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Abstract. The paper is concerned with the simulation of inviscid and viscous compress-
ible flow in time dependent domains. The motion of the boundary of the domain occupied
by the fluid is taken into account with the aid of the ALE (Arbitrary Lagrangian-Eulerian)
formulation of the Euler and Navier-Stokes equations describing compressible flow. They
are discretized by the discontinuous Galerkin finite element method using piecewise poly-
nomial discontinuous approximations. The time discretization is based on a semi-implicit
linearized scheme, which leads to the solution of a linear algebraic system on each time
level. Moreover, we use special treatment of boundary conditions and shock capturing,
allowing the solution of flow with a wide range of Mach numbers. As a result we get an
efficient and robust numerical process. The applicability of the developed method will be
demonstrated by computational results obtained for compressible inviscid and viscous flow
in channels with moving walls and flow induced airfoil vibrations.

1This work is a part of the research project MSM 0021620839 financed by the Ministry of Education
of the Czech Republic and was partly supported by the Grant No. 201/08/0012 of the Czech Science
Foundation. The research of J. Horáček was supported by the project OC 09019 of the Ministry of
Education of the Czech Republic. .
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1 Introduction

The interaction of fluid flow with vibrating bodies plays a significant role in many
areas of science and technology. We mention, for example, development of airplanes
(vibrations of wings) or turbines (blade vibrations), some problems from civil engineering
(interaction of wind with constructions as bridges, TV towers or cooling towers of power
stations), car industry (vibration of various elements of a carosery), but also in medicine
(hemodynamics or flow in the glottis with vibrating vocal folds). In a number of these
examples the moving medium is a gas, i.e. compressible flow. For low Mach number flows
incompressible models are used (as e.g. in [16]), but in some cases compressibility plays
an important role.

The solution of fluid-structure interaction requires the coupling of the solution of equa-
tions describing the fluid flow with equations describing the structural behaviour. Due
to the deformation and/or vibrations of structures, the computational domain is time
dependent. There exist several techniques of the solution of incompressible flow in time
dependent domains. See, e.g. [16] and references therein. The numerical simulation of
compressible flow is much more difficult, particularly in time dependent domains. It is nec-
essary to overcome difficulties caused by nonlinear convection dominating over diffusion,
which leads to boundary layers and wakes for large Reynolds numbers and shock waves
and contact discontinuities for high Mach numbers and instabilities caused by acoustic
effects for low Mach numbers.

It appears that a suitable numerical method for the solution of compressible flow is the
discontinuous Galerkin finite element method (DGFEM). It employs piecewise polynomial
approximations without any requirement on the continuity on interfaces between neigh-
bouring elements. The DGFEM was used for the numerical simulation of the compressible
Euler equations, for example, by Bassi and Rebay in [1], where the space DG discretiza-
tion was combined with explicit Runge-Kutta time discretization. In [2] Baumann and
Oden describe an hp version of the space DG discretization with explicit time stepping to
compressible flow. Van der Vegt and van der Ven apply space-time discontinuous Galerkin
method to the solution of the Euler equations in [17], where the discrete problem is solved
with the aid of a multigrid accelerated pseudo-time-integration. The papers [7] and [9]
are concerned with a semi-implicit DGFEM technique for the solution of inviscid com-
pressible flow, which is unconditionally stable. In [11], this method was extended so that
the resulting scheme is robust with respect to the magnitude of the Mach number. The
paper [6] is concerned with discontinuous Galerkin method for viscous compressible flow.

The goal of our research is the numerical simulation of interaction of compressible flow
with structures as, e.g. flow induced airfoil vibrations or the flow past an elastic wall
vibrating due to the influence of an airflow. We are concerned with the generalization
of the method from [11], [9] and [6] to the solution of compressible inviscid and viscous
flow in time dependent domains. The main ingredients of the method is the discontin-
uous Galerkin space semidiscretization of the Euler equations written in the ALE (arbi-
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trary Lagrangian-Eulerian) form, semi-implicit time discretization, suitable treatment of
boundary conditions and the shock capturing avoiding Gibbs phenomenon at discontinu-
ities. Numerical experiments prove the applicability of the method. The applicability of
the developed technique is demonstrated by some numerical experiments.

