reflecting boundary conditions are applied to the outlet boundary of the
channel at x = L. Periodic boundary conditions are specified in z direction.

3 DISPERSED PHASE

The equations of the translational motion of a spherical particle are written in the form

drp

dt
= vp,

dvp

dt
=

3CDρ

8ρprp
|v − vp| (v − vp) . (4)

To calculate the drag coefficient, the modified Stokes law is used

CD =
24

Rep
fD(Rep).

The function fD takes into account the correction to the Stokes law for the particle inertia,
and the relative Reynolds number is

Rep =
2rpρ |v − vp|

µ
.

The particle relaxation time is calculated by the relation

τp =
8ρprp

3ρCD |v − vp|
.
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Equations (4) are integrated along the path of an individual particle and require spec-
ification of only the initial conditions — the coordinates and velocity at the time t = 0.
The fluid velocity in equation (4) represents a random function of the spatial coordinates
and time. The turbulence is taken into account by introducing random velocity fluctu-
ations into equation (4). The fluid velocity is a sum of the averaged velocity, 〈v〉, and
the random velocity, v′. The averaged velocity is precalculated. In order to calculate the
random velocity, an eddy lifetime model and a Langevin-type equation are used.

4 EDDY LIFETIME MODEL

The turbulence field is simulated by a set of spherical eddies, each of which is character-
ized by some velocity ve, radius Le and lifetime Te. In the simplest case, the characteristics
of turbulent eddies are assumed to be constant throughout the flow field [11]. In the model
of [12], the eddy velocity is considered to be a random, ve = {ue, ve, we}. The eddy radius
and eddy lifetime are determined from the local characteristics of the turbulent flow

Le = c3/4µ

k3/2

ε
, Te =

Le

(2k/3)1/2
,

where cµ ∼ 0.9. It is assumed that during the lifetime of the eddy, its velocity and radius
remain unchanged. Thus, the turbulent mole loses and acquires its individuality stepwise,
which leads to the appearance of turbulent flow fluctuations.

In the model of [14], the eddy lifetime is considered to be a random quantity and is
chosen from the Poisson distribution.

Let at some point of the flow a fluid mole (a fluid volume, whose size is characterized
by an integral scale of turbulence) be formed. When moving, the fluid mole entrains
particles that have gotten into it. The friction between the fluid and the particles retards
the mole, and the particles are accelerated. The mole retains its velocity throughout eddy
lifetime (from the moment it was released from one layer of the flow until it mixed with
another layer). The mole loses its individuality stepwise.

Suppose that at time ti a particle having velocity vp is in the center of a eddy moving
with velocity ve. Taking into account the relative motion of the eddy and the particle at
time ti+1, the following three situations are possible: the particle remains within the initial
turbulent mole and is moving together with it (r < Le, case 1), the particle leaves the
initial mole (r < Le, case 2), the lifetime of the eddy expires and it loses its individuality,
and the particle thereby gets into a new turbulent mole and begins a new process of
interaction (ti+1 − ti > Te, case 3). In the case 1, in accordance with the new position
of the particle and the local characteristics of the turbulence, the new values of the
characteristic eddy scales (velocity, radius and lifetime) are calculated (Figure 1). In the
cases 2 and 3, the particle gets into a new turbulent mole with different characteristics.
The new fluctuation of the fluid flow velocity is determined.

The time in which the particle manages to leave the initial mole is estimated from the
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Figure 1: Particle and eddy interaction

linearized equation of motion of the particle

Tc = −τp ln

(

1− Le

τp |v − vp|

)

.

If Le > τp |v − vp|, then the expression for Tc loses meaning. This means that the particle
does not leave the eddy and remains in as long as it exists. Hence, as a time criterion for
the generation of a new fluctuation, the minimum of the eddy lifetime, Te, and the time
in which the particle passes through the eddy, Tc, is used

T =

{

min (Te, Tc) if Le > τp |v − vp| ,
Te if Le 6 τp |v − vp| .

The model of [20] assumes that the particle does not leave the initial mole, which leads
to overestimated dispersion of particles. Account of the relative motion of the particle
and eddy leads to better agreement between theoretical and experimental data [8, 22].

