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Abstract. The three dimensional study of natural convection in enclosure cavities is
receiving more and more research attention due to its interesting practical applications in
the engineering domain. In this work, the turbulent natural convection of air in enclosed
tall cavity with high aspect ratio (AR=height/width=28.6) is examined numerically. Two
cases of differential temperature have been considered, 19.6 C and 39 C between two ver-
tical lateral cavity plates, which correspond to low and high Rayleigh number respectively.
The flow is extremely slow for the two cases of differential temperature except in the core
cavity where it becomes turbulent. This led us to improve the flow in the rectangular cavity
by using two low-Reynolds number turbulence models: RNG k − ε model and SST k − ω
model, which are derived from standard k − ε model and standard k − ω model, respec-
tively. Finally, in the order to check the suitable turbulence model for this kind of flow,
the numerical results are compared with previous experimental data. A good agreement
has been obtained between the numerical results and experiment.
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1 INTRODUCTION

The turbulent convection flows are omnipresent in the several sciences domain (Solar
and stellar structure, Earth mantle, atmospheric turbulence, engineering, electronics).
The turbulent convection flow depends directly on the fluid physiochemical properties
and the geometric conditions. Usually, the natural convection flow, laminar or turbulent,
is characterized by the Rayleigh number, which is defined by the following expression:

Ra =
gβδTW

aν

This work, is carried out numerically to improve the structure of natural turbulence
convection flows in an enclosure with high aspect ratio. For this process of heat transfer,
theoretical, experimental and numerically studies have been performed. The numerical
study of the enclosure turbulent natural convection becomes more complicated when the
configuration is three-dimensional and the Reynolds number is low. In fact, this paper
is the further of our work done previously 1, which consisted to study numerically the
turbulent natural convection of air in the tall cavity by using two turbulence models: the
standard k − ε model and its derivative RNG k − ε model. The comparison between the
numerical results and the experimental data of Betts and Bokhari 4 showed that the results
were very satisfactory for the RNG model compared to its standard model. However, the
principal aim of this work is to study the same problem by using two turbulence low-Re
models number: RNG k − ε model 19 and SST k − ω model 11. The experiment of Betts
and Bokhari 4 concerns the natural convection of air in an enclosed tall differentially
heated rectangular cavity: 0.076m × 2.18m × 0.52m (corresponding to the width ’W’,
height ’H’ and depth ’D’ of cavity, respectively). The ratio between the height and width
corresponds to a aspect ratio cavity (AR=H/W=28.6). The natural convection flow is
generated by two differential temperatures between the two vertical lateral plates 19.6C
and 39.9C. Under theses physical and geometries conditions, the flow in the core of the
cavity is fully turbulent with low Reynolds number 4 and the temperature in the core
becomes stratified 7. However, the expression of Reynolds number is:

Re =
UW

ν

The numerical results for the vertical velocity, the temperature and the turbulent
kinetic energy are compared to the experiment data. Also, the numerical results of the
average Nusselt number along the hot vertical plate are compared to the experiment value
of Betts and Bokhari 4 and the numerical results of Heish and Lien 8. However, after the
choice of turbulence model, the second objective of this work is to predict the variation
of the wall heat transfer for various value of Rayleigh number. The theoretical study
and experimental measurements 3,7,18,20 acquire a correlation between the average Nusselt
number and Rayleigh number as follow: Nu = C.Ram , with the exponent, m ≈ 1/3.
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2 TURBULENCE MODELS

The steady turbulent compressible flow for the natural convection is studied through
the steady Reynolds average Navies-Stokes equations coupled to the average energy equa-
tion 1−22. These equations contain respectively the Reynolds stress terms and other cor-
relations of the fluctuating velocity and scalar for which require a closure. The Reynolds
stresses appearing in the Reynolds equations have been modeled by using two one point
closure turbulence models recommended for low Re number: RNG k − ε model and SST
k − ω model.