2 Formulation of the problem

We shall be concerned with the numerical solution of compressible flow in a bounded
domain Ωt ⊂ IR2 depending on time t ∈ [0, T ]. Let the boundary of Ωt consist of three
different parts: ∂Ωt = ΓI ∪ ΓO ∪ ΓWt

, where ΓI is the inlet, ΓO is the outlet and ΓWt

denotes impermeable walls that may move in dependence on time.
The system describing compressible flow consisting of the continuity equation, the

Navier-Stokes equations and the energy equation can be written in the form

∂w

∂t
+

2
∑

s=1

∂f s(w)

∂xs

=
2
∑

s=1

∂Rs(w,∇w)

∂xs

, (1)

where

w = (w1, . . . , w4)
T = (ρ, ρv1, ρv2, E)T ∈ IR4, (2)

w = w(x, t), x ∈ Ωt, t ∈ (0, T ),

f i(w) = (fi1, · · · , fi4)
T = (ρvi, ρv1vi + δ1i p, ρv2vi + δ2i p, (E + p)vi)

T ,

Ri(w,∇w) = (Ri1, . . . , Ri4)
T =

(

0, τV
i1 , τV

i2 , τV
i1 v1 + τV

i2 v2k∂θ/∂xi

)T
,

τV
ij = λ divv δij + 2µ dij(v), dij(v) =

1

2

(

∂vi

∂xj

+
∂vj

∂xi

)

.

We use the following notation: ρ – density, p – pressure, E – total energy, v = (v1, v2) –
velocity, θ – absolute temperature, γ > 1 – Poisson adiabatic constant, cv > 0 – specific
heat at constant volume, µ > 0, λ = −2µ/3 – viscosity coefficients, k – heat conduction.
The vector-valued function w is called state vector, the functions f i are the so-called
inviscid fluxes and Ri represent viscous terms.

The above system is completed by the thermodynamical relations

p = (γ − 1)(E − ρ|v|2/2), θ =

(

E

ρ
−

1

2
|v|2
)

/

cv. (3)

The complete system is equipped with the initial condition

w(x, 0) = w0(x), x ∈ Ω0, (4)
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and the following boundary conditions:

a) ρ|ΓI
= ρD, b) v|ΓI

= vD = (vD1, vD2)
T, (5)

c)
2
∑

i,j=1

τV
ij nivj + k

∂θ

∂n
= 0 on ΓI , (6)

a) v|ΓWt
= zD = (zD1, zD2) − velocity of a moving wall, b)

∂θ

∂n
|ΓWt

= 0 on ΓWt
,(7)

a)
2
∑

i=1

τV
ij ni = 0, j = 1, 2, b)

∂θ

∂n
= 0 on ΓO. (8)

In order to treat the time dependence of the domain, we use the so-called arbitrary
Lagrangian-Eulerian ALE technique, proposed in [13]. We define a reference domain Ω0

and introduce a regular one-to-one ALE mapping of Ω0 onto Ωt (cf. [13], [16] and [17])

At : Ω0 −→ Ωt, i.e. X ∈ Ω0 7−→ x = x(X, t) = At(X) ∈ Ωt.

Here we use the notation X for points in Ω0 and x for points in Ωt.
Further, we define the domain velocity:

z̃(X, t) =
∂

∂t
At(X), t ∈ [0, T ], X ∈ Ω0,

z(x, t) = z̃(A−1(x), t), t ∈ [0, T ], x ∈ Ωt

and the ALE derivative of a function f = f(x, t) defined for x ∈ Ωt and t ∈ [0, T ]:

DA

Dt
f(x, t) =

∂f̃

∂t
(X, t), (9)

where
f̃(X, t) = f(At(X), t), X ∈ Ω0, x = At(X).

As a direct consequence of the chain rule we get the relation

DAf

Dt
=

∂f

∂t
+ div (zf) − f div z.

This leads to the ALE formulation of the Navier-Stokes equations

DAw

Dt
+

2
∑

s=1

∂gs(w)

∂xs

+ w divz =
2
∑

s=1

∂Rs(w,∇w)

∂xs

, (10)

where
gs(w) := f s(w) − zsw, s = 1, 2,

are the ALE modified inviscid fluxes.
We see that in the ALE formulation of the Navier-Stokes equations the time derivative

∂w/∂t is replaced by the ALE derivative DAw/Dt, the inviscid fluxes f s are replaced
by the ALE modified inviscid fluxes gs and a new additional ”‘reaction”’ term w divz

appears.
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3 Discrete problem

3.1 Discontinuous Galerkin space semidiscretization

For the space semidiscretization we use the discontinuous Galerkin finite element
method. We construct a polygonal approximation Ωht of the domain Ωt. By Tht we
denote a partition of the closure Ωht of the domain Ωht into a finite number of closed
triangles K with mutually disjoint interiors such that Ωht =

⋃

K∈Tht
K.