The time and space criteria for the generation of a random fluid velocity for different
models are given in the Table 1.

In the model of [11], the integration step is assumed to be equal to Te. Such an approach
means that as long as it lives the mole interacts with the same particles (particles do not
enter the mole and do not leave it). This holds only for averaged-motion equilibrium
turbulent flows. If the mean phase velocities differ, the particles pierce the mole and, in
so doing, because of their interaction, their velocities are not equal at the entrance to the
mole and at the exit from it. As a result, the particles either carry away with them part
of the moles momentum or transfer to the mole part of their momentum.

Extension of the model of [11] to more complicated cases requires taking into account
the relative motion of the particle and the mole.

In the model of [13], the integration step is chosen so that the particle crosses no more
than one cell of the computational mesh. Such an approach, however, is computational
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rather than reflecting actual processes. The ideas proposed in [12] proved to be more
advanced, and subsequently they were used many times to calculate various flows [17,22].

No Time, T Length, L Reference

1 const const —

2 min
{

Le

(2k/3)1/2
,−τp ln

(

1− Le

τp|v−vp|

)}

Le [12]

3
[

(2k)1/2

2Le
+

|v−vp|
Le

]−1
— [19]

4 min{Tmax, Tc} Le [17, 18]

5 Le

(2k/3)1/2
— [11]

6 1
TL

exp (−Te/TL) — [14]

7 min
{

Le

(2k/3)1/2
, Le

|v−vp|

}

— [16]

Table 1: Different eddy lifetime models

In the model of [12], two time scales are introduced. As a time criterion, the minimum
from the eddy lifetime and the time in which the particle passes through the eddy is used,
and the spatial criterion is the integral scale of turbulence.

In the gravitational field, solid particles can scatter more intensively than liquid par-
ticles [8, 18]. In the model of [18], the maximum particle and turbulent mole interaction
time, Tmax, which is independent of the solidliquid-particle interaction time, Tf, is intro-
duced. The time Tmax is determined on the basis of experimental data by the Lagrangian
and Eulerian scales of turbulence related by the relation TL = βTE, where β = v′Te/Le.
The criterion for the generation of a new fluid velocity is [18]

T =

{

min (Tmax, Tc) if 2Le > τp |v − vp| ,
Tf = 2TL if 2Le 6 τp |v − vp| .

The factor 2 takes into account the correction for experimental data. The model of [12]
assumes that Tmax = Tf = Te.

In anisotropy turbulent field, the eddy lifetime is given in the form [8, 15]

Teij ∼
(

k2

v′2i v
′2
j

)1/4
k

ε
.
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The velocity field is calculated on the basis of turbulence models for second moments.
The model of [15] leads to an increase in computational costs with no marked increase in
the accuracy of calculations [8].

In many models, the particle velocity is given as a superposition of the convective and
diffusion components [7]. The first component is calculated on the basis of the determin-
istic approach, and the second one is assumed to be proportional to the concentration
gradient of particles. The concentration is calculated from the diffusion equation. To the
thus-found particle shift the random value chosen from the normal distribution in accor-
dance with the turbulent diffusion coefficient of impurity is added. However, because of
the difficulty of calculating effective particle transfer coefficients, such an approach has
not found wide use.

Estimations show that for internal and jet flows the account of the criterion Tmax

introduced in [17, 18] has a weak effect on the particle dispersion, since the criterion for
the generation of a new fluctuation of the fluid velocity is largely determined by the time
Tc. This conclusion is also confirmed by the calculations by the particle dispersion in the
gravitational field [21].

The results of the calculations indicate that the realization of the stochastic model
proves to be insensitive to the choice of the criterion for the generation of a new fluctuation
of the fluid flow velocity. The conclusion drawn is corroborated by the results of [19], where
criteria from 2 to 4 were compared.

Unlike the model of [12] in which the velocity fluctuation being calculated is assumed
to be frozen inside the eddy during its lifetime, the present model considers that the
particle is always under the action of the local turbulence at a point connected with its
position. For this purpose, the fluctuations obtained at the start of the particle and eddy
interaction are multiplied by the local turbulence intensity.

