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Abstract.
Since direct numerical simulations cannot be computed at high Reynolds numbers, a

dynamically less complex formulation is sought. In the quest for such a formulation, we
consider regularizations of the convective term that preserve the symmetry and conserva-
tion properties exactly. This requirement yielded a novel class of regularizations (Comput-
ers & Fluids 37 (2008) 887) that restrain the convective production of smaller and smaller
scales of motion in an unconditionally stable manner, meaning that the velocity cannot
blow up in the energy-norm (in 2D also: enstrophy-norm). The numerical algorithm used
to solve the governing equations must preserve the symmetry and conservation properties
too. To do so, one of the most critical issues is the discrete filtering. The method requires
a list of properties that, in general, are not preserved by classical filters for LES unless
they are imposed a posteriori. In the present paper, we propose a novel class of discrete
filters that preserves such properties per se. They are based on polynomial functions of
the discrete diffusive operator, D̃, with the general form F = I +

∑M
m=1 dmD̃m. Then, the

coefficients, dm, follow from the requirement that, at the smallest grid scale kc, the amount
by which the interactions between the wavevector-triples (kc, kc − q, q) are damped must
become virtually independent of the q-th Fourier-mode. This allows an optimal control
of the subtle balance between convection and diffusion at the smallest grid scale to stop
the vortex-stretching. Finally, the proposed method is tested for an air-filled differentially
heated cavity of height aspect ratio 4.
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1 INTRODUCTION

The incompressible Navier-Stokes (NS) equations form an excellent mathematical model
for turbulent flows. In primitive variables the equations are

∂tu + C(u, u) =
1

Re
∆u −∇p ; ∇ · u = 0 (1)

where u denotes the velocity field, p represents the pressure, Re is the Reynolds number
and the non-linear, convective term is defined by C(u, v) = (u · ∇) v.

Preserving the (skew-)symmetries of the continuous differential operators when dis-
cretizing them has been shown to be a very suitable approach for direct numerical sim-
ulation (DNS) (see1, for instance). Doing so, certain fundamental properties such as the
inviscid invariants - kinetic energy, enstrophy (in 2D) and helicity (in 3D) - are exactly
preserved in a discrete sense. However, direct simulations at high Reynolds numbers are
not feasible because the convective term produces far too many relevant scales of mo-
tion. Therefore, a dynamically less complex mathematical formulation is needed. In the
quest for such a formulation, we consider regularizations2,3 (smooth approximations) of
the nonlinearity. The first outstanding approach in this direction goes back to Leray4;
the Navier-Stokes-α model also forms an example of regularization modeling (see3, for
instance). The regularization methods basically alter the convective terms to reduce the
production of small scales of motion. In doing so, we proposed to preserve the symmetry
and conservation properties of the convective terms exactly5. This requirement yielded
a family of symmetry-preserving regularization models: a novel class of regularizations
that restrains the convective production of smaller and smaller scales of motion in an
unconditionally stable manner, meaning that the velocity cannot blow up in the energy-
norm (in 2D also: enstrophy-norm). The numerical algorithm used to solve the governing
equations preserves the conservation properties too1 and is therefore well-suited to test
the proposed simulation model. The regularization makes use of a normalized self-adjoint
filter. In the initial tests5,6, the performance of the method was tested keeping the ratio
filter length/grid width constant. Thus, this parameter had to be prescribed in advance
and therefore a convergence analysis was needed. Later, to circumvent this, a parameter-
free approach was proposed7. To do so, we proposed to determine the regularization
parameter (the local filter length) dynamically from the requirement that the vortex-
stretching must be stopped at the scale set by the grid. However, in this way, some of the
basic properties of the filter (i.e., symmetry, normalization, incompressibility ...) are lost.
Therefore, they need to be restored by explicitly forcing them. However, such a posteriori
modifications are artifacts that may change the dynamics of the system significantly.

