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Abstract. A multiscale procedure to couple a mesoscale Lattice Boltzmann model (LBM)
and a microscale particle solver (MPS) for incompressible fluid flows is outlined. While
LBM method solves the fluid dynamics in the whole domain, MPS should be used only in
selected regions of complex flow field, typically near walls, where a finer scale is required.
Preliminary simulations of lid-driven cavity flows at moderate Reynolds numbers show
that the MPS is indeed capable of reproducing the main feature of the fluid flow at about
ten times the cost of LBM. This permits to estimate the relative size of the high-accuracy
regions to be handled by MPS in future multiscale applications to blood flow rheology.

To assess the solution accuracy of the multiscale approach, the simulation in a driven
cavity flow has been carried out as a benchmark. The results of some preliminary numerical
tests provide some insights on the capabilities offered by the method in blood flow problems.
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1 INTRODUCTION

Computational fluid dynamics has achieved remarkable success for the simulation of
industrial and biological flows. In some cases, a variety of interacting scales are present,
and a unifying, comprehensive methodology for the whole phenomena remains to be devel-
oped. It is hard to simultaneously simulate microlevel scales like droplets and macrolevel
free at bulk fluid, because the mesh size used in computational fluid dynamics limit the
minimum scale of the simulations. The behaviour of flow field are generally simulated
with the Eulerian method or with kinetic methods at mesoscopic level (LBM) over a
Cartesian grid.

On the other hand, a number of Lagrangian methods, using particles as grid-free de-
grees of freedom have been devised [1, 2, 3]. In [4], moving particle semi-implicit (MPS)
method was developed to analyze incompressible flows. The governing equations of con-
tinuum fluid mechanics are transformed to interactions among particles. The particles
then move according to a fully Lagrangian description in the advection step, thus per-
mitting to describe flows with strong contrasts and deformations without resorting to
over-demanding grid resolution. The advection equations are explicitly solved, while the
Poisson’s equation for pressure is implicitly solved. Particle methods are often defined
as grid-free methods, making them an attractive alternative to mesh-based methods for
flows past complex and deforming boundaries. However, the adaptivity provided by the
Lagrangian description can introduce errors and particle methods have often to be cou-
pled with a grid, in order to provide consistent, efficient, and more accurate simulations.
Most continuum flows, such as flows in porous media and unsteady separated and turbu-
lent flows, are inherently multiscale, due to the range of scales that govern the underlying
physical phenomena. A consistent and systematic framework is necessary to couple mi-
croscale and macroscale modelling because the macroscale flows determine the external
conditions that influence the microsystem, which in turn influences the larger scales by
modifying its boundary conditions [5]. Hybrid methods involve combinations of mesh-
based schemes and particle methods in an effort to combine computational advantages of
each method. Bridging these two scales in modelling fluid flows offers a tool to efficiently
solve problems for which a detailed description of flow is needed in the local regions only,
while a plain LBM is employed in the large fluid domain domain [6].

In this paper, we propose a coupled approach which may prove particularly effective
for modelling complex flows requiring a detailed insight into specific local regions, such as
the case of blood flow in a large artery. Continuum methods are applicable for modelling
global arterial dynamics, but are inadequate for the determination of local flows which
involve microstructure dynamics. By using a discrete particle method in a small domain,
each constituent can be modelled by a microscopic particle within the blood. In the
present work, the feasibility of such a coupling is explored by solving the driven cavity
flow test case: the critical areas of recirculations and regions of maximum shear need a
greater detail and can benefit of the finer description given by the MPS method.
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2 FLUID FLOW MODELS AT DIFFERENT SCALES

A variety of methods is available for solving fluid dynamical problems, at different
space and time scales. A unifying methodology capable of resolving multiple scales is still
missing, whereas a coupling between different computational techniques is an affordable
task. Let us first remind here the fundamental principles of two popular methods largely
used for a wide class of flow problems.

Lattice-Boltzmann Method
The lattice Boltzmann Method (LBM) has attracted considerable research attention

and has emerged as an alternative solution technique to the conventional computational
fluid dynamics methods employing Navier-Stokes equations. It offers various advantages,
including use of Cartesian grids, high space-time resolution, full scalability on parallel
computers, as well as efficient and robust implementation in complex geometries [7].