The disadvantage of the model is that the fluctuation fluid velocity field is not contin-
uous, and the time dependence of the correlation coefficient is linear.

5 LANGEVIN-TYPE EQUATION

The Langevin-type equation is used to describe either only the fluid flow [33] or only
the particle motion [34] or both of them [29].

5.1 Inertialess particle

To simulate the motion of an inertialess particle in a homogeneous isotropic turbulent
field, the following stochastic equation is used [8]

dv = v(t+ dt)− v(t) = − v

TL
dt+ σ

(

2

TL

)1/2

dw, (5)

where dw is a Wiener random process (white noise), for which 〈dw〉 = 0, 〈(dw)2〉 = dt,
〈dwi(t)dwj(t)〉 = δijdt. The velocity fluctuations are related to energy-containing eddies
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with a time scale TL. The velocity variance is obtained from the relation

〈

(dv)2
〉

=
〈

[v(t+ dt)− v(t)]2
〉

=
2σ2

TL
dt.

In the inertial interval, the variance is a linear function of time, 〈(dv)2〉 = CKεdt. There-
fore, TL = 4k/(3CKε) ∼ k/ε, which serves as a physical basis of the equation (5) used to
simulate the diffusion of a fluid particle from a point source [33], the motion of inertialess
particles in a turbulent flow [8, 34], and the passage to kinetic equations [31].

The multi-dimensional Markov’s process, whose components satisfy the Langevin equa-
tion (5), can be compared to the Fokker–Planck equation for the probability density func-
tion. The solution of the latter shows that the mean-square particle displacement in the
time interval dt is proportional to this interval 〈(dr)2〉 = 2Ddt.

To take into account the turbulence inhomogeneity, additional terms are added to the
equation (5) to provide a non-zero rms value of the random force (moments up to the
sixth order are taken into account), and a mean pressure gradient is introduced. However,
third- and higher-order moments play a secondary role compared to the second moments.

The model of [25] uses the assumption about the gradient character of the turbulent
transfer, and the inertialess particle displacement is modelled on the basis of the equation

dr =
1

ρ
∇µtdt+

(

2µt

ρ

)1/2

dw.

The turbulent viscosity is calculated by the Kolmogorov–Prandtl formula.
To take into account the correlation of velocities, the equation (5) is given in a modified

form. In the case of homogeneous turbulence, the velocity at time tn+1 is related to the
velocity at time tn by the relation [32, 35]

vn+1
i = Rii(t, x)v

n
i + σi

[

1− R2
ii(t, x)

]1/2
ξi(t). (6)

In an inhomogeneous turbulent field, the equation (6) is written in the following form [30]

vn+1
i = Rii(t, x)v

n
i + σi

[

1− R2
ii(t, x)

]1/2
ξi(t) + [1−Rii(t, x)]TLii

∂σ3

∂x3
δi3.

In the case of the step correlation function used in [24], the equation (6) takes the form

vn+1
i = − ∆t

TLii
vni + σi

[

1−
(

1− ∆t

TLii

)2
]1/2

ξi(t).

The correlation function is a product of the Lagrangian and Eulerian correlations [39]

Rii(t, x) = RLii(t)REii(x).
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In practice, various forms of the Lagrangian correlation function are used [39]

RLii(t) = exp

[

− t

(q2 + 1)TLii

]

cos

[

q t

(q2 + 1)TLii

]

, RLii(t) = exp

(

− t

TLii

)

,

where q > 0. The Eulerian correlation function is usually expressed in terms of the
longitudinal and transverse correlation coefficients based on von Karman relation [39]

REij(r) = [f(r)− g(r)]
rirj
r2

+ g(r)δij.

These correlations coefficients for a homogeneous isotropic turbulence have the form

f(r) = exp

(

− r

LExx

)

, g(r) =

(

1− r

2LEyy

)

exp

(

− r

LEyy

)

,

where LExx = 1.1TLσ, LEyy = 0.5LExx.