By Fht we denote the system of all faces of all elements K ∈ Tht. Further, we in-
troduce the set of all interior faces F I

ht = {Γ ∈ Fht; Γ ⊂ Ωt} , the set of all boundary
faces FB

ht = {Γ ∈ Fht; Γ ⊂ ∂Ωht} and the set of all “Dirichlet” boundary faces FD
ht =

{

Γ ∈ FB
ht; a Dirichlet condition is prescribed on Γ

}

. Each Γ ∈ Fht is associated with a
unit normal vector nΓ to Γ. For Γ ∈ FB

ht the normal nΓ has the same orientation as the
outer normal to ∂Ωht. We set d(Γ) = length of Γ ∈ Fht.

For each Γ ∈ F I
ht there exist two neighbouring elements K

(L)
Γ , K

(R)
Γ ∈ Th such that

Γ ⊂ ∂K
(R)
Γ ∩ ∂K

(L)
Γ . We use the convention that K

(R)
Γ lies in the direction of nΓ and K

(L)
Γ

lies in the opposite direction to nΓ. The elements K
(L)
Γ , K

(R)
Γ are called neighbours. If

Γ ∈ FB
ht, then the element adjacent to Γ will be denoted by K

(L)
Γ .

The approximate solution will be sought in the space of discontinuous piecewise poly-
nomial functions

Sht = [Sht]
4, with Sht = {v; v|K ∈ Pr(K) ∀K ∈ Tht}, (11)

where r ≥ 0 is an integer and Pr(K) denotes the space of all polynomials on K of degree

≤ r. A function ϕ ∈ Sht is, in general, discontinuous on interfaces Γ ∈ F I
ht. By ϕ

(L)
Γ and

ϕ
(R)
Γ we denote the values of ϕ on Γ considered from the interior and the exterior of K

(L)
Γ ,

respectively, and set

〈ϕ〉Γ = (ϕ
(L)
Γ + ϕ

(R)
Γ )/2, [ϕ]Γ = ϕ

(L)
Γ − ϕ

(R)
Γ . (12)

The discrete problem is derived in the following way: We multiply system (10) by
a test function ϕh ∈ Sht, integrate over K ∈ Tht, use Green’s theorem, sum over all
elements K ∈ Tht, introduce the concept of the numerical flux and introduce suitable
terms mutually vanishing for a regular exact solution. In this way we get the following
identity:

∑

K∈Tht

∫

K

DAw

Dt
· ϕh dx + bh(w,ϕh) + ah(w,ϕh) + Jh(w,ϕh) + dh(w,ϕh) (13)

= ℓh(w,ϕh).
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Here

bh(w,ϕh) = −
∑

K∈Tht

∫

K

2
∑

s=1

gs(w) ·
∂ϕh

∂xs

dx (14)

+
∑

Γ∈FI

ht

∫

Γ

Hg(w
(L)
Γ ,w

(R)
Γ ,nΓ) · [ϕh]Γ dS

+
∑

Γ∈FB

ht

∫

Γ

Hg(w
(L)
Γ ,w

(R)
Γ ,nΓ) · ϕ

(L)
hΓ dS

is the convection form, defined with the aid of a numerical flux Hg. We require that it
is consistent with the fluxes gs: Hg(w,w,n) =

∑2
s=1 gs(w)ns (n = (n1, n2), |n| = 1),

conservative: Hg(u,w,n) = −Hg(w,u,−n), and locally Lipschitz-continuous.
Further, we define the viscous form

ah(w,ϕh) =
∑

K∈Tht

∫

K

2
∑

s=1

Rs(w,∇w) ·
∂ϕh

∂xs

dx (15)

−
∑

Γ∈FI

ht

∫

Γ

2
∑

s=1

〈Rs(w,∇w)〉Γ(nΓ)s · [ϕh]Γ dS

−
∑

Γ∈FD

ht

∫

Γ

2
∑

s=1

Rs(w,∇w)(nΓ)s · ϕ
(L)
hΓ dS,

(we use the incomplete discretization of viscous terms - the so-called IIPG version), the
interior and boundary penalty terms and the right-hand side form, respectively,

Jh(w,ϕh) =
∑

Γ∈FI

ht

∫

Γ

σ[w]Γ · [ϕh]Γ dS +
∑

Γ∈FD

ht

∫

Γ

σw · ϕ
(L)
hΓ dS, (16)