2.1 RNG k − ε model

The Renormalization group (RNG) methods are essential in near wall turbulence mod-
eling for the asymptotic properties of their scales (the space and time fluctuations exist
over all scales). On the basis of the scale invariance, inherent characteristic of the critical
phenomena, the method allows to obtain systematically the intrinsic properties of the
system constituents. Yakhot and Orszag in 1986 19 derived from the standard k− ε model
the RNG k− ε model by using The Renormalisation group (RNG) methods. The form of
RNG model is summarized as follow:

∂ (ρkui)

∂xi
=

∂

∂xj

[
αkµeff

∂k

∂xj

]
− ρε+Rij

∂ui
∂xj

+Gk (1)

∂ (ρεui)

∂xi
=

∂

∂xj

[
αεµeff

∂ε

∂xj

]
+ Cε1RNG

ε

κ

(
Rij

∂ui
∂xj

+Gk

)
− C∗ε2ρ

ε2

k
(2)

Where: C∗ε2 = Cε2RNG +
CµRNGη

3 (1− η/η0)

1 + αη
and η =

√
2 |D(u)|2k

ε
αk and αε are the inverse Prandtl numbers for k and ε, respectively; and Cε1RNG = 1.44,

Cε2RNG = 1.92, CµRNG = 0.0845, η0 = 4.38 and α = 0.012.
D(u) = 1

2
(∇u+∇tu) is the mean strain rate tensor.

The difference between the RNG model and standard model is significant for flows
within the large strain rates (η < η0), where the additional term in equation becomes
significant. In the limit of weak strain the supplementary source term tends to zero
and the original form of the standard model is then recovered. The effective viscosity is
calculated by a differential equation:

d

(
ρ2k
√
εµ

)
= 1.72

µ̂√
µ̂3 − 1 + Cµ̂

dµ̂ (3)

where µ̂ = µeff/µ and Cµ̂ ≈= 100

3



M. Aksouh, A. Mataoui. N. Seghouani. Z. Haddad

2.2 SST k − ω model

In 1993, Menter 11 developed a new turbulence model based on the shear stress trans-
port k−ω model. The principle of the SST method is to use the k−ω formulation in the
inner zone of the boundary layer and the free-stream independence of the k − ε model in
the outer part of the boundary layer. To combine these two models together, the standard
k − ε model has been transformed into equations based on k and ω, which leads to the
introduction of a cross-diffusion term in dissipation rate equation. The formalism of SST
model is:

Dρk

Dt
= τij

∂ui
∂xj
− β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
(4)

Dρω

Dt
=
γ

νt
τij
∂ui
∂xj
− βρω2 +

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2 (1− F1) ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
(5)

The difference between the SST formulation and the original k − ω model is that an
additional cross-diffusion terms appears in the ω equation and the modeling constants φ
are different with the following relation :

φ = Fφ1 + (1− F )φ2 (6)

φ1 and φ2 represent any constant in the original k−ω model and in the transformed k− ε
model, respectively.

where:

F = tanh
(
Λ2
)

(7)

and

Λ = max

(
2

√
k

0.09ωy
;
500ν

y2ω

)
(8)

3 NUMERICAL PROCEDURE

We consider a tall rectangular cavity for air with high aspect ratio AR=H/W=28.68,
the dimensions of cavity are: 0.076 × 2.18 × 0.52(m) , as showing in the figure 1. The
spatial derivatives in the equations are discretized with the finite volume method which
requires refined meshes near the wall (Pantankar 14). The principle of the finite volume
method is that the governing equations can be reformulated under the general equations
as follows:

(ρuiΦ),i =

(
Γ
∂Φ

∂xi

)
,i

(9)

and this general equation is converted into the algebraic equation with the following
form:
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aPφ
n+1
P =

∑
nb

anbφ
n+1
nb + Sφ∆V + ρn∆V φnP (10)

where n is the iteration number and nb is specification of the neighbor grids (repre-
senting north, east, south, west point).
Since the flow is steady in average, the SIMPLE algorithm is applied for the pressure-
velocity coupling and the power law scheme is use for the interpolation process. Using
the low-Reynolds number turbulence models require refined grid in the inner zone of the
boundary layer. Different grids sizes are tested previously 1. The present numerical re-
sults in this work are achieved by 50 × 300 × 50 rectangular non-uniform cells. For the
boundary conditions, two differential temperatures are applied between the lateral plates
19.6C and 39.9C, as showing in table 1. The front, back, bottom and top walls were kept
adiabatic with no slip condition, U=0.

