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Abstract. The behaviour of mountain wave drag in stratified flow over a 2D ridge
is investigated for atmospheric profiles where the square of the Scorer parameter is the
sum of a constant and a relatively small perturbation varying sinusoidally in the vertical.
This is carried out using a linear model where friction is approximated as a Rayleigh
damping, and simulations of a non-hydrostatic nonlinear numerical model. In the linear
model, the solution to the Taylor-Goldstein equation is expanded in powers of a small
parameter proportional to the Scorer parameter perturbation. It is found that the drag may
be significantly altered by resonance in the vicinity of n/l0 = 2, where n is the wavenumber
of the Scorer parameter oscillation and l0 is the unperturbed value of the Scorer parameter.
Depending on the phase of this oscillation, the drag may be considerably amplified, or may
decrease relative to its reference value for a constant Scorer parameter l0. The behaviour
of the drag is found to be very sensitive to non-hydrostatic effects and to friction (both
of which attenuate its deviation from the reference value). In particular, a finite amount
of friction (however small) is necessary to produce the drag maxima that were recently
detected by previous authors in a similar setup. In the inviscid limit, however, such
maxima are suppressed. This suggests that this drag amplification mechanism may be
very sensitive to the turbulence closure used in numerical models, or to numerical diffusion
effects.
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1 INTRODUCTION

In a recent paper, Wells and Vosper [4] pointed out several mechanisms through which
linear theory may fail in predicting the gravity wave drag associated with stably stratified
flow over topography. One of these mechanisms, hitherto unexplored apart from a first
allusion in an oceanographic context by Phillips [1] and that of Wells and Vosper, involves
an atmosphere with a Scorer parameter that oscillates in the vertical. Wells and Vosper [4]
showed that, when the vertical wavenumber of the Scorer parameter oscillation is approx-
imately twice the basic (average) Scorer parameter value, the drag may be amplified by a
factor of two or more, even when the amplitude of this oscillation is quite small. This is
due to a resonant mechanism, which Wells and Vosper classified as intrinsically nonlinear.
However, since this resonance occurs due to the interaction between the internal gravity
waves associated with the basic Scorer parameter and the superposed Scorer parameter
oscillation (which is not part of the wave field), the corresponding mechanism should in
fact be essentially linear. This idea will be demonstrated in this study through calcula-
tions using a linear model including a crude representation of friction, and simulations of
a fully nonlinear numerical model.

2 THEORETICAL MODEL

Consider mountain waves generated in a stably stratified atmosphere flowing perpen-
dicular to a 2D mountain ridge. If this ridge has relatively small amplitude, the flow may
be linearised with respect to a reference state. If additionally steady flow is assumed, the
equations of motion relevant to this problem are:

U
∂u

∂x
+ w

dU

dz
= − 1

ρ0

∂p

∂x
− λu, (1)

U
∂w

∂x
= − 1

ρ0

∂p

∂z
+ b− λw, (2)

U
∂b

∂x
+ N2w = 0, (3)

∂u

∂x
+

∂w

∂z
= 0. (4)

In these equations u and w are, respectively, the streamwise and vertical velocity pertur-
bations, p is the pressure perturbation, b is the buoyancy perturbation, U is the incoming
(mean) wind, N is the Brunt-Väisälä frequency of the incoming flow, ρ0 is a reference
density (assumed constant) and λ is a Rayleigh friction coefficient. λ is only included in
the momentum equations for simplicity.

If the ridge is isolated, the flow variables may be expressed along the streamwise di-
rection x as 1D Fourier integrals. Then, if (1)-(4) are combined, the Fourier transform of
the vertical velocity perturbation ŵ may be shown to satisfy the equation:

ŵ′′ +

(
l2

1− i λ
Uk

− k2

)
ŵ = 0, (5)
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where i =
√−1, l2(z) = N2/U2 − U ′′/U is the square of the Scorer parameter, k is the

horizontal wavenumber of the waves, and the primes denote differentiation with respect
to height, z. Eq. (5) must be solved subject to the boundary conditions that the flow is
tangential to the topography at the surface,

ŵ(z = 0) = iU(z = 0)kĥ, (6)

where ĥ is the Fourier transform of the surface elevation, and that the flow decays to zero
as z → +∞ (this transforms into a radiation boundary condition when λ → 0).