ℓh(w,ϕh) =
∑

Γ∈FD

ht

∫

Γ

2
∑

s=1

σwB · ϕ
(L)
hΓ dS. (17)

Here σ|Γ = CW µ/d(Γ) and CW > 0 is a sufficiently large constant. The source form reads

dh(w,ϕh) =
∑

K∈Tht

∫

K

(w · ϕh) divz dx. (18)

The boundary state wB is defined on the basis of the Dirichlet boundary conditions
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and extrapolation:

wB = (ρD, ρDvD1, ρDvD2, cvρDθ
(L)
Γ +

1

2
ρD|vD|

2) on ΓI , (19)

wB = w
(L)
Γ on ΓO, (20)

wB = (ρ
(L)
Γ , ρ

(L)
Γ zD1, ρ

(L)
Γ zD2, cvρ

(L)
Γ θ

(L)
Γ +

1

2
ρ

(L)
Γ |zD|

2) on ΓWt
. (21)

The approximate solution is defined as wh(t) ∈ Sht such that

∑

K∈Tht

∫

K

DAwh(t)

Dt
· ϕh dx + bh(wh(t),ϕh) + ah(wh(t),ϕh)

+ Jh(wh(t),ϕh) + dh(wh(t),ϕh) = ℓh(wh(t),ϕh)

(22)

holds for all ϕh ∈ Sht, all t ∈ (0, T ) and wh(0) = w0
h is an approximation of the initial

state w0.

3.2 Time discretization

Let us construct a partition 0 = t0 < t1 < t2 . . . of the time interval [0, T ] and define
the time step τk = tk+1 − tk. We use the approximations wh(tn) ≈ wn

h ∈ Shtn , z(tn) ≈
zn, n = 0, 1, . . . and introduce the function ŵk

h = wk
h ◦Atk ◦A

−1
tk+1

, which is defined in the
domain Ωhtk+1

. In order to approximate the ALE derivative at time tk+1, we start from
its definition and then use the backward difference:

DAwh

Dt
(x, tk+1) =

∂w̃h

∂t
(X, tk+1)

≈
w̃k+1

h (X) − w̃k
h(X)

τk

=
wk+1

h (x) − ŵk
h(x)

τk

, x = Atk+1
(X) ∈ Ωhtk+1

.

(23)

By the symbol (·, ·) we shall denote the scalar product in L2(Ωhtk+1
). A possible full

discretization reads:

(a) wk+1
h ∈ Shtk+1

, (24)

(b)

(

wk+1
h − ŵk

h

τk

,ϕh

)

+ bh(w
k+1
h ,ϕh) + ah(w

k+1
h ,ϕh)

+Jh(w
k+1
h ,ϕh) + dh

(

wk+1
h ,ϕh

)

= ℓh(w
k+1
h ,ϕh)

∀ϕh ∈ Shtk+1
, k = 0, 1, . . . .

However, this problem for wk+1
h is equivalent to a strongly nonlinear algebraic system and

its solution is rather difficult.
Our goal is to develop a numerical scheme, which would be accurate and robust, with

good stability properties and efficiently solvable. Therefore, we proceed similarly as in [7]

7



Miloslav Feistauer et al.

and use a partial linearization of the forms bh and ah. This approach leads to a scheme
that requires the solution of only one large sparse linear system on each time level.

The linearization of the first term of the form bh is based on the relations

gs(w
k+1
h ) = (As(w

k+1
h ) − zk+1

s I)wk+1
h ≈ (As(ŵ

k
h) − zk+1

s I)wk+1
h ,

where As(w) is the Jacobi matrix of f s(w), cf. [10]. The second term of bh is linearized
with the aid of the Vijayasundaram numerical flux (cf. [18]) defined in the following way.
Taking into account the definition of gs, we have

Dgs(w)

Dw
=

Df s(w)

Dw
− zsI = As − zsI, (25)

and can write

Pg(w,n) =
2
∑

s=1

Dgs(w)

Dw
ns =

2
∑

s=1

(Asns − zsnsI) . (26)

By [10], this matrix is diagonalizable. It means that there exists a nonsingular matrix
T = T(w,n) such that

Pg = TIΛT
−1, IΛ = diag(λ1, . . . , λ4), (27)

where λi = λi(w,n) are eigenvalues of the matrix Pg. Now we define the ”positive” and
”negative” parts of the matrix Pg by