Figure 1: The geometry of the configuration

Cold wall Hot wall Ra
First case 15.1C 34.7C 0.86× 106

Second case 15.6C 55.5C 1.43× 106

Table 1: Examined conditions

4 RESULTS AND DISCUSSION

4.1 The vertical velocity

At hight position (for y/H=0.5, z=0), the numerical results and the experimental data
4 for the mean vertical velocity are plotted in the figures 2.a and 2.b, corresponding to the
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low and high Rayleigh number respectively. The distribution of the vertical velocity indi-
cates that the velocity gradient is more important near the wall, and the profile have two
peaks which reveal that the fluid particles heated near the hot walls are moved upward
along the hot wall and the cold fluid particles are pulled downward along the cold wall.
In the core region (y/H=0.5, x/W=0.5, z=0) the flow is practically quiescent (vy ≈ 0),
i.e. the air is almost stagnant at the center of cavity 3.
The profiles for both turbulence models , RNG and SST models, are in good agreement
with experimental data and the predictions difference is minor. However, for more preci-
sion, the table 2 represents the maximum of the mean vertical velocity for the two models,
which are compared to the experimental data. The error between the two models and the
experimental data are indicated in brackets, where:

Er = (Rexp −Rnum) /Rexp (11)

It should be noted that the vertical velocity peak determined by SST k − ω model is
better than RNG k−ε model. This reveals the importance of the SST k−ω model for low
Reynolds number case where the gradient is more important near the wall. Furthermore ,
near the wall is viscous boundary layer in where the velocity increases with distance from
the wall and where the velocity gradient is strongest. Also, near the wall the vorticity is
large. Thus, the vorticity, which represent the rate of spin of particle fluid, is defined as
the curl of velocity (equation 12). In this study, the configuration is three dimension, thus
each point in the fluid has an associated vector vorticity in three dimensions. However, the
temperature and flow field were founded to be closely two-dimensional 4, so the vorticity
vector is normal to the plan (x,y). The figure 3 represents the vorticity components for the
three direction at different height, it is is clearly evident that flow is two dimension with
normal vorticity in the z direction. The figure shows that the normal vorticity magnitude
is maximum near the wall where maximal velocity occur. However, the high vorticity
near wall region originates from shear stress and not from a swirling or rotational motion
22. The contours of the normal vorticity, plotted in the figures 4, show that near the cold
surface the vorticity is concentrated into the down flow at the top of cavity and in the
other side it is concentrated near the hot wall at the bottom of cavity.In addition, the
vorticity magnitude increase with Rayleigh number.

ω = ∇×U (12)

νy νy
(LowRa) (HighRa)

Experiment (Betts and Bokhari, 2000) 0.14 0.19
Numerical results for RNG model 0.170328(17.81%) 0.240864(21.12%)
Numerical results for SST model 0.13197(5.8%) 0.23022(17.48%)

Table 2: The maximum vertical velocity for different methods, (y/H = 0.5, z = 0)
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(a) Low Ra (b) High Ra

Figure 2: The vertical velocity profile across the cavity width at mid-height (X = 0.5, Y = 0.5andZ = 0)

Figure 3: The profile of the vorticity axis at mid-height (X = 0.5, Y = 0.5 and Z = 0)
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Figure 4: The normal vorticity contours for different Z positions (z/D = −0.25, z/D = 0andz/D = 0.25)

4.2 The temperature profiles

The mean temperatures profiles for low and high Rayleigh numbers are plotted in the
figure 5.a and figure 5.b, respectively, from the cold wall to the hot wall at cavity mid
height (y/H=0.5). The numerical results are in good harmony with experimental data
for the SST k − ω model and RNG k − ε model. Similar to the mean vertical velocity
evolution, the mean temperature shows high gradients near the wall boundary layer with
a somewhat linear variation in the cavity core. Xaman et al. 18 explain this result that
in addition to the heat transported by natural convection along the surface of both hot
and cold walls, there is heat conduction through the central core of the layer. Also, the
temperature profiles are linear near the wall which represent the conductive and viscous
sublayers.

4.3 The turbulent kinetic energy

To compare the different results for the turbulent kinetic energy we use the equation
13 to calculate k for the experimental data, since the data do not provide the results for
ẃ and is it very difficult to estimate ẃ for the anisotropic turbulent natural convection
without direct measurement.

kexp =
1.5

(
ú2 + v́2

)
2

(13)

The figures 6.a and 6.b illustrate the profiles of the turbulent kinetic energy at mid
height of the tall cavity. For the fluctuating values, the both models produce reasonably
numerical results for the turbulent kinetic energy compared to experimental data. In the
center of the cavity (x/W=0.5) the turbulent kinetic energy is high inversely to the vertical
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velocity which is practically zero, this zone is considered as the the outer layer. The fig-
ures show clearly that the level of turbulent kinetic energy increase with Rayleigh number.