5.2 Inertial particle

In the model of [8], the random motion of a particle is modeled on the basis of the
stochastic equation

dvp = −vp

τp
dt+ σp

(

2

τp

)1/2

dw,

which coincides formally with (5) but is characterized by different time scales. In a ho-
mogeneous isotropic turbulence, the velocity variance of the particle and fluid are related
by the relation [39]

σ2
p

σ2
=

1

1 + ατp/TL
,

where α ∼ 1.0. For a homogeneous isotropic turbulence, σ2 = 2k/3 and TL = βk/ε, where
β ∼ 0.11÷0.60. In the gravitational field, the relative motion of the particle and the fluid
are taken into account [23].

In discrete form, the Langevin equation is written as

vn+1 = avn + bξn, (7)

where ξn ∈ N(0, 1). Multiplying relation (7) by vn, vn+1 and making averaging, we obtain

a =
〈vnvn+1〉
〈vn〉 〈vn〉 = RL(t), b2 =

〈

vn+1vn+1
〉

− a2 〈vn〉 〈vn〉 = σ2(1− a2),

where σ2 = 〈(vn)2〉, ξn
√
∆t → dw at ∆t → 0, ∆t = tn+1 − tn. When the exponential

correlation function is used, the coefficients acquire the following values

a = exp

(

−∆t

TL

)

, b = σ
(

1− a2
)1/2

.

At τp → 0 (light particles) the correlation function is Lagrangian, and at τp → ∞ (heavy
particles) it is Eulerian.
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5.3 Variants of Lagrangian models

Consider a solid particle P and a fluid particle F that coincide at the time tn (Figure 2).
Because of the inertia, their positions differ at the time tn+1. To calculate the velocity
of the fluid particle at the time tn+1, either the one-step (Lagrangian) or the two-step
(Lagrangian–Eulerian) approaches are used.

P , F

P   

F

r

n+1

v

v

vp

n n

n+1

n+1

n+1

n+1

vp
n

v
n

E

L

L

Figure 2: Fluid flow velocity at the
times tn and tn+1

5.3.1 One-step approach

In the model of [15,26], the fluid velocity at the time tn+1 is expressed in terms of the
velocity of the same particle at the time tn. The fluid velocity at the time tn+1 is

vn+1
L = avn

L + bξn.

The coefficients a and b are described by the same relations as for the equation (7).
Instead of the time scale TL, the scale T

∗
L is used. It is obtained with the aid of the linear

interpolation between TL and TE

T ∗
L =

ω

TL
+

1− ω

TE
,

where ω = σ2
p/σ

2. From the above relation it follows that T ∗
L → TL at τp → 0 and

T ∗
L → TE at τp → ∞. In [29], the time scale is calculated by the relation

T ∗
L = TL

(

1 +
βC

√

1 + TL/τp

)−1

,

where C = 2
√
2π, β = TL/TE. However, such an approach leads to incorrect limiting

relations, in particular, at τp/TL ≫ 1 (heavy particles) the time scale is

T ∗
L =

TL

1 + βC
= 0.4TL.
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5.3.2 Two-step approach

This approach consists of the Lagrangian step, where the fluid velocity at the time
tn+1 is calculated from the velocity of the same particle at the time tn, and the following
Eulerian step. At the Eulerian step, the fluid velocity at the point where the solid particle
is situated (Figure 1) is generated from the velocity at the time tn+1 of the fluid particle
situated at distance r from the solid particle. The Lagrangian step is described by

vn+1
L = aLv

n
L + bLξ

n
L. (8)

At the Eulerian step, the time variables are substituted into their spatial equivalents [27]

vn+1
E = aEv

n+1
L + bEξ

n+1
E . (9)

Here, ξn
L ∈ N(0, 1), ξn+1

E ∈ N(0, 1). The coefficients aL and bL depend on the form of
the Lagrangian correlation function, and the coefficients aE and bE are determined by the
form of the Eulerian correlation function.

The distance between the fluid and the solid particles at the time tn+1 is expressed
in terms of their instantaneous velocities r =

∣

∣vn+1 − vn+1
p

∣

∣∆t, where ∆t = tn+1 − tn.
Because of the spatial correlation anisotropy, the calculated relations are written in the
local coordinate system whose x-axis is directed from the fluid particle to the solid one.