P
±
g = TIΛ±

T
−1, IΛ± = diag(λ±

1 , . . . , λ±
4 ), (28)

where λ+ = max(λ, 0), λ− = min(λ, 0). Using the above concepts, we introduce the
modified Vijayasundaram numerical flux (cf. [18] or [10]) as

Hg(wL,wR,n) = P̃
+
g

(

wL + wR

2
,n

)

wL + P̃
−
g

(

wL + wR

2
,n

)

wR. (29)

Using the above definition of the numerical flux, we introduce the approximations

Hg(w
k+1(L)
hΓ ,w

k+1(R)
hΓ ,nΓ) ≈ P

+
g (〈ŵk

h〉Γ,nΓ)w
k+1(L)
hΓ + P

−
g (〈ŵk

h〉Γ,nΓ)ŵ
k+1(R)
hΓ .

for Γ ∈ F I
htk+1

and

Hg(w
k+1(L)
hΓ ,w

k+1(R)
hΓ ,nΓ) ≈ P

+
g (〈ŵk

h〉Γ,nΓ)w
k+1(L)
hΓ + P

−
g (〈ŵk

h〉Γ,nΓ)ŵ
k(R)
hΓ .
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for Γ ∈ FB
htk+1

. In this way we get the form

b̂h(ŵ
k
h,w

k+1
h ,ϕh) (30)

= −
∑

K∈Thtk+1

∫

K

2
∑

s=1

(As(ŵ
k(x)) − zk+1

s (x))I)wk+1(x)) ·
∂ϕh(x)

∂xs

dx,

+
∑

Γ∈FI

htk+1

∫

Γ

(

P
+
g

(〈

ŵk
h

〉

,nΓ

)

w
k+1(L)
h + P

−
g

(〈

ŵk
h

〉

,nΓ

)

w
k+1(R)
h

)

· [ϕh]dS

+
∑

Γ∈FB

htk+1

∫

Γ

(

P
+
g

(〈

ŵk
h

〉

,nΓ

)

w
k+1(L)
h + P

−
g

(〈

ŵk
h

〉

,nΓ

)

ŵ
k(R)
h

)

· ϕhdS.

The linearization of the form ah is based on the fact that Rs(wh,∇wh) is linear in ∇w

and nonlinear in w. We get the linearized viscous form

âh(ŵ
k
h,w

k+1
h ,ϕh) =

∑

K∈Thtk+1

∫

K

2
∑

s=1

Rs(ŵ
k
h,∇wk+1

h ) ·
∂ϕh

∂xs

dx (31)

−
∑

Γ∈FI

htk+1

∫

Γ

2
∑

s=1

〈

Rs(ŵ
k
h,∇wk+1)

〉

(nΓ)s · [ϕh] dS

−
∑

Γ∈FD

htk+1

∫

Γ

2
∑

s=1

Rs(ŵ
k
h,∇wk+1

h )(nΓ)s · ϕh dS.

3.3 Artificial viscosity

In high-speed inviscid gas flow with large Mach numbers, discontinuities - called shock
waves or contact discontinuities - appear. In viscous high-speed flow these discontinuities
may be smeared due to viscosity and heat conduction. In both cases, near shock waves
and contact discontinuities, the so-called Gibbs phenomenon, manifested by nonphysical
spurious overshoots and undershoots, usually occurs in the numerical solution. In order to
avoid this undesirable phenomenon, it is necessary to apply a suitable limiting procedure.
Here we use the approach proposed in [11] based on the discontinuity indicator

gk(K) =

∫

∂K

[ρ̂k
h]

2 dS
/

(hK |K|3/4), K ∈ Thtk+1
, (32)

introduced in [8]. By [ρ̂h
h] we denote the jump of the function ρ̂k

h on the boundary ∂K
and |K| denotes the area of the element K. Then we define the discrete discontinuity
indicator

Gk(K) = 0 if gk(K) < 1, Gk(K) = 1 if gk(K) ≥ 1, K ∈ Thtk+1
(33)

9
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and the artificial viscosity forms

β̂h(ŵ
k
h,w

k+1
h ,ϕh) = ν1

∑

K∈Thtk+1

hKGk(K)

∫

K

∇wk+1
h · ∇ϕh dx (34)

and

Ĵh(ŵ
k
h,w

k+1
h ,ϕh) (35)

= ν2

∑

Γ∈FI

htk+1

1

2

(

Gk(K
(L)
Γ ) + Gk(K

(R)
Γ

)