In LBM, the fluid domain is discretized in uniform Cartesian cells (lattices). Each
cell holds a fixed number of density distribution functions, which represent the number
of fluid particles moving in these discrete direction. The differential form of the Lattice
Boltzmann equation is:

∂tfi + ci · ∇fi = −(fi − f eqi )/τ (1)

where the phase space is discretized into a finite number of particles states i. The variable
fi(x, t) ≡ f(x,v = ci, t) represents the probability of finding a particle at site x, at time
t and moving along the lattice direction defined by the discrete speed ci. The right
hand side of the above equation is the BGK collision operator, which represents particles
interaction via a single-time relaxation towards local equilibrium f eqi on a single timescale
τ , called relaxation time [8]. The kinematic viscosity of LBM scheme is proportional to
the relaxation time: ν = c2

s(τ − ∆t
2

), with a integration scheme having time step ∆t. If
the fluid is in thermal equilibrium, the distribution is given by the Maxwell-Boltzmann
distribution expanded in Taylor series of the fluid speed up to second order:

f eqi = ρσi[1 + βui +
1

2
(β2u2

i − βu2)] (2)

where β = 1/c2
s, being cs the lattice sound speed, ρ the fluid density, u the fluid speed and

σi the associated weight coefficients. By a Chapman-Enskog analysis, the LBM is proved
to approximate the Navier Stokes Equations close to the incompressibility limit. The fluid
macroscopic variables are calculated as mass density ρ =

∑
i fi, velocity u =

∑
i cifi/ρ

and pressure p = ρc2
s. In order to recover the correct fluid dynamic equations in the

macroscopic limit, the discretization of the velocity space must be performed in such a
way to conserve mass, momentum and energy, as well as rotational symmetry. In this
work the nine-speed model (known as D2Q9) is used [7]:

c0 = (0, 0), c1 = (1, 0), c2 = (0, 1)
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c3 = (−1, 0), c4 = (0,−1), c5 = (1, 1)

c6 = (−1, 1), c7 = (−1,−1), c8 = (1,−1)

with weights σ0 = 4/9, σ1−4 = 1/9, σ5−8 = 1/36 in eqn. (2).
The method possesses certain clear advantages over conventional CFD method, but the

constancy of particle speeds in space results into a spatial uniform Cartesian spatial grid.
This represents a very severe limitation for many practical applications, particularly for
multiscale type of calculations, where selective distribution of the computational degrees
of freedom in the “hot” regions is necessary.

Moving Particle Semi-Implicit Method
Fluid-particle interaction problems can be found in many scientific and engineering

applications, such as particle suspensions, lubricated transport, sedimentation, fluvial
erosion, and geomechanical systems. The fundamental physical phenomena involved in
these problems are generally not well understood and are often described in an empirical
fashion, mainly due to the complexity of the fluid-particle interactions. The motion of the
particles is driven collectively by the hydrodynamic forces exerted by the fluid, and may
also be altered by the interaction between particles. On the other hand, the fluid flow
pattern can be strongly affected by the presence of the particles. The numerical method
used in this study is the moving particle semi-implicit scheme (MPS), which describes the
particle motions and their interactions and is fully based on the Lagrangian description
[4]. The key common feature of all particle methods involves the approximation of the
Lagrangian form of the Navier-Stokes equations by replacing the derivative operators
through equivalent integral operators, that are in turn discretized in terms of particle
positions.

Let us consider N particles equidistributed in a 2D domain A. They are approximated
by equal spheres having the same mass m and labelled by a subscript capital letter. The
particle dynamics is local, being their interactions restricted to within a finite region of
influence of radius re, through a weighting function (kernel):

w(r) =


re
r
− 1 0 < r < re

0 re < r

(3)

(re = 2.1 × the average initial spacing is typically chosen [4]). This kernel function is
used to compute density, repulsive forces, and derivatives as follows. The particle number
density at position P is given by:

nP =
N∑

Q 6=P
w(rPQ) (4)

where rPQ = ||xP −xQ||. For incompressible flows this number should be constant n0 for
all particles. The relation of the particle number density with the actual density is given
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by:

ρP =
m · nP∫

A
w(rPQ)dA

(5)

The gradient of a quantity φ is written as:

(∇φ)P =
d

n0

∑
Q 6=P

w(rPQ)
(φQ − φP )(xQ − xP )

|xQ − xP |2
(6)

where d is the number of space dimensions (here d = 2) [4]. Higher order derivatives are
poorly modelled, and the concept of diffusion is used instead:

(∇2φ)P =
2d

λn0

∑
Q 6=P

w(rPQ)(φQ − φP ) (7)

with

λ =

∑
Q6=P

w(rPQ)r2
PQ∑

Q 6=P
w(rPQ)

Meshes are not needed, at any step of the calculation. MPS solves the momentum and
the continuity equations:

∂u

∂t
= −∇P

ρ
+ ν∇2u

1

ρ

∂ρ

∂t
+∇ · u = 0

(8)

as a predictor-corrector method [3, 4]. The corrector step is stabilised by relaxing the
incompressibility condition. This is achieved by increasing the diagonal terms of the
linear system of a small percentage (typically 1%−10%). This also speeds up the iterative
method (CG) used for its solution.

The time step should be appropriately selected to satisfy the solution accuracy require-
ment and more importantly to ensure numerical stability due to the explicit nature of the
MPS algorithm [1]. The CFL condition |u|max∆t/∆l < 1 is imposed adaptively, where
|u|max is the maximum particle velocity and ∆l is the minimum spacing of particles. Here
an upper bound of 0.1 is chosen for the CFL condition, and ∆t = (0.1∆l)/|u|max.
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3 COMBINING LBM AND MPS METHODS

In a coupled framework, the fluid field is solved by LBM in the overall domain, while
in selected regions particle dynamics is modelled by the MPS. An overlapping stripe
separates the two regions and serves to exchange information at the two scale levels.

From micro to mesoscale
Let us consider the average of the density, velocity, ecc. of M particles around a

lattice node G ≡ (j∆x, k∆x), with velocity uP and position P = (xP , yP ). The particle
contribution to the grid density, momentum and pressure tensor, reads as follows:

ρ(G) =

∑
P
ρPWPG

M

ρu(G) =

∑
P
ρPWPGuP

M

Π(G) ≡ ρuu+ pI + S =

∑
P
ρPWPGuPuP

M
(9)

where S is the dissipative component of the pressure tensor, resulting from gradients of
the flow velocity and density. Note this component can be extracted directly from Π
since the fluid velocity and density are known independently through the first and second
relations above.

In the above

ρP =


1 for xj −

1

2
≤ xP ≤ xj +

1

2
and yk −

1

2
≤ yP ≤ yk +

1

2

0 otherwise

selects particles lying within a square control volume Ω (see dashed line in fig. 1) and
WPG is a suitable particle-to-grid interpolator. Other choices for this control volume are
possible. From ρ(G) and u(G), we obtain the equilibrium populations f eqi at any grid
point G:

f eqi = ρσi

{
1 +

(ci · u)

c2
s

+
1

2c4
s

uαuβ(ciαciβ − c2
sδαβ)

}
(10)

where the dependence on G has been omitted for notational simplicity. The above expres-
sion corresponds to local kinetic equilibrium, and does not take into account dissipative
effects, as expressed by the non-equilibrium component of the distribution function.

The non-equilibrium term is obtained by adding the following second order term in the
curly brackets of eqn. (10):
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fneqi = ρσi

{
1

2c4
s

Sα,β(ciαciβ − c2
sδαβ)

}
(11)

Sα,β is the shear stress and the sum is also taken over the control volume. This terms
includes weak departure from local equilibrium, as dictated by gradients of the density
and velocity of the fluid flow. By definition, these departures do not contribute to mass
and momentum, since these quantities are conserved by the mesoscopic dynamics, being:∑

i

fneqi = 0 and
∑
i

fneqi cα = 0 (12)

Figure 1: A lattice node G ≡ (j∆x, k∆x) surrounded by a square control volume Ω (dashed line) with
particles P randomly distributed.

From meso to microscale
The transfer from the grid-based mesoscopic distribution function fi(G; t) to the par-

ticle degrees of freedom {rP ,uP} proceeds through a (relatively) standard Monte Carlo
sampling procedure [9]. Given the density ρ(G), a set of N(G) = ρ(G)/(mA) particles
of mass m are distributed at random positions in the cell of area A, centered about the
grid-point G (fig. 1). The particle velocities can then be sampled as follows

uP = u(G) + ξ + η(P −G) · S(G) (13)

where ξ and η are random quantities with the following properties:

< ξ >= 0, < ξ · ξ >= kT/m, < η >= 0, (< η2 >)1/2 = lm/lPG, < ξη >= 0
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Here, lm is the particle mean-free path, lPG = ||P − G|| and S the shear-stress tensor.
Clearly, ξ codes for thermal fluctuations at local equilibrium, while η is in charge of
gradient-driven departures from local equilibrium (dissipative effects).