In this context, here we propose a family of discrete linear filters that preserve several
fundamental properties by construction. To do so, polynomial functions of the discrete
diffusive operator are considered. In this way, a list of properties are automatically satis-
fied per se: (i) the filter is exactly symmetric and normalized, (ii) the diffusive nature of
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the filter implies that any non-physical transport between scales is introduced and (iii) a
filtered divergence-free vector remains ’almost’ incompressible. Moreover, since they are
only based on the diffusive operator their implementation, even for unstructured formula-
tions, becomes straightforward. Then, the exact coefficients follow from the requirement
that the damping of all triadic interactions at the smallest scale must become virtually
independent of the interacting wavevectors. The latter is a crucial property to control
the subtle balance between convection and diffusion in order to stop the vortex-stretching
mechanism. Here, the performance of the proposed method is tested for an air-filled
differentially heated with height aspect ratio 4.

2 RESTRAINING THE PRODUCTION OF SMALL SCALES:
Cn-REGULARIZATION

2.1 Regularization modeling

At high Re-numbers, the velocity field cannot be computed numerically from the NS
equations (1), because the solution possesses far too many scales of motion. The com-
putationally almost numberless small scales result from the nonlinear, convective term
C(u, u) that allow the transfer of energy from scales as large as the flow domain to the
smallest scales that can survive viscous dissipation. In the quest for a dynamically less
complex mathematical formulation, we consider smooth approximations (regularizations)
of the nonlinearity,

∂tuǫ + C̃(uǫ, uǫ) =
1

Re
∆uǫ −∇pǫ ; ∇ · uǫ = 0 (2)

where the variable names are changed from u and p to uǫ and pǫ, respectively, to stress
that the solution of (2) differs from that of the NS equations.

The regularized system (2) should be more amenable to be solved numerically (that
is, the regularization should limit the production of small scales of motion), while the
leading modes of uǫ have to approximate the corresponding modes of the solution u of
equations (1). The regularized system (2) may also be seen in relation to large-eddy
simulation (LES). In LES, equations (1) are filtered spatially, and the resulting nonlinear
terms involving residual velocities are modeled in terms of the filtered velocity

∂tuǫ + C(uǫ, uǫ) =
1

Re
∆uǫ −∇pǫ + M(uǫ), (3)

where the model terms are approximately given by M(uǫ) ≈ C(uǫ, uǫ) − C(uǫ, uǫ). The
regularization described by equations (2) falls in this concept if

C̃(uǫ, uǫ) = C(uǫ, uǫ) −M(uǫ). (4)

Indeed under this condition, equations (2) are equivalent to (3): we can filter (2) first
and thereafter compare the filtered version of (2) term-by-term with (3) to identify the
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closure model M(uǫ). Finally, it may be noted that equation (4) relates the regularization

C̃(uǫ, uǫ) one-to-one to the closure model M for any invertible filter.

2.2 Symmetry-preserving regularization models

The regularization method basically alters the nonlinearity to restrain the production
of small scales of motion, (see e.g.3). In doing so, one can preserve certain fundamental
properties of the convective operator C in equations (1) exactly. We propose to preserve
the symmetry properties that form the basis for the conservation of energy, enstrophy (in
2D) and helicity, i.e.

(C(u, v), w) = −(v, C(u, w)), (5)

(C(u, v), ∆v) = (u, C(∆v, v)), (6)

where the skew-symmetry with respect to v and w of the trilinear form (C(u, v), w) ensures
the conservation of energy and helicity. Additionally, the identity (6) must be satisfied
to conserve enstrophy in 2D. Therefore, we aim to regularize the convective operator C
in such a manner that the underlying symmetries (given by equations (5) and (6)) are

preserved. In other words, we require that the approximation C̃ of C satisfies (C̃(u, v), w) =

−(v, C̃(u, w)), and in 2D, (C̃(u, v), ∆v) = (u, C̃(∆v, v)). This criterion yields the following
class of regularizations proposed in5,

C2(u, v) = C(u, v) (7a)

C4(u, v) = C(u, v) + C(u, v′) + C(u′, v) (7b)

C6(u, v) = C(u, v) + C(u, v′) + C(u′, v) + C(u′, v′), (7c)

where a prime indicates the residual of the filter, e.g. u′ = u− u, which can be explicitly
evaluated, and (·) represents a normalized self-adjoint linear filter with filter length ǫ. The
difference between Cn(u, u) and C(u, u) is of the order ǫn (where n = 2, 4, 6) for symmetric
filters with filter length ǫ. Note that for a generic, symmetric filter: u′ = O(ǫ2)u (see
e.g.8).