In the present study, and following Wells and Vosper [4], the Scorer parameter is
assumed to take the form:

l2 = l20 [1 + ε cos(nz + φ)] , (7)

where l0 is a constant reference value, ε is a small parameter, n is the wavenumber of
a sinusoidal perturbation superposed on the constant Scorer parameter, and φ is the
corresponding phase.

Solutions to (5) including (7) may be expanded in powers of ε, as follows:

ŵ = ŵ0 + εŵ1 + ε2ŵ2 + ... . (8)

In practice, it will only be necessary to go up to first order in ε to capture the essential
physics of the phenomena under consideration. To this order, (5) together with (7) and
(8) lead to:

ŵ′′
0 +

(
l20

1− i λ
Uk

− k2

)
ŵ0 = 0, (9)

ŵ′′
1 +

(
l20

1− i λ
Uk

− k2

)
ŵ1 = −ŵ0

l20
1− i λ

Uk

cos(nz + φ). (10)

The solutions to (9)-(10) which satisfy the boundary conditions are:

ŵ0 = iUkĥeimz, (11)

ŵ1 =
1

2im

∫ +∞

0
ŵ0(s)

l20
1− i λ

Uk

cos(ns + φ)eims ds
(
eimz − e−imz

)

+
1

2im

∫ z

0
ŵ0(s)

l20
1− i λ

Uk

cos(ns + φ)
(
e−im(z−s) − eim(z−s)

)
ds, (12)

where

m2 =
l20

1− i λ
Uk

− k2, (13)

and it has been assumed that U is a constant, so U(z = 0) = U . It should be noted that
m is a complex quantity, i.e. m = mR + imI , where mR is the real part and mI is the
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imaginary part, and that mI > 0. This allows the boundary condition at z → +∞ to be
satisfied.

The aim of the present study is to calculate the gravity wave drag, which is given by

D = 2πi
∫ +∞

−∞
kp̂∗(z = 0)ĥ dk, (14)

where p̂ is the Fourier transform of the pressure perturbation and the asterisk denotes
complex conjugate. p̂ may also be expressed as a power series of ε, as p̂ = p̂0+εp̂1+ε2p̂2+...,
and it can be shown that

p̂0(z = 0) = iρ0U
2ĥ

[
mR +

λ

Uk
mI + i

(
mI − λ

Uk
mR

)]
, (15)

p̂1(z = 0) = −i
ρ0U

2l20ĥ

(4m2
R − 4m2

I − n2)2 + 64m2
Rm2

I

{8nmRmI sin φ

−2
(
4m2

R + 4m2
I − n2

)
mR cos φ + i

[(
4m2

R − 4m2
I − n2

)
n sin φ

+2
(
4m2

R + 4m2
I + n2

)
mI cos φ

]}
. (16)

The drag can equally be expressed as a power series of ε, as D = D0 +εD1 +ε2D2 + ... .
The zeroth-order drag, which corresponds to a situation where the Scorer parameter is
constant (and equal to l0), is given by

D0 = 4πρ0|U |Ul0h
2
0

∫ +∞

0
k′|ĥ′|2

(
m′

R +
λa

Uk′
m′

I

)
dk′, (17)

where a and h0 are, respectively, the half-width and the height of the ridge, k′ = ka,
ĥ′ = ĥ/(h0a), m′

R = mR/l0 and m′
I = mI/l0. The total drag (correct up to first order in

ε) is normalized by D0, and its final expression is found to be:

D

D0

= 1 + ε
D1

D0

= 1 + 2ε

∫ +∞
0 k′|ĥ′|2m′

R
(4m

′2
R +4m

′2
I −n′2) cos φ−4n′m′

I sin φ

(4m
′2
R−4m

′2
I −n′2)2+64m

′2
R m

′2
I

dk′

∫ +∞
0 k′|ĥ′|2

(
m′

R + λa
Uk′m

′
I

)
dk′

, (18)

where n′ = n/l0. As given by (18), D/D0 is a function of n/l0, l0a, λa/U , φ and ε. Values
for these parameters similar to those used by Wells and Vosper [4] (apart from λa/U) will
be adopted next. It is worth noting that the term in the numerator of (18) proportional
to sin φ is only non-zero if both m′

R 6= 0 and m′
I 6= 0. For inviscid flow (i.e. λ = 0) either

m′
R = 0 or m′

I = 0, so this term will vanish. In contrast, the term proportional to cos φ
is always non-zero when m′

R 6= 0. Both m′
R and m′

I are functions of k′ (and of l0a and
λa/U).

