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Abstract. Permeability of ground is a discontinuous anisotropic quantity that may

change abruptly several orders of magnitude between geological layers. In combination

with the mesh distortion, this presents a major difficulty for numerical modeling. Stan-

dard linear finite element method is not monotone and may produce unphysical oscilla-

tions, while the classical finite volume two-point flux approximation is monotone but not

even first order accurate on distorted meshes.

Recently a new class of nonlinear finite volume methods for diffusion appeared in 17 and

was further developed in 15, 18, 20, 13, 7, 14. These methods compute a two-point diffusive flux

approximation in a non-linear iterative fashion, resulting in a solution which is monotone

and second-order accurate.

In this paper we extend the method presented in 13 to the variable density flow in three

dimensions. In addition to the groundwater flow equation formulated in terms of pres-

sure and buoyancy, a convection-diffusion equation is solved for concentration. Iterative

procedure to determine the coefficients of the nonlinear diffusive flux approximation is

performed together with Picard iterations for the convective term.

In order to demonstrate the monotonicity and the accuracy of the scheme, we present

results obtained for Elder problem, and for a problem of mixing trough an interface.
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1 INTRODUCTION

Discontinuous anisotropic hydraulic permeability of ground presents a difficulty for
numerical computations. Classical methods usually deployed for groundwater flow com-
putations sometimes exhibit unphysical oscillations or hampered convergence, especially
if ground parameters change greatly and abruptly.

Finite difference method gives good results, but requires structured meshes, which had
triggered the development of methods for unstructured meshes.

The most popular linear variant of the finite element method 5, as well as the mixed
finite element method 3, are not monotone on arbitrary unstructured meshes 11. The
same holds for the Discontinuous Galerkin methods 6, 2. The lack of monotonicity may
lead to non-physical oscillatory solutions.

Classical linear two-point finite volume approximation of diffusive fluxes is monotone,
but not even first-order accurate on arbitrary meshes 13. Finite volume methods with
higher-order linear multipoint flux approximations are not monotone, and may lead to
oscillatory solutions.

To address this problem, a class of non-linear monotone finite volume methods has
been developed in 17, 15, 18, 20, 13, 7, 14.

In this paper we present a scheme for the computation of groundwater flow with variable
density. We use the nonlinear method described in 13 to compute diffusive mass fluxes, as
well as the fluxes in the pressure equation, while the advective mass fluxes are computed
using a full upwind finite volume discretization.

The accuracy of the scheme is tested for Elder problem, and for a problem of mixing
trough an interface.

2 EQUATIONS OF GROUNDWATER FLOW WITH MASS TRANSPORT

In this paper we adopt Boussinesq approximation and neglect the effects of water and
ground compressibility, which together with the absence of free water surface (water table)
leads to instantaneous pressure propagation trough the domain. Transient character of
the problem comes from the concentration equation. Equations modeling such physical
system are the following:

u = −
κ

µ
(∇p − ρg) , (1)

∇ · u = 0, (2)

∂(εc)

∂t
+ ∇ · (uc − εD∇c) = 0, (3)

ρ = ρ(c), (4)

where u is the Darcy velocity, κ is the permeability tensor, µ is the dynamic viscosity,
p is the pressure, ρ is the solute density, g = [0, 0,−g]T is a gravity vector, g is the
acceleration due to gravity, ε is the medium porosity, c is the concentration, and D is the
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sum of the diffusion and the dispersion coefficients. Equation (1) represents Darcy’s law,
(2) is the incompressibility condition, (3) is the advection-dispersion equation for porous
media, and (4) is the equation of state.

For this system to have a unique solution, boundary conditions must be prescribed,
as well as the initial conditions for c. It is assumed that in each point of the domain
boundary either Dirichlet or Neumann condition is prescribed for each variable, and that
Neumann condition may not be prescribed for the concentration at inflow boundaries.

3 DISCRETIZATION

3.1 Collocation points

Method presented in 13 requires that κ/µ is constant by parts, changing only across the
interfaces between cells, and at most across one interface of any cell. These limitations
have been softened in 7, where κ/µ may jump over more than one face of a cell, and may
also vary moderately within cells. Our implementation is based on 13, and we shall assume
that the corresponding limitations are hold. We shall refer to the areas of constant κ/µ
as permeability zones.

Porosity ε could jump between layers, although not as much as the permeability, so the
effective diffusion coefficient εD appearing in (3) could be discontinuous. For the matter
of simplicity we assume that this is not the case.