The approximations Cn(uǫ, uǫ) are stable by construction, meaning that convective
terms do not contribute to the evolution of |uǫ|2; hence, the evolution of |uǫ|2 is governed
by a dissipative process. Therefore, replacing the convective term in the NS equations by
the O(ǫn)-accurate smooth approximation Cn(uǫ, uǫ) the partial differential equations to
be solved result in

∂tuǫ + Cn(uǫ, uǫ) =
1

Re
∆uǫ −∇pǫ ; ∇ · uǫ = 0 (8)

For further details about the symmetry-preserving regularization modeling the reader is
referred to5.
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2.3 Triadic interactions

To study the interscale interactions in more detail, we continue in the spectral space.
The spectral representation of the convective term in the NS equations is given by

C(u, v)k = iΠ(k)
∑

p+q=k

ûpqv̂q, (9)

where Π(k) = I − kkT /|k|2 denotes the projector onto divergence-free velocity fields in
the spectral space. Taking the Fourier transform of (7a)-(7c), we obtain the evolution of
each Fourier-mode ûk(t) of uǫ(t) for the Cn approximation1

(
d

dt
+

1

Re
|k|2
)

ûk + iΠ(k)
∑

p+q=k

fn (ĝk, ĝp, ĝq) ûpqv̂q = Fk, (10)

where ĝk denotes the k-th Fourier-mode of the kernel of the convolution filter, i.e., ûk =
ĝkûk. The mode ûk interacts only with those modes whose wavevectors p and q form a
triangle with the vector k. Thus, compared with (9), every triad interaction is multiplied
by

f2 (ĝk, ĝp, ĝq) = ĝkĝpĝq, (11a)

f4 (ĝk, ĝp, ĝq) = ĝkĝp + ĝkĝq + ĝpĝq − 2ĝkĝpĝq, (11b)

f6 (ĝk, ĝp, ĝq) = 1 − (1 − ĝk) (1 − ĝp) (1 − ĝq) . (11c)

Moreover, since for a generic, symmetric convolution filter (see8, for instance), ĝk =
1 − α2|k|2 + O(α4) with α2 = ǫ2/24, the damping functions fn can be approximated by

f2 ≈ 1 − α2
(
|k|2 + |p|2 + |q|2

)
, (12a)

f4 ≈ 1 − α4
(
|k|2|p|2 + |k|2|q|2 + |p|2|q|2

)
, (12b)

f6 ≈ 1 − α6|k|2|p|2|q|2. (12c)

Therefore, the interactions between large scales of motion (ǫ|k| < 1) approximate the
NS dynamics up to O(ǫn), with n = 2, 4, 6, respectively. Hence, the triadic interactions
between large scales are only slightly altered. All interactions involving longer wavevectors
(smaller scales of motion) are reduced. The amount by which the interactions between
the wavevector-triple (k, p, q) are lessened depends on the length of the legs of the triangle
k = p + q. In the case n = 4, for example, all triadic interactions for which at least two
legs are (much) longer than 1/ǫ are (strongly) attenuated, whereas interactions for which
at least two legs are (much) shorter than 1/ǫ are reduced to a small degree only.

1Here, for simplicity, the subindex ǫ is dropped.
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2.4 Stopping the vortex-stretching mechanism

In the initial tests, the performance of the C4 approximations was tested keeping the
ratio ǫ/h (filter length to the grid width) constant. Therefore, only one parameter needed
to be prescribed in advance. Later, to circumvent this, a parameter-free approach was
proposed7. To do so, we determine the regularization parameter (the local filter length)
dynamically from the requirement that the vortex-stretching must be stopped at the
smallest scale set by the grid, kc = π/h. Shortly, the idea behind is to modify the
convective operator sufficiently to guarantee that the following inequality is hold

ωkc
· Cn(ω, u)kc

ωkc
· ωkc

≤ 1

Re
k2

c . (13)