∫

Γ

[wk+1
h ] · [ϕh] dS,

with parameters ν1, ν2 = O(1).
Then the resulting scheme has the following form:

(a) wk+1
h ∈ Shtk+1

, (36)

(b)

(

wk+1
h − ŵk

h

τk

,ϕh

)

+b̂h(ŵ
k
h,w

k+1
h ,ϕh) + âh(ŵ

k
h,w

k+1
h ,ϕh)

+Jh(w
k+1
h ,ϕh) + dh

(

wk+1
h ,ϕh

)

+β̂h(ŵ
k
h,w

k+1
h ,ϕh) + Ĵh(ŵ

k
h,w

k+1
h ,ϕh) = ℓ(wk

B,ϕ)

∀ϕh ∈ Shtk+1
, k = 0, 1, . . . .

This method successfully overcomes problems with the Gibbs phenomenon in the context
of the semi-implicit scheme. It is important that the indicator Gk(K) vanishes in regions,
where the solution is regular and, therefore, the numerical solution does not contain any
nonphysical entropy production in these regions.

3.4 Treatment of boundary states in the form b̂h

If Γ ∈ FB
htk+1

, it is necessary to specify the boundary state ŵ
k(R)
hΓ appearing in the

numerical flux Hg in the definition of the inviscid form b̂h. For simplicity we shall use the

notation w(R) for values of the function ŵ
k(R)
hΓ which should be determined at individuals

integration points on the face Γ. Similarly, w(L) will denote the values of ŵ
k(L)
hΓ at the

corresponding points.
On the inlet, which is assumed fixed, we proceed in the same way as in [11], Section 4.

Using the rotational invariance, we transform the Euler equations

∂w

∂t
+

2
∑

s=1

∂f s(w)

∂xs

= 0

10
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to the coordinates x̃1, parallel with the normal direction n = (n1, n2) = nΓ to the
boundary, and x̃2, tangential to the boundary, neglect the derivative with respect to x̃2

and linearize the system around the state q(L) = Q(n)w(L), where

Q(n) =









1, 0, 0, 0
0, n1, n2, 0
0, −n2, n1, 0
0, 0, 0, 1









(37)

is the rotational matrix. Then we obtain the linear system

∂q

∂t
+ A1(q

(L))
∂q

∂x̃1

= 0, (38)

for the transformed vector-valued function q = Q(n)w, considered in the set (−∞, 0) ×
(0,∞) and equipped with the initial and boundary conditions

q(x̃1, 0) = q(L), x̃1 < 0, and q(0, t) = q(R), t > 0. (39)

The goal is to choose q(R) in such a way that this initial-boundary value problem is well
posed, i.e. has a unique solution. The method of characteristics leads to the following
process:

Let us put q∗ = Q(n)w∗, where w∗ is a given boundary state at the inlet or outlet.
We calculate the eigenvectors rs corresponding to the eigenvalues λs, s = 1, . . . , 4, of the
matrix A1(q

(L)), arrange them as columns in the matrix T and calculate T
−1. Now we set

α = T
−1q(L), β = T

−1q∗ (40)

and define the state q(R) by the relations

q(R) :=
4
∑

s=1

γsrs, γs =

{

αs, λs ≥ 0,
βs, λs < 0.

(41)

Finally, the sought boundary state w(R) is defined as

w(R) = Q−1(n)q(R). (42)

On the impermeable moving wall we prescribe the normal component of the velocity

v · n = zD · n, (43)

where n is the unit outer normal to ΓWt
and zD is the wall velocity. This means that two

eigenvalues of Pg(w,n) vanish, one is positive and one is negative. Then, in analogy to
[10], Section 3.3.6, we should prescribe one quantity, namely v ·n, and extrapolate three
quantities - tangential velocity, density and pressure.

11
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However, here we define the numerical flux on ΓWt
as the physical flux through the

boundary with the assumption (43) taken into account. Thus, on ΓWt
we write

2
∑

s=1

gs(w)ns = (v · n − zD · n)w + p (0, n1, n2,v · n)T (44)

= p (0, n1, n2,zD · n)T =: Hg.

As another possibility of the treatment of the boundary conditions on a solid wall one
could use a suitable adaptation of the approach proposed in [12].

On the outlet (which does not depend on time) the pressure is prescribed and other
variables are extrapolated. However, it will be necessary to pay a special attention to
the treatment of the outlet boundary conditions in order to avoid a reflection of vortices,
which sometimes appears.