For each variable (i.e. for the pressure and for the concentration), one collocation point
is assigned to each cell and to each boundary face. In addition, one collocation point for
the pressure is assigned to each face over which κ/µ jumps. The face collocation points
are introduced only for mathematical convenience and do not enter the final algebraic
system.

Pressure and concentration collocation points are denoted by x
p
Ω and xc

Ω, respectively,
in cell Ω, or by x

p
f and xc

f in face f . Boundary collocation points are taken to be face
centroids. Concentration cell collocation points are taken to be cell centroids. If Ω+ and
Ω− are two cells sharing face f and κ/µ jumps between these cells, then x

p
Ω+

, x
p
Ω−

and
x

p
f are determined such that

(xp
f − x

p
Ω+

) × ℓ+ = 0, (xp
f − x

p
Ω−

) × ℓ− = 0, (5)

as proposed in 13, where ℓ± = (κ/µ)Ω±
nf . All other pressure cell collocation points are

centroids.

3.2 Pressure equation

Integrating (2) over polygonal control volume Ω and using the divergence theorem we
arrive to

∑

f∈∂Ω

χΩ,fuf = 0, uf =

∫

f

u · nfds, (6)
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where uf is the normal flux trough face f , nf is a unit vector normal to face f fixed once
and for all, and χΩ,f = 1 if nf is pointing outside of Ω, or -1 otherwise. For a single cell,
we always assume that nf is pointing outside. At boundary faces, fixed normal vectors
are pointing outside.

Let us first assume that κ/µ does not change across face f . Let ℓf = (κ/µ)fnf . Using
this notation, the definition of the directional derivative

∂p

∂ℓf

= ∇p ·
ℓf

|ℓf |
, (7)

and Darcy’s law (1), definition of uf in (6) becomes

uf =

∫

f

−ℓf · (∇p − ρg)ds = −|ℓf |

∫

f

∂p

∂ℓf

ds +

∫

f

ρg · ℓfds. (8)

Among all pressure collocation points in faces adjacent to cell Ω or in the neighboring
cells within the same permeability zone , three points x1, x2, and x3 are chosen such that

ℓf

|ℓf |
= α

t1

|t1|
+ β

t2

|t2|
+ γ

t3

|t3|
, α ≥ 0, β ≥ 0, γ ≥ 0, (9)

where tk = xk − xΩ. If such points cannot be found in the immediate neighborhood, the
search is extended to the neighbors of the neighbors.

Using this decomposition, the first integral in (8) is written as

−|ℓf |

∫

f

∂p

∂ℓf

ds = −|ℓf |

∫

f

α
∂p

∂t1
+ β

∂p

∂t2
+ γ

∂p

∂t3
ds ≈

≈ −|ℓf ||f |

(

α

|t1|
(p1

Ω − pΩ) +
β

|t2|
(p2

Ω − pΩ) +
γ

|t3|
(p3

Ω − pΩ)

)

, (10)

where pk
Ω is the pressure in xk, and pΩ is the pressure in xΩ. Let cells Ω+ and Ω− have a

common edge f , and let us assume that nf is pointing from Ω+ to Ω−. Approximations
(10) corresponding to these two cells are linearly combined, omitting Ω in subscripts:

−|ℓf |

∫

f

∂p

∂ℓf

ds ≈ −A+|ℓf ||f |

(

α+

|t1
+|

(p1
+ − p+) +

β+

|t2
+|

(p2
+ − p+) +

γ+

|t3
+|

(p3
+ − p+)

)

+A−|ℓf ||f |

(

α−

|t1
−|

(p1
− − p−) +

β−

|t2
−|

(p2
− − p−) +

γ−

|t3
−|

(p3
− − p−)

)

. (11)

For this approximation to be valid, it is required that

A+ + A− = 1. (12)
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In order to arrive at a two point formula, we choose A+ and A− such that the contributions
of pressures other than p+ and p− in (11) cancel. This means that

−A+d+ + A−d− = 0, d± =
α±

|t1
±|

p1
± +

β±

|t2
±|

p2
± +

γ±

|t3
±|

p3
±. (13)

It may happen that xk
− and x+ coincide, or that xk

+ and x− coincide. In this case, the
terms to be canceled and d± change. Note that d± ≥ 0 as long as p ≥ 0.

If d+ + d− > 0, equations (12) and (13) determine coefficients

A+ =
d−

d+ + d−

, A− =
d−

d+ + d−

, (14)

otherwise we set d± = 1
2
.

In this way, the first integral in (8) is approximated using two-point formula

−|ℓf |

∫

f

∂p

∂ℓf

ds ≈ M+
f p+ − M−

f p−, (15)

M±
f = A±|ℓf ||f |

(

α±

|t1
±|

+
β±

|t2
±|

+
γ±

|t3
±|

)

, (16)

where non-negative coefficients M±
f depending on p are determined iteratively.