In this way, vortex-stretching is restrained enough to prevent a local intensification of
vorticity. Then, recalling the evolution equation (10) of the k-th Fourier-mode for the
Cn-approximation, previous expression becomes

ωkc
·
(∑

p+q=kc

fn (ĝkc
, ĝp, ĝq) ûpqv̂q

)

ωkc
· ωkc

≤ 1

Re
k2

c . (14)

Note that fn (ĝkc
, ĝp, ĝq) depends on the filter length ǫ and, in general, on the wavevectors

p and q = kc − p. This is an undesirable property because makes very difficult to control
the damping effect, fn, because it cannot be taken out of the summation. To avoid this,
filters should be constructed from the requirement that the damping effect of all the
triadic interactions at the smallest scale must be virtually independent of the interacting
pairs, i.e.

fn (ĝkc
, ĝp, ĝq) ≈ fn (ĝkc

) . (15)

This is a crucial property to control the subtle balance between convection and diffusion
in order to stop the vortex-stretching mechanism.

3 MATHEMATICAL BASIS

The symmetry-preserving regularizations (7a)-(7c) yield uniqueness and the expected
regularity properties: for all initial velocities in H = {u ∈ L2(Ω),∇ · u = 0} where the
spatial domain is given by Ω = (0, 2π)3 and periodic boundary conditions are enforced,
and ǫ > 0, Eq. (8), with Cn given by (7a)-(7c), has a unique C∞ solution. This solution
is bounded in L∞(0, T ; H)∩ L2(0, T ; V ), where the time t ∈ (0, T ), with T > 0 arbitrary,
and V = {u ∈ H1(Ω),∇ · u = 0}). One subsequence converges weakly in L2(0, T ; V ) to
a weak NS-solution as ǫ → 0. The proof is in fact a copy of Leray’s proof in4. So as
for Leray’s model, any filtering in Eqs. (7a)-(7c) is sufficient to guarantee that the energy
cascade stops at a certain scale of motion.
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Fifty years after Kolmogorov’s landmark papers on the cascade-concept9,10, Foias et
al.11 proved Kolmogorov’s results in a mathematically rigorous manner. They proved that
the solution (existence is assumed) of the NS-equation - on a periodic box in dimension
three - actual has a range of scales with wavenumber κ for which the rate at which energy
is transferred (from scales > κ to those < κ) is independent of κ. In this range the
energy behaves like κ−5/3. The proofs by Foias et al.are also applicable to the regularized
system (8), because the regularization preserves symmetry and conservation properties of
the nonlinearity. In this way it can be shown that the solution of the regularized system -
on a periodic box in dimension three - actual has a range of scales with wavenumber k for
which the rate at which energy is transferred (from scales > k to those < k) is independent
of k 12. In this so-called inertial subrange the energy behaves like k−5/3. Compared to
Navier-Stokes, the inertial subrange is shortened yielding a more amenable problem to
solve numerically.

4 PLAYING WITH DISCRETE OPERATORS

The regularizations Cn given by Eqs. (7a)-(7c) are constructed in a way that the sym-
metry properties (5) and (6) are exactly preserved. Of course, the same should hold for
the numerical approximations that are used to discretize them. To do so, the basic in-
gredients are twofold: (i) the original NS equations must be discretized preserving the
symmetries of the continuous differential operators and (ii) a normalized self-adjoint filter.

4.1 Symmetry-preserving discretization of NS equations

Preserving the symmetries of the continuous differential operators when discretizing
them has been shown to be a very suitable approach for DNS of incompressible flows1. In
short, the temporal evolution of the spatially discrete staggered velocity, uh, is governed
by the following finite-volume discretization of Eq.(8)

Ω
duh

dt
+ C (uh) uh + Duh − MT ph = 0h, (16)

where the discrete incompressibility constraint reads Muh = 0h. The diffusive matrix,
D, is symmetric and positive semi-definite; it represents the integral of the diffusive
flux −∇u · n/Re through the faces. The diagonal matrix, Ω, describes the sizes of the
control volumes and the approximate, convective flux is discretized as in1. The resulting
convective matrix, C(uh), is skew-symmetric, i.e. C(uh) + CT (uh) = 0. In a discrete
setting, the skew-symmetry of C(uh) implies that