Remark 1. In practical computations, integrals appearing in the definitions of the forms
âh, b̂h, . . . are evaluated with the aid of quadrature formulas.

The developed numerical scheme can also be used for the numerical solution of inviscid
flow, if we set µ = λ = k = 0. See [11].

The linear algebraic system equivalent to (37), b) is solved either by a direct solver
UMFPACK ([4]) or by the GMRES method with block diagonal preconditioning.

4 Numerical experiments

In order to demonstrate the applicability of the developed method, we present here
results of some numerical experiments.

I) We consider inviscid compressible flow in the rectangular channel with the initial
shape Ω0 = [−2, 2] × [0, 1], where the lower wall of the channel is moving. The ALE
mapping is equal to identity in the sets [−2,−1] × [0, 1] and [1, 2] × [0, 1]. In the rest of
the channel we construct the ALE mapping so that the lower wall is represented at time
t by the graph of the function

0.45 sin(0.4t) (cos(πX1) + 1), X1 ∈ (−1, 1). (45)

This movement is interpolated to the rest of the domain resulting in the ALE mapping
At (see [14]). The computation was carried out with the dimensionless form of the Euler
equations, using the dimensionless conservation variables, on a triangulation with 1160
elements constructed by the technique from [5]. The inlet Mach number Minlet = 0.067,
the dimensionless inlet density ρinlet = 1.0. At the outlet, the dimensionless pressure
poutlet = 159.12. In the artificial viscosity forms (34) and (35) the values ν1 = ν2 = 0.2
were used.

Figure 1 shows velocity and pressure isolines at different time instants t = 0.3992,
2.2192, 4.1792, 7.1192, 13.9792, 14.9592. In the solution we can observe a vortex forma-
tion, when the lower wall starts to descend. This vortex is convected through the domain.
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Figure 1: Velocity (left) and pressure (right) isolines at time instants t = 0.3992, 2.2192, 4.1792, 7.1192,
13.9792, 14.9592.
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Moreover, we see that a contact discontinuity is developed, when the channel becomes
narrow. The contact discontinuity is characterized by the discontinuity in the velocity,
whereas the pressure remains continuous.

II) In the second example we present results of numerical experiments carried out for
viscous compressible flow in a channel with geometry from [15] inspired by the shape of
the human glottis and a part of supraglottal spaces as shown in Figure 2. The walls are
moving in order to mimic the vibrations of vocal folds during voice production. The lower
channel wall between the points A and B and the upper wall symmetric with respect to
the axis of the channel are vibrating up and down periodically with frequency 100 Hz.
This movement is interpolated into the domain resulting in the ALE mapping At.

The width of the channel at the inlet (left part of the boundary) is H = 0.016 m and
its length is L = 0.16 m. The width of the narrowest part of the channel (at the point C)
oscillates between 0.0004 m and 0.0028 m. We consider the following input parameters
and boundary conditions: magnitude of the inlet velocity vin = 4 m/s, the viscosity
µ = 15 · 10−6 kg m−1 s−1, the inlet density ρin = 1.225 kg m−3, the outlet pressure pout =
97611 Pa, the Reynolds number Re = ρinvinH/µ = 5227, heat conduction coefficient
k = 2.428 · 10−2 kg m s−2 K−1, the specific heat cv = 721.428 m2 s−2 K−1, the Poisson
adiabatic constant γ = 1.4. The inlet Mach number is Min = 0.012. In the numerical
tests, piecewise quadratic elements (r = 2) are used.

Figure 3 shows computed streamlines and velocity at different dimensionless time in-
stants t = 502.5, 544.5, 586.5, 628.5 during the fourth period of the motion. In the solu-
tion we can observe large vortex formation convected through the domain. The flow field
is neither periodic, nor axisymmetric, in spite the computational domain is axisymmetric
and the motion of the channel walls is periodic and symmetric as well. Figure 4 shows
the details of flow near the vocal folds corresponding to dimensionless time instants 517.5,
567, 616.5, 666, 715.5 and 765.

III) Finally, the last example is concerned with the simulation of vibrations of elastically
supported airfoil NACA 0012 induced by compressible viscous flow. The airfoil has two
degrees of freedom: the vertical displacement H (positively oriented downwards) and the
angle of rotation around an elastic axis α (positively oriented clockwise). The motion
of the airfoil is described by the system of nonlinear ordinary differential equations for

Figure 2: Computational domain (cf. [15]).
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unknowns H,α:

mḦ + kHHH + Sα α̈ cos α − Sαα̇2 sin α + dHHḢ = −L(t), (46)

SαḦ cos α + Iαα̈ + kααα + dααα̇ = M(t).