If f is a boundary face, it is treated as a cell of zero volume, and formula (15) still
holds, where p− is the boundary pressure. If the pressure has not been prescribed in face
f , it is computed using formulas (8), (15), and the prescribed flux.

The second integral in (8) is approximated as

∫

f

ρg · ℓfds ≈ |f |ρfg · ℓf . (17)

If f is an internal face, density ρf is computed as volume average

ρf =
|Ω+|ρ+ + |Ω−|ρ−

|Ω+| + |Ω−|
, (18)

where ρ± are the densities in Ω± which are computed from concentrations c± using the
equation of state (4). If f is a boundary face, ρf is computed using (4) from the boundary
concentration, which may be prescribed, or computed during the concentration diffusive
flux computation, in the same way the boundary pressures are computed (see Sec. 3.3).

If κ/µ changes across face f , then let ℓ± = ∓(κ/µ)±nf . Instead of (8) we have

uf = ±|ℓ±|

∫

f

∂p

∂ℓ±
ds ∓

∫

f

ρg · ℓ±ds. (19)
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Since in this case ℓ± = −|ℓ±|(xf −x±)/|xf −x±| because of (5), directional derivatives
can be well approximated using a two-point formula. Together with (17) this gives

uf ≈ ∓
|f ||ℓ±|

|xf − x±|
[pf − p± − ρ±g · (xf − x±)] . (20)

Continuity of flux at face f and formula (20) give a linear relation for pressure pf

|ℓ+|

|xf − x+|
[pf − p+ − ρ+g · (xf − x+)]+

|ℓ−|

|xf − x−|
[pf − p− − ρ−g · (xf − x−)] = 0. (21)

Calculating pf from (21) and substituting it in (20) gives a two-point formula for the flux

uf ≈
|ℓ+||ℓ−|

|ℓ+||xf − x−| + |ℓ−||xf − x+|
[p+ − p− + ρ+g · (xf − x+) − ρ−g · (xf − x−)] .

(22)

3.3 Concentration equation

Equation (3) is integrated over control volume Ω and the divergence theorem is applied,
resulting in

∫

Ω

∂(εc)

∂t
dt +

∑

f∈∂Ω

χΩ,f

[

ufcf − |f |

(

εD
∂c

∂nf

)

f

]

= 0 (23)

The diffusive-dispersive flux −|f |
(

εD ∂c
∂nf

)

f
is discretized in the same way as in the

pressure equation, except that the situation is somewhat simpler because εD is assumed
to be a scalar, and there is no gravity term.

It is essential to preserve the monotonicity of the scheme, otherwise concentrations
may become negative, and then the nonlinear discretization of the diffusive term will
break. Except at Dirichlet concentration boundaries, face concentration cf appearing in
the convective flux is resolved using the first order upwind discretization. If nf is pointing
from Ω+ to Ω−, then

cf =
1

2
(uf + |uf |)c+ +

1

2
(uf − |uf |)c−. (24)

In this way it is guaranteed that the scheme is monotone and therefore the concentration
will not become negative. A less diffusive solution would be obtained using a second order
limited scheme, like the one that appears in 14.

Euler implicit time discretization is used. The diffusive-dispersive term is evaluated
implicitly at time level n+1. The convective term is linearized using Picard linearization,
which means that flux uf is evaluated explicitly, while the concentration is evaluated
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implicitly. The discretized concentration equation now reads

εΩ
cn+1,m+1
Ω − cn

Ω

∆t
+

∑

f∈∂Ω

χΩ,f

[

un+1,m
f cn+1,m+1

f +

+N+
f (cn+1,m)cn+1,m+1

+ − N−
f (cn+1,m)cn+1,m+1

−

]

= 0, (25)

where ∆t = tn+1 − tn is the time step, N±
f are the concentration analogues of coefficients

M±
f defined in (16), the first superscript denotes the time level, and the second superscript

denotes the iteration number. Lack of the second superscript means that the last iteration
is used. Cell and face concentrations and pressures obtained at the end of one time level
are taken to be the initial values for iterations in the next time level. The whole procedure
is summarized in Algorithm 1.