C (uh) vh · wh = vh · CT (uh) wh = −vh · C (uh)wh, (17)

for any discrete velocity vectors uh (if Muh = 0h), vh and wh. Note that Eq.(17) is the
discrete analogue of Eq.(5). Then, the evolution of the discrete energy, ‖uh‖2 = uh ·Ωuh,
is governed by
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d

dt
‖uh‖2 = −uh ·

(
D + DT

)
uh < 0 (18)

where the convective and pressure gradient contributions cancels because of Eq.(17) and
incompressibility constraint Muh = 0h, respectively. Therefore, even for coarse grids,
the energy of the resolved scales of motion is convected in a stable manner: that is, the
discrete convective operator transports energy from a resolved scale of motion to other
resolved scales without dissipating any energy, as it should do from a physical point-of-
view. This forms a good starting point for LES-like simulations (see13, for instance). For
a detailed explanation, the reader is referred to1.

4.2 Discrete filtering

Filtering is usually done by means of an integral operator with a symmetrical con-
volution kernel. In a discrete setting, this results into a linear operator uh ≈ F̃ uh. To
constitute a suitable filter for our application, the following basic properties are required:

i) Symmetry, ΩF = (ΩF )T

ii) Normalization, i.e. constant velocity vector is unaffected, F1 = 1

iii) Given an incompressible velocity field uh, Muh = 0h; uh must be also divergence-free.

iv) Low-pass filtering, i.e. only high-frequency components must be effectively damped.

v) The damping effect of fn (ĝkc
, ĝp, ĝq) must be virtually independent of the interacting

pair (p, q = kc − p), that is Eq.(15) need to be satisfied.

The first three properties are required to ensure that all the symmetry and conservation
properties hold exactly5. However, in general, they are not satisfied by F̃ , therefore we
need to redefine our linear filter F as follows

F = S − diag (S1 − 1) with 2S = Ω−1
s

{
ΩF̃ + (ΩF̃ )T

}
. (19)

Then, the linear map uh 7→ uh defined by Eq.(19) possesses the basic properties (i) and
(ii). Then, regarding the point (iii), it must be noted that, in general, a incompressible
velocity field, uh (Muh = 0h), does not automatically imply that uh (u′

h = uh − uh also)
is also divergence-free. Although no ’real’ mass is lost in terms of the uh field, Muh 6= 0h

and Mu′
h 6= 0h have series implications: the skew-symmetry of the convective operator

(17) and consequently the conservation properties that follow from it would be lost. For
instance, because of this, the convection term would not be a pure redistributor of energy
any more; instead, it becomes an active source or sink of kinetic energy and therefore the
stability of the method is lost. This question has been addressed before for a Leray-α

8



F.X. Trias, A. Gorobets, R. Verstappen and A. Oliva

model in14. One possible solution to this problem could be to project the filtered velocity
onto a divergence-free space,

ũh = Fuh, (20)

uh = ũh + Ω−1MT qh with Muh = 0h. (21)

However, an additional Poisson equation, MΩ−1MT qh = Mũ, needs to be solved each
time-step. A computationally less demanding approach relies on explicitly forcing the
diagonal term of the discrete convective operators, C(uh), to be equal to zero,

[C(uh)]j,j = 0 ∀j. (22)

In this way, the skew-symmetry of the convective operator (17) is restored irrespective
whether the advective velocity is exactly divergence-free. Both approaches have been
tested in7. Since no significant differences have been observed, in the view of lower costs,
the second approach was chosen.

In conclusion, assuming that the property (iv) is also satisfied, meaning that F con-
stitutes a suitable filter for our application. However, modifications proposed in Eq.(19)
and (22) are artifacts that may change the dynamics of the system significantly. This
problem becomes especially relevant in the near-wall regions where the non-slip boundary
conditions may cause significant compressibility effects on the filtered velocity. Finally,
regarding the last property (v) it must be satisfied via the adjustment of the convolution
kernel of the linear filter. This is addressed in the following section.