We use the the following notation: L(t) - aerodynamic lift force (upwards positive), M(t)
- aerodynamic torsional moment (clockwise positive), m - mass of the airfoil, Sα - static
moment around the elastic axis EO, Iα - inertia moment around the elastic axis EO, kHH

- bending stiffness, kαα - torsional stiffness, dHH - structural damping in bending, dαα -
structural damping in torsion, c - length of the chord of the airfoil, l - airfoil depth.

System (46) is equipped with the initial conditions prescribing the values h(0), α(0),
ḣ(0), α̇(0). It is transformed to first-order ODE systems and solved numerically by the
fourth-order Runge-Kutta method. For the derivation of equations (46), see [16]. The
aerodynamic lift force L acting in the vertical direction and the torsional moment M are
defined by

L = − l

∫

ΓWt

2
∑

j=1

τ2jnjdS, M = l

∫

ΓWt

2
∑

i,j=1

τijnjr
ort
i dS, (47)

where

τij = (−p + λ divv)δij + µ

(

∂ui

∂xj

+
∂uj

∂xi

)

, (48)

rort
1 = −(x2 − xEO2), rort

2 = x1 − xEO1.

By τij we denote the components of the stress tensor, δij denotes the Kronecker symbol,
n = (n1, n2) is the unit outer normal to ∂Ωt on ΓWt (pointing into the airfoil) and xEO =
(xEO1, xEO2) is the position of the elastic axis (lying in the interior of the airfoil). Relations
(47) and (48) define the coupling of the fluid dynamical model with the structural model.

The simulation of flow induced airfoil vibrations was carried out for the following data:
m = 0.086622 kg, Sa = −0.000779673 kg m, Ia = 0.000487291 kg m−2, kHH = N/m,
kαα = 3.696682 Nm/rad, l = 0.05 m, c = 0.3 m, µ = 1.8375 · 10−5 kg m−1 s−1, far-field
density ρ = 1.225 kg m−3, H(0) = 0.02, m, α(0) = 6 degrees, Ḣ(0) = 0, α̇ = 0. We
neglect the structural damping. The elastic axis is placed on the airfoil chord at the 40%
distance from the leading edge.

The computational process starts at time t = 0 by the solution of the flow, keeping the
airfoil in a fixed position given by the prescribed initial translation H and the angle of
attack α. Then, at some time t > 0 the airfoil is released and we continue by the solution
of a complete fluid-structure interaction problem.

Figure 5 shows the displacement H and the rotation angle α in dependence on time
for the far-field velocity 30, 35 and 40 m/s. We see that for the velocities 30 and 35 m/s
the vibrations are damped, but for the velocity 40 m/s we get the flutter instability when
the vibration amplitudes are increasing in time. The monotonous increase and decrease
of the average values of H and α, respectively, shows that the flutter is combined with a
divergence instability in the presented example.
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5 Conclusion

We have presented an efficient higher-order numerical scheme for the solution of the
compressible Euler or Navier-Stokes equations in time dependent domains and the simu-
lation of flow induced airfoil vibrations. It is based on several important ingredients:

• the ALE method applied to the compressible Euler and Navier-Stokes equations,

• the application of the discontinuous Galerkin method for the space discretization,

• semi-implicit time discretization,

• special treatment of boundary conditions,

• artificial viscosity applied in the vicinity of discontinuities.

The presented method behaves as unconditionally stable and appears to be robust with
respect to the magnitude of the Mach number. Future work will be concentrated on the
following topics:

• further analysis of various treatments of boundary conditions,

• the realization of a remeshing in case of closing the channel during the oscillation
period of the channel walls,

• the coupling of the developed method with the solution of elasticity equations de-
scribing the deformation of vocal folds,

• the use of a suitable turbulence model.
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Figure 3: Streamlines and velocity at dimensionless time instants t = 502.5, 544.5, 586.5, 628.5.
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Figure 4: Detail of the flow near the vocal folds - visualization of the velocity and streamlines at dimen-
sionless time instants 517.5, 567, 616.5, 666, 715.5 and 765.

19



Miloslav Feistauer et al.

Figure 5: Displacement H (left) and rotation angle α (right) of the airfoil in dependence on time for
far-field velocity 30, 35 and 40 m/s.
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