Algorithm 1 Solution procedure

Find all collocation points
Find all reconstruction vectors (9)
t = t0, n = 0
while t < tend do

m = 0
repeat

Compute ρn+1,m from cn+1,m

Compute pn+1,m+1 using (6), (8), (15), (17), (22), and the latest ρ
Compute the fluxes using (8), (15), (17), (22), and the latest ρ
Compute cn+1,m+1 from (25)
m = m + 1

until max(|pn+1,m+1 − pn+1,m|) ≤ ǫinner ‖ pn+1,m+1 ‖2 and
max(|cn+1,m+1 − cn+1,m|) ≤ ǫinner ‖ cn+1,m+1 ‖2

t = t + ∆t, n = n + 1
end while

4 EXAMPLES

The accuracy of the non-linear diffusion scheme was tested in 13. This scheme is second
order accurate in primary variables and first order accurate in fluxes. The upwind scheme
used for the convective term is first order accurate.

We present two examples. The first example demonstrates that our scheme is far
more accurate than if the classical linear two-point fluxes are used. The second example
demonstrates that the results are similar to those obtained with another unstructured
upwind scheme, and that the scheme behaves well in the presence of discontinuities in the
material parameters and the solution.
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Example 1. Constant Darcy velocity field of 2 · 10−5m/s in x direction is specified in a
unit cube by prescribing the appropriate initial pressure field, Dirichlet pressure boundary
condition at the inflow, and Neumann pressure boundary condition at all other boundaries.
We have chosen K = κρg/µ = 10−4m/s, ρ = 999.13kg/m3, ε = 0.1, D = 2 · 10−6m2/s,
and µ = 1.307e−3kg/(s · m). Density variations are neglected in this example.

Concentration

c =

{

1.5kg/m3, z < 0.5
6.0kg/m3, z ≥ 0.5

(26)

is prescribed at all boundaries except at the outflow, and also as the initial condition.
Zero diffusive flux is prescribed as the outflow concentration boundary condition.

Structured computational grid was obtained by subdividing each cube of a 32×32×32
Cartesian grid into six tetrahedra. Computations were performed until the stationary
solution was reached. Fig. 1 shows the concentration isolines at the outflow boundary.
Image on the left shows the result obtained by the method presented in this paper, while
the other image shows the result obtained by a modified method in which instead of (15)
one uses the classical linear two-point flux formula

−|ℓf |

∫

f

∂p

∂ℓf

ds ≈ |ℓf ||f |
p+ − p−
|x+ − x−|

. (27)

Such linear two-point foruma is also used for the concentration diffusive flux in the sec-
ond image. Due to the orientation of the grid, the error of the classical finite volume
discretization accumulates, and causes the asymmetry visible in the image on the right.
Such asymmetry is not visible in the result obtained by the non-linear method. The
inaccuraces near the Dirichlet borders are due to post-processing.

This demonstrates that in spite of the fact that the convection discretization is only first
order accurate, deployment of the non-linear diffusion discretization greatly improves the
accuracy, because the large error of the classical method is mostly due to the inaccurate
discretization of the pressure equation.

Example 2. Elder problem is a classical example of density driven flow. It was originally
formulated for thermal convection in 9, 10 and reformulated for concentration-dependent
density in 19. It describes an unstable situation when dense fluid is placed above a lighter
fluid. This causes onset of brines, also known ad “fingers”. The geometry of the problem
is shown in Fig. 2. Concentration c = 1 is prescribed along the central 300m of the
upper boundary, and c = 0 along the lower boundary. On other boundaries concentration
flux is zero. As a pressure boundary condition, zero flux was prescribed everywhere
except in the upper two corners, where the atmospheric pressure is set. Maximal density
is 1200kg/m3, and minimal density is 1000kg/m3. We assume that the density depends
linearly on the concentration. Initial concentration is zero, and the initial pressure linearly
increases with depth, so that the fluid does not move. Other data are κ = 4.845 ·10−13m2,
µ = 10−3kg/(s · m), ε = 0.1, g = 9.81m/s2, and D = 3.565 · 10−6m2/s.
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Figure 1: Concentration isolines at the outflow obtained with the nonlinear scheme (left) and with the
classical linear approximation of the diffusive flux (right).

Contaminant source (300m)

Zero concentration (600m)

Constant pressure (10m)Constant pressure (10m)

15
0m

Figure 2: Geometry of Elder problem.
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Figure 3: Concentration isolines obtained with the presented scheme (top row), with FEFLOW using
unstructured upwind scheme (middle row), and with FEFLOW using Cartesian central scheme (bottom
row), after two (left column), three (middle column), and four (right) years.

To be able to compute this two-dimensional problem with a three-dimensional code,
we extend the computational domain into the third dimension by introducing thickness
0.8m, and create a tetrahedral grid within this domain. The domain is very thin so that
all nodes are at the boundary. A the newly introduced front and the back boundary
no-flow condition is set for the pressure and for the concentration.