Since the results depend on the shape of the orography (although not too much, it is
hoped), a form for ĥ′ must be prescribed. Following Wells and Vosper [4], a bell-shaped
ridge will be considered, which has the following dimensionless Fourier transform:

ĥ′ =
1

2
e−k′ . (19)
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3 RESULTS

The drag is now calculated based on (18) for ε = 0.1, as in Wells and Vosper [4], and
for different values of φ, as a function of n/l0.

3.1 Frictional effects

Fig. 1 shows the sensitivity of the normalized drag to the friction coefficient λa/U for
l0a = 5 (cf. Wells and Vosper [4]). Fig. 1a, 1b, 1c and 1d consider, respectively, the cases
φ = 0, φ = π/2, φ = π and φ = 3π/2. It can be seen that the drag is close to one for most
values of n/l0, but near n/l0 = 2 attains a maximum followed by a minimum (Fig. 1a),
a single minimum (Fig. 1b), a minimum followed by a maximum (Fig. 1c), or a single
maximum (Fig. 1d). The amplitude of these extrema tends to become smaller as λa/U
increases, with one exception. For the cases φ = π/2 or φ = 3π/2 and λ = 0 (i.e. in
inviscid conditions), the minima and maxima that existed when λ 6= 0 disappear. Since
Fig. 1d corresponds to the case shown explicitly by Wells and Vosper [4] (their Fig. 9),
the present results might provide an explanation for why their linear model was unable
to detect this drag maximum, and they attributed it to intrinsically nonlinear processes.
The linear model used by Wells and Vosper [4] is inviscid (see their Eq. (3)), so, by (18) it
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Figure 1: Normalized drag for ε = 0.1, l0a = 5 and different values of λa/U , as a function of n/l0, for (a)
φ = 0, (b) φ = π/2, (c) φ = π, (d) φ = 3π/2.
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always gives D/D0 = 1 for φ = π/2 or φ = 3π/2, because in that situation sin φ = ±1 and
cos φ = 0. This means that only the term proportional to sin φ in (18) should contribute
to the drag modulation, but that does not happen because in the inviscid case m′

Rm′
I = 0,

making this term zero.
The process responsible for the drag amplification in Fig. 1 is obviously a kind of

resonance between the primary mountain wave (generated by a wind profile with con-
stant Scorer parameter l0) and the oscillation of the Scorer parameter profile, producing
harmonics with relatively high energy when n/l0 ≈ 2. In the present linear model, this
process is symmetric for φ = 0 and φ = π or φ = π/2 and φ = 3π/2, so Fig. 1c is a
mirror image with respect to D/D0 = 1 of Fig. 1a, and the same happens with Fig. 1b
and 1d. This is due to the fact that the correction to the drag due to this resonance is
treated here as a small perturbation, and implies that the drag could become negative for
sufficiently high ε (see next section). Obviously, this unrealistic result only means that
the perturbation approach adopted here breaks down in that case.

3.2 Non-hydrostatic effects

Fig. 2 presents essentially similar results to Fig. 1, with the difference that the friction
coefficient is kept constant at one of the values employed in Fig. 1 (λa/U = 2 × 10−2)
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Figure 2: Normalized drag for ε = 0.1, λa/U = 2× 10−2 and different values of l0a, as a function of n/l0,
for (a) φ = 0, (b) φ = π/2, (c) φ = π, (d) φ = 3π/2.
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and l0a is varied. This parameter controls the importance of non-hydrostatic effects:
the flow is approximately hydrostatic if it is large, whereas it is strongly non-hydrostatic
if it is small. For the three values of l0a used, it can be seen that the maxima and
minima of the drag corresponding to resonance become smaller as l0a decreases. This
must be a consequence of wave dispersion moderating the resonant drag amplification.
Since resonance relies on trapping by vertical reflections of the energy of the internal
gravity waves, dispersion attenuates it by allowing the wave energy to also propagate
downstream instead of becoming only concentrated over the mountain. It is curious that
non-hydrostatic effects not only attenuate the drag maxima and minima, but they also
shift them somewhat to lower values of n/l0, making these extrema clearly asymmetric.