For the Lagrangian step at ∆t → 0, the equation (8) goes over into the Langevin-type
equation (5), which has heuristic basis [29]. For the Eulerian step, from (9) we obtain

dv = − v

LE

dx+ σ

(

2

TE

)1/2

dw. (10)

The velocity difference at the distance r is ∆v = v(x + r) − v(x). Taking into account
that the velocity fluctuations obey the normal probability distribution, we obtain

〈∆v〉 = 0,
〈

(∆v)2
〉

= 2σ2 r

LE
,
〈

(∆v)3
〉

= 0.

On the other hand, the Kolmogorov’s theory gives the following relations [39]

〈∆v〉 = 0,
〈

(∆v)2
〉

= (εr)2/3,
〈

(∆v)3
〉

= εr.

Consequently, the equation (10) contradicts the Kolmogorov law in the inertial range.
Moreover, the equation (10) does not admit energy transfer from large eddies to small
ones. Unlike the equation (8) used at the Lagrangian step, the equation (9), which
describes the Eulerian step, has a less sound theoretical basis.

In the model of [26], a finite correlation length Λ ∼ LE was introduced. The position of
the fluid and solid particles is tracked until the distance between them becomes equal Λ,
since the velocities of two turbulent eddies at a distance larger than LE are non-correlated.
At r > Λ we assume RE(r) = 0. At r 6 Λ the exponential form of the Eulerian correlation
function is used. This approach is not suitable for small particles [29].
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5.3.3 Modified approach

In the model of [29], a modified representation of the Eulerian step described by relation
(9) was introduced. The distance between the fluid and the solid particles is calculated by
their mean relative velocity r =

∣

∣〈vn+1〉 −
〈

vn+1
p

〉∣

∣∆t. The velocities at the Lagrangian
and Eulerian steps are determined by the following relations

vn+1
L = aLv

n + bLξ
n
L, vn+1

E = aEv
n+1
L + bEξ

n+1
E .

For exponential approximation of the Lagrangian and Eulerian correlations, we obtain

aL = exp

(

−∆t

TL

)

, bL = σ
(

1− a2L
)1/2

, ξL ∈ N(0, 1);

aE = exp

(

−∆t

TE

)

, bE = σ
(

1− a2E
)1/2

, ξE ∈ N(0, 1).

The fluid velocity at the point where particle resides at the time tn+1 is calculated as

vn+1 = a1v
n+1
L + a2v

n+1
E + bξn+1. (11)

The coefficients a1, a2, and b in the equation (11) depend on the ratio σp/σ and the form
of the time correlation function. For large particles, the point P n+1 is closer to the point
F n, and for small particles it is closer to F n+1. Particles of medium sizes are positioned
between the points F n and F n+1 (Figure 3).

P  , F

vL

n n

P 

F 
n+1

n+1

vn

vn+1

vL

n

p

p

n+1

Figure 3: Position of the solid particle relative
to the fluid particle at the time tn and tn+1

Unlike the models of [30,32,35], where ∆t ∼ 0.2TL, the time integration step is chosen
from the condition ∆t = αmin{∆t1,∆t2,∆t3}, where ∆t1 is the time required for the
particle to cross the control volume of the Eulerian mesh, ∆t2 = TL, ∆t3 = τp, α ∼ 0.5.
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6 NUMERICAL METHOD

The CFD solver works in an explicit time-marching fashion, based on a three-step
Runge–Kutta stepping procedure. The fluxes are divided into the inviscid and viscous
components. The central difference scheme of the 2nd order is used for viscous fluxes, and
piecewise parabolic method and Chakravarthy–Osher scheme are used for inviscid fluxes
[40]. Convergence to a steady state is accelerated by the use of multi-grid techniques, and
by the application of Jacobi preconditioning.

To solve the Cauchy problem for particle equations, the fourth-order Runge–Kutta
method and methods that permit resolving in the solution rapidly and slowly decaying
components are used. To supply fluid parameters at points lying in the particle trajectory,
the bilinear interpolation method is employed. The integration step along each trajectory
was limited to the time and space turbulence scales. In the calculations, from 1000 to
10,000 trajectories of sample particles depending on their size were modeled.