5 CONSTRUCTING THE DISCRETE FILTER

As stated above, a list of properties are required to the linear filter, F , to be suitable
for our application. With this in mind, here we propose a novel family of discrete linear
filters that preserve the required properties (i)-(iv) by construction. Then, the exact form
follows from the last requirement (v), i.e. the damping effect f(ĝkc

, ĝp, ĝq) must be almost
independent of the interacting wavevectors, p and q = kc − p.

5.1 Playing with discrete diffusive operator, D

Here, we propose to construct symmetric linear filters with the general form

F = I +

M∑

m=1

dmD̃m with D̃ = Ω−1D, (23)

where the boundary conditions that supplement the NS equations (1) are applied to (23)
too. Then, the convolution kernel of the filter results

9



F.X. Trias, A. Gorobets, R. Verstappen and A. Oliva

Ĝk = 1 +
M∑

m=1

dmD̂m
k , (24)

where D̂k denotes the transfer function of discrete diffusive operator, D̃. In this way, all the
above-mentioned basic properties (i)-(iii) are automatically satisfied. Shortly, properties
(i) and (ii) follow from the symmetry D = DT and the fact that the unity vector lies on
the kernel of D, i.e. D1 = 0 (see1 for details). Recalling that ∆u = ∇(∇·u)−∇×(∇×u),
it follows that ∇ ·∆u = 0 if ∇ · u = 0 and therefore the property (iii) is also satisfied. In
a discrete sense, the latter holds only approximately. Hence, the modification given by
(22) is still required.

Furthermore, since they are only based on D and no additional operator is needed, the
method is: (i) easy-to-implement, (ii) boundary conditions are already prescribed in the
definition of D, (iii) the diffusive nature of the filter implies that any non-physical trans-
port between scales is introduced and (iv) from a parallel point-of-view the construction
of filters with large stencils (M > 1) is straightforward. Then, hereafter the only thing
that remains is to determine the values of the coefficients, dm, from the requirement that
properties (iv) and (v) must be also satisfied. Therefore the influence of the choice of the

filter Ĝk on the so-called bandwidth of fn has been further analyzed. We restrict ourselves
to the C4 approximation. Here, the analysis will be restricted to the case of 1D filters,
without the loss of generality.

5.2 Starting point: 3-point filter

When considering a discrete 3-point symmetric filter in physical space, the associated
transfer function is given by ĝk = c0 + 2c1cos(kh) where h is the grid width. Therefore,
the transfer function of the classical 3-point diffusive operator reads

D̂k = cos(kh) − 1. (25)

To simplify the analysis, hereafter we consider h = 1. Then, the 3-point filter (M = 1)

becomes Ĝk = (1 − d1) + d1cos(k) where the d1 is given by

d1 =
1

2
− Ĝπ

2
. (26)

Note that for h = 1 the smallest scale is π (see Figure 1, left). Since for C4, f(Ĝπ, Ĝp, Ĝq) =

Ĝπ(Ĝp + Ĝq) + ĜpĜq(1− 2Ĝπ) and p = π − q (see Eq. 11b), the damping function f3 for

the 3-point filter is bounded by f 3p
4 (Ĝπ, 0) and f 3p

4 (Ĝπ, π/2)

f 3p
4 (Ĝπ, 0) = −Ĝ2

π + 2Ĝπ, (27)

f 3p
4 (Ĝπ, π/2) = −1

2
Ĝ3

π +
1

4
Ĝ2

π + Ĝπ +
1

4
. (28)
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Figure 1: Left: transfer function, Ĝk, for the discrete 3-point filter. Right: bandwidth for f
3p
4

(Ĝπ, q) for
the discrete 3-point filter.

Figure 1 (right) shows the bandwidth of f 3p
4 (Ĝπ, q) for 0 ≤ Ĝπ ≤ 1. For 1/2 ≤ Ĝπ ≤ 1

it is small and therefore for these values of Ĝπ, f 3p
4 can be taken out of the summation

(14). However, for Ĝπ ≤ 1/2, the bandwidth of f 3p
4 increases, and the 3-point filter is no

longer satisfactory for taking outside the summation (14).
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4

(Ĝπ, q, d2,opt) (top) and f
7p
4

(Ĝπ, q, d2,opt) (bottom) for the discrete 5-point
and 7-point filter, respectively.