4 TOWARDS A MULTISCALE HEMODYNAMICS

The physiological application provides the main source of inspiration of the present
work. The principal multiscale aspect of hemodynamics is represented by the cardio-
vascular network, whose geometrical size ranges from that of large vessels (some mm’s
diameter) to capillaries (few µm’s). The large vessels are the most important elements
from a patho-physiological perspective and substantial efforts have been devoted to their
accurate modelling with various techniques [10]. Large vessels hemodynamics, as part
of a multiscale network, should be coupled with a system of elements, of varying com-
plexity, capable of reproducing the appropriate interaction between the different scales,
while guaranteeing at the same time a consistent modelling of the large scale circulatory
process [11]. Advanced multiscale methods addressing these network-like aspects of car-
diovascular dynamics have been developed in the recent years [11, 12]. While above a
certain scale (≈ 1mm), blood can be treated as a continuum, it is well known that on
a microscopic scale, blood consists of a suspension of corpuscular elements, floating in a
liquid plasma [13]. Within the continuum picture, the corpuscular composition of blood
is usually accounted for by introducing a non-linear (non-Newtonian) constitutive law be-
tween stress and strain. In such a framework, blood presents a shear-dependent viscosity,
that increases at low values of the shear rate (shear-thinning behaviour), up to a solid-like
behaviour at very small values of the strain-rate (yield stress) [14]. Blood flowing in larger
arteries is then described by the Navier-Stokes equations, i.e through a set of continuum
fields, such as density, velocity and so on. However, near the wall or in smaller vessels, the
granular nature of blood, in fact a collection of red cells of about 8 µm in size, platelets
and complex molecules dispersed in the plasma, becomes essential for the quantitative de-
scription of complex physico-chemical processes involved in blood cells interactions with
endothelial cells, as well as with the microscopic roughness of prosthetic elements [15]. In
other words, if current hemodynamics is able to explain, control, or predict circulatory
physiological processes that are dominated by mechanical effects (pressure distribution,
vortex formation, flow limitation in collapsible tubes, wall elasticity, etc.), there is a larger
number of hemodynamical problems, involving the corpuscular nature of the blood and its
interaction with the boundaries, that command a microscopic representation, in order to
capture hemodynamical phenomena in their entirety. It is therefore extremely desirable
to design a new generation of multiscale procedures capable of dealing with blood as a
fluid and a particulate at a time.
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4.1 Numerical results

The driven cavity flow is chosen as representative of a class of complex problems,
including recirculation in saccular aneurysms, present in several blood flow problems.
The flow in a 50 × 50 cavity is induced by a horizontal motion of the upper wall. The
Reynolds number, based on the size of the cavity and the velocity of the upper wall, is
set to 20. Velocities and pressure given by the advection part of MPS were rearranged
with those obtained by the streaming step of LBM.

The velocity patterns obtained by both methods are displayed in fig. 2, from which
it is seen that the primary vortex is well captured by MPS. Despite of its preliminary
nature, this test bodes well for future concurrent coupling of LBM and MPS aimed at
multiscale simulation of complex flows at moderate Reynolds numbers.

Figure 2: Flow field in the a 50×50 driven cavity steady test problem with Re=20. The comparison
shows a LB simulation with 50×50 lattices (left) vs. a MPS simulation having 150×150 particles (right).
A suitable coupling of the two methods will enhance the accuracy in the critical regions.

5 CONCLUSIONS

A hybrid method that combines the LBM and MPS methods at different scales is pro-
posed. While the LBM has been well established for mesoscopic flows, at a lower scale
the framework of the LBM remains a challenge. Typically, particle methods are used
when characteristic length scale is smaller than grid sizes and are mainly used to resolve
boundary layers or vortices in critical regions near the wall where the fluid profiles are
very sharp. Thus, the multiscale approach is worth to be applied for modelling dilute
mixture flow, where a detailed analysis of particle motions is desirable only in small local
regions. In such a framework, this paper attempts to indicate a possible coupled strategy
for hemodynamical problems that possess intrinsic multiple scales. A worked example
as a driven cavity 2D flow illustrates the applicability and the effectiveness of such an
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approach. Extension to three-dimensional flows in other complex geometries stands out
as a major topic for future research. Work along this direction is currently in progress.
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