7 RESULTS

The width and length of channel are h = 0.01 m and L = 0.6 m. The mesh contains
400 × 100 × 50 nodes, and is refined in x and y directions. Minimal and maximum
mesh steps are ∆xmin = 1.5 × 10−5 m, ∆xmax = 1.2 × 10−4 m, ∆ymin = 1.8 × 10−5 m,
∆ymax = 2 × 10−4 m. The mesh is uniform in z direction, ∆z = 10−4 m. Time steep is
∆t = 2.5× 10−6 s, and 50,000 time steps are performed.

At high Reynolds numbers (Re ∼ 103), the flow region in the channel with wall injection
is divided into sub-region of singulary influence of viscosity near the walls and sub-region
of vortical flow in the core. Viscous forces play negligible role compared to inertial forces
at all x except for small region near the left wall at x/h < 12. The maximum of streamwise
velocity comes towards the solid wall of the channel, near which the zone of viscous flow in
the likeness of boundary layer on a flat plate is developed (Figure 4a, one-sided injection).
With increase in distance from left end of the channel, the profile of streamwise velocity
takes a more filled shape than a profile computed from the k–ε model. The solution
is independent on Reynolds number at two-sided injection. The profiles of streamwise
velocity are more filled than before compared to those based on the model of vortical
flow of incompressible fluid in the channel with wall injection or k–ε turbulence model
(Figure 4b, two-sided injectioon). Profiles of transverse velocity demonstrates a weak
dependency on the injection velocity in the wide interval of parameters of the problem.

Distribution of streamwise velocity along x coordinate is close to linear dependence
(Figure 5a). The profiles of transverse velocity have universal behavior, and depend
on x coordinate weakly. Starting from x/h ∼ 30, the profiles of transverse velocity
become independent on x coordinate. The results based on k–ε model show divergence
of distribution of streamwise velocity from linear dependence at x/h > 35 [9].

Laminar–turbulent transition is defined by the distribution of friction coefficient along
solid wall of the channel (see Figure 5b). The results computed show that the k–ε model

15



Konstantin N. Volkov

u/um

y/h

1

2

3

4

5

0 0.4 0.8
0

0.4

0.8

0.2

0.6

0.60.2

1

1

     v   , m/s

1   0.10

2   0.55

3   1.00

4   2.75

5   5.00

     Inviscid solution

     Viscous at Re=10

     RANS

     Chaouat, 2000

w2

3

a)

0 0.4 0.8
0

0.4

0.8

u/um

y/h

1

2

0.2

0.2

0.6

0.6

1

1

      x/h

1   20

2   60

     Inviscid solution

     Viscous at Re=10

     RANS

     Chaouat, 2000

b)

x/h = 40

v  = 2.75 m/sw

Figure 4: Profiles of streamwise velocity

0 0.4 0.8
0

80

160

x/L

u/vw

1
2

40

120

0.2 0.6 1

      y/h

1   0.5

2   0.75

     Inviscid solution

     RANS

C

x/L

f

0 0.5 1
0

100

200

300

5

4

3
2

1

250

150

50

0.25 0.75

     v   , m/s

1   0.10

2   0.55

3   1.00

4   2.75

5   5.00

w2

a) b)

v  = 2.75 m/sw

Figure 5: Distributions of streamwise velocity and friction coefficient

gives satisfactory prediction of friction coefficient at small injection velocities (line 3). The
discrepancy of the results based on LES and k–ε model increases moving from left bound-
ary of the channel. Increase in friction coefficient, starting with x/L ∼ 0.2, corresponds
to the laminar–turbulent transition. Location of transition point depends on parameters
of the problem, and is sensible to fluctuations of velocity on a wall. The transition point
is moved downstream with increase in the injection velocity. Coordinate of the transition
point agrees with the data of [4]. The flow pattern computed allows marking the following
flow regimes: (i) region with considerable influence of viscous forces (x/h < 1/Re), (ii)
region of laminar flow with cosine profile of streamwise velocity (1¡x/h < 5), (iii) transi-
tion region (5 < x/h <10–15), (iv) region of turbulent flow (10–15< x/h). The length of
laminar flow depends on Reynolds number. The coordinate of transition point decreases
with increasing relative amplitude of perturbations at k

1/2
m /um > 4%.
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The results of [9] based on k–ε model predict maximum of turbulent kinetic energy far
from the permeable wall of the channel and overpredict a turbulence intensity near the
walls compared to experimental data and results of DNS presented in [3, 4].