(a) Low Ra (b) High Ra

Figure 5: The temperature profile across the cavity width at mid-height (X = 0.5, Y = 0.5 and Z = 0)

(a) Low Ra (b) High Ra

Figure 6: The turbulent kinetic energy profile across the cavity width at mid-height (X = 0.5, Y =
0.5 and Z = 0)
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4.4 Heat transfer

The heat transfer of fluid along the heated wall is defined by dimensionless number,
which characterizes the ratio of convective to conductive heat transfer across the boundary.
The dimensionless number is the Nusselt number:

Nu = − L

Th − Tc
∂T

∂n
(14)

The average Nusselt number along the heated vertical wall is deduced from the last
equation:

Nu = −
∫H
0 Nu dy

H
(15)

The different value of the average Nusselt number along the hot wall for the both mod-
els (SST and RNG models), experimental value 4 and the numerical results for Hsieh and
Lien 8 are referred in the table 3. Heish and Lien 8 used the unsteady RANS approach
combined with low-Re k− ε model of Lien and Leschnizer9 to simulate the flow in the tall
cavity by considering the flow in 2D. They founded that the steady RANS can be used
to compute this flow without meeting convergence problems. The results in the table 3
show that the better predictions are obtained by the SST k − ω model, especially for
low Rayleigh number cases. But the difference is not important compared to the RNG
k− ε model. Usually, the heat transfer depends on the Rayleigh number, Prandtl number
and the aspect ratio as: Nu=f(Ra, Pr, AR). In this work, Prandtl number (Pr) does not
vary significantly within the range of the considered temperature, and the dimensions of
the cavity are. So, we have just to examine the variation of the average Nusselt number
versus the Rayleigh number.

Nuy Nuy
(LowRa) (HighRa)

Numerical results (Hsieh and Lien 8) − 6.39
(15.59%)

Experimental data(Betts and Bokhari 4) 5.85 7.57
Numerical results for RNG model 5.51 6.905

(5.81%)) (8.78%))
Numerical results for SST model 5.66 6.96

(3.25%)) (8.06%))

Table 3: Average Nusselt number near the hot wall for high and low Rayleigh number.

In order to correlate this variation, different differential temperatures between the two
vertical plates have been applied (table 4) and only the SST k−ω model is considered to
simulate different flows in this part. Nevertheless, MacGregor and Emery, Cowan et al.,
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Henkes et al 7, Betts and Dafa’alla 6 measured the flow in the different cavities sizes, all
gave an averaged wall-heat transfer correlation by a power law like the expression :

Nu = c.Ra1/3 (16)

Where the constant c is somewhat different (c=0.046, 0.043, 0.047 and 0.053, respec-
tively).

So, the figure 7 represents the variation of the Nusselt versus the Rayleigh number with
logarithmic axis. According to the equation 16 and after fitting by a linear interpolation,
we find that the c constant is 0.062. In this work, for the tall cavity with high aspect
ratio (AR=28.68), the correlation between the Rayleigh number and the Nusselt number
is proposed by the following relation:

Nu = 0.062.Ra1/3 (17)

Ra Nu
0.86E + 6 5.66
0.95E + 6 6.54
1.11E + 6 6.66
1.25E + 6 6.92
1.43E + 6 6.96

Table 4: Average Nusselt number by SST model for different Rayleigh number.

Figure 7: Profile of the average Nusselt number versus the Rayleigh number.
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5 CONCLUSIONS

- In this work, a three dimensional numerical study has been investigated using two
one point closure models: RNG k − ε model and SST k − ω model.

- The numerical results are compared to the experimental data obtained by Betts
and Bokhari for the turbulent natural convection of air.

- A good agreement between the experiment and numerical prediction is observed for
the RNG k − ε model and SST k − ω model. However, SST k − ω model is better
near the walls and for the heat transfer.

- The profiles of the mean vertical velocity, mean temperature and the turbulent
kinetic energy denote that the flow in the core region of the tall cavity is very
weak and the turbulence level increases.

- Finally, for the different Rayleigh number, a correlation between the Rayleigh
number and the Nusselt number is proposed.
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