Since approximately hydrostatic flow increases the amplitude of drag maxima and
minima, it can also make the minima lower than zero (as an increase of ε does). This is
illustrated, for example, in Fig. 3b for l0a = 10, and is obviously unrealistic.

3.3 Comparison with numerical results

Fig. 3 shows comparisons of the drag calculated for λa/U = 2× 10−2 and l0a = 5 with
results from the non-hydrostatic nonlinear numerical model FLEX (see Teixeira et al. [2],
[3] for more details) for the same l0a. The numerical model was run in inviscid mode,
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Figure 3: Normalized drag for ε = 0.1 and l0a = 5, as a function of n/l0. Lines: analytical model,
symbols: numerical model. (a) φ = 0, (b) φ = π/2, (c) φ = π, (d) φ = 3π/2.
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as in the crosses of Fig. 9 of Wells and Vosper [4]. It can be seen that, qualitatively,
there is agreement between (18) and the numerical model. λa/U has been adjusted to
optimally fit the numerical data in Fig. 3d. This leads the drag minimum in Fig. 3b to be
underestimated. The reason why the drag maximum is larger than the drag minimum in
the numerical simulations is easy to understand: the total drag can never be lower than
zero, hence its minima must have limited amplitude. This aspect is not taken into account
in the analytical model, as was noted above. There is also some underestimation of the
drag maxima in Fig. 3a and 3c, although the drag minima are captured accurately. This
must also be related to the assumptions of (18), either that ε must be small, that D is only
expanded to first order in ε, or more basic reasons inherent to the linear approximation, for
example the very crude representation of friction. Nevertheless, the qualitative behaviour
of the numerical data is captured adequately. In Fig. 3 the curve from (18) for λ = 0
is also shown, to emphasize the crucial role of friction in the cases displayed in Fig. 3b
and 3d. As can be seen, even if the numerical simulations are nominally inviscid, they
produce a drag behaviour which is attributable to friction. Fig. 9 of Wells and Vosper [4]
shows that qualitatively the same behaviour is obtained when a simple turbulence closure
is employed. This shows that the frictional process that generates the drag minima or
maxima in Fig. 3b or 3d may either be of physical or of numerical origin.

4 CONCLUSIONS

In this study, a mechanism recently re-discovered by Wells and Vosper [4] for the am-
plification of drag in stratified flow over mountains has been explored in some detail. This
mechanism relies on the existence of an environment with a Scorer parameter that oscil-
lates with height, although the amplitude of this oscillation (relative to the basic state)
may be relatively modest. The drag is amplified or reduced by a resonant process, leading
to relatively large maxima or minima in the vicinity of the parameter space region where
n/l0 = 2. This resonant process has a different behaviour depending on the phase of the
Scorer parameter oscillation. Either single drag maxima or minima, or adjoining drag
maxima and minima may be generated. Both non-hydrostatic effects, due to wave disper-
sion, or friction, due to energy dissipation, lead to an attenuation of these drag extrema.
The situation of a single drag maximum (considered previously by Wells and Vosper [4]),
or of a single drag minimum, are found to be very sensitive to friction. Although generally
all drag extrema tend to be attenuated as friction increases, single maxima and minima are
totally suppressed in purely inviscid flow. This does not happen in numerical simulations,
whether they are nominally inviscid or include a turbulence closure. This highlights the
crucial role of such closures, or of numerical diffusion, in attaining a physically accurate
representation of the mechanism of resonant drag enhancement addressed here.

Numerical simulations including boundary layer effects, using a proper turbulence clo-
sure, will be carried out next in order to further understand the effects of friction, and
test the simple theoretical model presented in this study.
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