Elder problem is very sensitive to grid quality and differences in numerical methods.
Numerous authors reported qualitatively different solutions. However, some of the re-
ported results do agree on Cartesian meshes 4, 12, 1, 16. We do not expect our scheme to
produce results comparable to these because of the full upwind convective flux discretiza-
tion and the unstructured meshes. Instead, they will be compared with results obtained
with FEFLOW finite element package 8 using full upwind convection discretization and
unstructured triangular grids with approximately twice less nodes than in our tetrahedral
grid.

Even though Boussinesq approximation is not appropriate for this problem because
the density fluctuations are too large 12, results obtained with FEFLOW (see the bottom
row of Fig. 3) using Boussinesq approximation, Cartesian mesh, and central convection
discretization agree with 4, 12, 1, 16.

Concentration isolines obtained with our scheme using a grid composed of 460,852
tetrahedra are shown in the upper row of Fig. 3. The time step was 500,000 seconds.
Iterations were performed until the maximal relative correction of the pressure and the
concentration was less then 10−8. Higher accuracy was difficult to reach because the
physical problem is unstable. Around 45 iterations were necessary in the developed phases
of the computation.

Results obtained with our scheme show similar disagreement with the accurate solu-
tion shown in the bottom row of Fig. 3 as the results obtained with another upwind
unstructured scheme do (the middle row of Fig. 3). Three-dimensionality of the problem
that our code is solving may introduce additional errors.
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Figure 4: Concentration isolines for the modified anisotropic problem obtained with the presented scheme
(top row), with FEFLOW using unstructured upwind scheme (middle row), and with FEFLOW using
Cartesian central scheme (bottom row), after one (left) and two (right) years.

In order to test the behavior of the scheme in the case when the permeability tensor is
anisotropic and discontinuous, we have modified the Elder problem. We have divided the
computational domain in two horizontal layers of equal height, see Fig. 2. Anisotropic
tensor

κ|upper = R−1

[

4.791 · 10−12 0
0 4.791 · 10−13

]

R, R =

[

cos α sin α
− sin α cos α

]

(28)

has been prescribed in the upper layer, where α = 5π/180, while in the lower layer

κ|lower =

[

1.0194 · 10−11 0
0 4.791 · 10−12

]

. (29)

The permeability in the third direction is taken to be equal to the horizontal permeability
of the two-dimensional problem before the rotation, i.e. 4.791 · 10−12 in the upper part,
and 1.0194 · 10−11 in the lower part. Thickness of the domain in the anisotropic case was
1m, and there were 289,227 tetrahedra. Time step was 100, 000 seconds, and around 110
iterations were needed in each time step to achieve the accuracy of 10−6. Slow convergence
in comparison with the isotropic case was also observed with FEFLOW.

Like in the isotropic case, our results disagree with the results obtained with the cen-
tral Cartesian FEM discretization to a similar extent as the results obtained with the
unstructured upwind FEM discretization do (see Fig. 4). However, while FEFLOW gave
negative concentrations of more than 10% of the total concentration span in the upwind
case and more than 30% in the central case (locally near the two ends of the contaminant
source - not visible in Fig. 4), concentration that our code computes is non-negative.
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5 DISCUSSION AND CONCLUSIONS

We have presented a monotone non-linear method for the computation of flow and mass
transport with the concentration-dependent density. The concentration is guaranteed to
be non-negative. However, this does not hold for the pressure. The onset of brines
in Example 2 creates the underpressure along the upper boundary which is lower than
anywhere at the boundary or inside the domain at the previous time step. Mathematically
this is caused by the divergence of the gravity term in (1), (2), which may take any sign.

Atmospheric pressure is usually neglected when computing incompressible flows, be-
cause the pressure is determined only up to an additive constant by the flow equations.
However, if we set the atmospheric pressure to zero in Example 2, then negative pressure
will appear in the domain, and this will break our diffusion scheme, which is unable to
cope with negative variables. Therefore we use the physical pressure.

The examples that we presented show that the scheme is considerably more accurate
then if the classical finite volume diffusive flux discretization was used, and that it is
in line with FEFLOW when full upwind discretization of the convective term is used
together with an unstructured grid, except that our scheme does not produce negative
concentrations. For our computations of Elder problem to be closer to the best available
data, it is necessary to improve the accuracy by using a second-order accurate upwind-
biased limited discretization of the convective term such as the one presented in 14.
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[20] A. Yuan and Z. Sheng. Monotone finite volume schemes for diffusion equations on
polygonal meshes. J. Comp. Phys., 227(12):6288–6312, 2008.

14


