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Abstract. The hydrodynamic stability of a viscous fluid flow in an annular space 
between a rotating inner cylinder having a sinusoidally variable radius and an outer 
fixed cylinder is considered. The basic flow is axis-symmetric with two counter-rotating 
vortices each wavelength. A finite-volume CFD code is used to simulate the flow 
behavior. The flow control strategy aims to localize the transition and to assess the flow 
response to the imposed boundary motion.  
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1 INTRODUCTION 

Since the seminal paper of Taylor [1], a large number of experimental and theoretical 
studies devoted to the onset of Taylor Vortex Flow (TVF) are developed. Due to its 
cellular nature, the Taylor–Couette Flow (TCF) is claimed to be one of the rare flow 
types combining intense local mixing with a limited axial dispersion, Baron [2]. It 
allows the enhancement of heat and mass transfer at the cylinder walls, and several 
possible applications of the unique reactor performance have been proposed covering 
the fields of catalytic and biocatalytic, counter-current extraction, tangential filtration, 
crystallization, and electrochemical, photochemical and polymerization reactions, 
Muzishina [3].  

In this study, we consider a flow control strategy capable of spatially localizing the 
Taylor vortices between two concentric rotating cylinders. To this end, we proceed by 
actuating the geometry of the TCF to affect vortices appearing in the radial direction 
along the length of the apparatus. Particularly, we are interested in investigating the 
impact of a pulsatile radial motion of the inner rotating cylinder on the TVF in an 
infinite length cavity. It is found that a destabilization of the TVF results from the 
interplay of the imposed oscillating radial flow and the flow resulting from the Taylor 
instability.  
 
2 NUMERICAL APPROACH 

 
We briefly describe the numerical procedure used to solve the problem. The grid is 

generated using the GAMBIT program and saved on a structured quadrilateral grid as 
shown in Fig. 1. The mesh is uniformly distributed in the axial direction and linearly 
condensing in the radial direction. The solution is carried out using the computational 
fluid dynamics package FLUENT. An implicit scheme is used to discretize time, and a 
third-order MUSCL scheme is used to discretize the convective terms in the momentum 
equations. Pressure implicit with splitting of operators is used as the pressure–velocity 
coupling scheme. The time integration of the unsteady momentum equations is 
performed with a second-order approximation. The time step is fixed equal to Δt=0.002. 
Modulation of the inner cylinder diameter is carried out using the “moving mesh” 
FLUENT program. The maximum number of iterations each time step is 1,000. 

 
2.1 Validation and comparison with experiment 

 
The Taylor–Couette device is in its classical configuration; a stationary outer 

cylinder and a rotating inner cylinder. The flow structure for Tc1=41.33, corresponding 
to the first instability appearance is given in the Fig. 2. This numerical result is in good 
agreement with the experimental value of Tc1=41.2 reported by Bouabdallah et al. [4]. 
To characterize the effect of the inner cylinder diameter variation, an influencing 
parameter ε is defined as: ε=(R2-R1)/R1=Δr/R1, where R1 and R2 are respectively the 
maximum and minimum radii of the inner cylinder. The natural state corresponds to 
ε=0%.  
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3 IMPORTANT FEATURES 
 

The variation of the first critical Taylor number with the amplitude of deformation is 
seen in Fig. 3. It is noticed that when ε exceeds 0.1% the critical Taylor number 
decreases rapidly from Tc1= 41.33 to Tc1=17.66 for ε=5%, corresponding to a reduction 
rate of 57%. The Fig. 4 depicts the evolution of the axial vorticity as the deforming 
amplitude increases from 0 to 5%. The boundary layer is clearly discernable in the 
natural case—no actuation applied. The boundary layers on the inner and outer 
cylinders are surrounding two rows of structures evolving anti-symmetrically in the 
cylinders’ gap with a phase shift of π, as shown in Fig. 4a. When the inner cylinder 
diameter oscillates, the boundary layer on the outer (stationary) cylinder vanishes 
completely even for the smallest value of the deforming amplitude considered in the 
present study, ε=0.1%. This behavior is observed for the entire range of the applied 
deforming amplitudes from 0.1 to 5%. The boundary layer on the inner cylinder, 
however, shrinks significantly for the small deforming amplitude and resist the applied 
perturbation until ε=2%, as shown in Fig. 4c. Over this threshold value, the inner 
boundary layer completely disappears for all the higher values of the deforming 
amplitude and the two structure rows are pushed outwardly. The vortices are of larger 
scale, axially elongated and connected. Axial and radial symmetries are both altered, as 
shown in Figs. 4c and 4d. The threshold value ε=2% quite surprisingly coincides with 
the local maximum value of axial vorticity depicted in Fig. 5. Over the value ε=2%, the 
axial vorticity decreases drastically to reach its lowest value, about 60% lower than that 
of the natural basic flow, Figs. 4a and 4d. Similar of response to the radial perturbation 
is observed for the radial vorticity as shown in Fig. 5. The maximum radial vorticity 
significantly diminishes, up to 75% compared to the basic flow value, indicating even 
higher sensitivity to the radial oscillation. The decrease in the maximum radial vorticity 
is accompanied by an enhancement of the flow re-organization. The Taylor–Couette 
structures become axially closer to each other and radially squeezed in a more organized 
pattern, as depicted in Fig. 4 d.  
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Fig.1:  3-D grid with 2×103 
quadrilateral cells. 

Fig.2: Present results for the first 
critical Taylor number Tc1 
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(a) ε=0% (b) ε=0.1%     (c) ε=2% (d) ε=5% 

Fig.4: Axial vorticity for the Taylor Couette flow versus the deforming amplitude ε% 

Fig.5 Maximum vorticity versus deforming amplitude ε% 

Fig.3 Critical Taylor number Tc1 versus deforming amplitude ε%   

Tc1 

Deforming amplitude rate ε% 
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4 CONCLUSIONS  

We characterized a novel behavior of the Taylor Vortex Flow by radially deforming 
the inner rotating cylinder in a Taylor–Couette apparatus. As a result of the oscillations, 
axial and radial symmetries are broken, significant reduction in the maximum vorticity 
values is achieved, and substantial enhancement of the transition from the Taylor-
Couette  basic flow to the Taylor-Couette  vertical flow is observed. The skin friction 
response is in current investigation to be presented in future works. 
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