A specific feature of the flow in a channel with injection is the presence of a negative
pressure gradient, which strongly influences the mechanism and intensity of turbulent
transfer. An increase in the level of turbulent velocity fluctuations is observed in the
region of a strong shear at a distance from the permeable wall of the channel where
the fluid particles moving normally to the surface have to turn around in the narrow
near-surface zone. The results of the calculations are in fair agreement with the data of
the physical experiment of [3], excepting the wall-adjacent zones of the flow where the
calculation gives a higher turbulence intensity [4].

Figure 6 presents the trajectories of aluminum oxide particles (rp = 5–50 µm) in a
channel with two-sided injection (vw = 5 m/sec, up,w = 0 and vp,w = vw). The influence
of the sluggishness of a particle on its scattering is inconclusive, since particles of different
masses execute motion in different regions with a different turbulence intensity. The
influence of velocity fluctuations on the particle motion is manifest when the particle gets
into the turbulent region of the flow. A nonmonotonic change in the turbulent kinetic
energy along the axial coordinate leads to a nonmonotonic change in the degree of particle
involvement in the fluid flow, which is determined by the relation between the particle
relaxation time and the turbulent time scale.

The particle time-averaged trajectories and profile of particle concentration are pre-
sented in the Figure 7. The results of calculation of the motion and scattering of aluminum
oxide particles (rp = 5–10 µm) for various particle sizes (Stokes numbers) are shown in the
Figure 8. At the initial instant of time the particle was on the upper wall of the channel.
The calculations were made beginning from the point xp0 = 3 with a step ∆x = 3. The
calculation was finished when the particle either left the calculated region (at x/h > 30)
or fell onto the lower wall of the channel (at y = 0).

For particles of large fractions (rp = 30-50 µm), velocity fluctuations produce no sig-
nificant effect on the impurity motion throughout the region of flow development because
of the inertia of such particles (Figure 8a, b). Weak migration of particles towards de-
creasing turbulent kinetic energy is observed only for particles injected into the channel
at a considerable distance from its left end (at xp0 > 9). Small particles (rp = 5-15 µm)
are scattered rather strongly (Figure 8c, d).

The correlation function of small particles practically follows the distribution obtained
for the carrier flow (small particles are involved in the pulsation motion of the carrier flow
and move along the streamlines), and are well described by the exponential dependence
often postulated in calculations (Figure 9). The correlation coefficient of large particles
differs in quality from the distribution that takes place for the carrier flow (large particles
deviate from the streamlines, largely manifesting their inertia). The transverse correlation
coefficient therewith acquires small negative values.
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Figure 6: Trajectories of sample particles in the channel at vw = 5 m/s
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Figure 7: Particle trajectories and profile of particle concentration

8 CONCLUSION

The features of the formulation and realization of various stochastic models of motion
and scattering of condensed impurity particles in a turbulent flow have been considered.
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The possibilities of the stochastic approach based on the integration of a Langevin-type
equation have been demonstrated with the example of the calculation of the turbulent
flow of a gas suspension in a channel with injection for various values of the injection rate
and the sizes of particles and conditions of their introduction into the channel. The results
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obtained on its basis show that velocity fluctuations of the carrier turbulent flow strongly
influence the motion and scattering of dispersive impurity, and the proposed model leads
to satisfactory results that agree with the data of numerical and physical experiments.

The application of the method of simulation of large vortices for describing the velocity
field of the carrier turbulent flow makes it possible to upgrade the universality of the
method, as well as to avoid the application of semi-empirical relations for calculating the
statistical characteristics of turbulence and the assumption of local inhomogeneity and
isotropy of the turbulence field.
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