5.3 Minimizing the bandwidth of f4(Ĝπ, q)

Since for the 3-point filter, the coefficient d1 is given by the condition (26), the band-
width is fixed. However, additional degrees of freedom, i.e. d2, d3 ..., may be used to
minimize the bandwidth of f4. This criterion yields the following expressions for a 5- and
7-point discrete filters. The resulting expression for the 5-point filter (M = 2) is given by

d1,opt = − Ĝπ − 1

2Ĝπ + 1
d2,opt =

2Ĝ2
π − 3Ĝπ + 1

4
(
2Ĝπ + 1

) . (29)
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Then, taking d2 = d2,opt and d1 = d1,opt, f 5p
4 is again bounded by q = 0 and q = π/2.

Figure 2 (top) shows the bandwidth of f 5p
4 (Ĝπ, q, d2,opt). However, the bandwidth of f 5p

4

for small values of Ĝπ may not be small enough. To solve this, an additional degree of
freedom is required. Then, the following 7-point filter (M = 3) follows

d3,opt =
4

27

(
E(Ĝπ)

C(Ĝπ)
+

D(Ĝπ)

E(Ĝπ)
− 7

2

)(
Ĝπ − 1

)

d2,opt = 3d3,opt +
1

2

√
−2d2

3,opt − 4d3,optĜπ + 4d3,opt

d1,opt =
1

2

(
1 + 4d2,opt − 8d3,opt − Ĝπ

)






if 0 ≤ Ĝπ < 1/2 (30)

d1,opt = − Ĝπ − 1

2Ĝπ + 1
d2,opt =

2Ĝ2
π − 3Ĝπ + 1

4
(
2Ĝπ + 1

) if 1/2 ≤ Ĝπ ≤ 1 (31)

where C(Ĝπ) = 4Ĝ2
π−4Ĝπ +1, D(Ĝπ) = 4Ĝ2

π−196Ĝπ +1 and E(Ĝπ) = (C2(Ĝπ)(A(Ĝπ)+

12
√

6

√
ĜπB(Ĝπ)/C(Ĝπ)))1/3 with A(Ĝπ) = 4Ĝ2

π + 1004Ĝπ + 1 and B(Ĝπ) = 48Ĝ4
π +

4096Ĝ3
π + 4072Ĝ2

π + 1024Ĝπ + 3. Note that for Ĝπ ≤ 1/2 it becomes the 5-point filter

given by (29) with a smooth transition from f 5p
4 to f 7p

4 at Ĝπ = 1/2. Figure 2 (bottom)

shows the bandwidth of f 7p
4 (Ĝπ, q, d2,opt, d3,opt). Again, f 7p

4 is bounded by q = 0 and

q = π/2. Now, the bandwidth is small for the whole range 0 ≤ Ĝπ ≤ 1 and therefore f 7p
4

can always be taken out of the summation (14).

6 RESULTS FOR A TURBULENT DHC AT Ra = 1010

The performance of the C4-approximation has been tested for a turbulent differentially
heated cavity (DHC) by direct comparison with the DNS reference results15,16,17. The
coordinate system used here is: x1 for the periodic direction and x2 (horizontal) and
x3 (vertical) for the two wall-normal directions (see Figure 3, left). Ra is the Rayleigh
number based on the cavity height, (gβ∆TL3

3)/(να) and Pr = ν/α. To account for the
density variations, the Boussinesq approximation is used. Furthermore, if we consider
that the cavity is filled with air (Pr = 0.71), and that its height aspect ratio, L3/L2, is
equal to 4, then all that remains is to determine Ra, to fully define the problem. For
further details about this configuration the reader is referred to15,16,17

Averages over the three statistically invariant transformations (time, x1-direction and
central point symmetry around the center of the cavity) have been carried out. The
standard averaging notation, 〈·〉, is used here. Statistical values have been obtained for a
time interval corresponding to ≈ 500 time units of simulation. As initial test, two very
coarse meshes (see Table 1) have been used to solve the DHC-problem at Ra = 1010.

12
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Figure 3: Left: Differentially heated cavity schema. Right: DNS of an air-filled DHC at Ra = 1011 and
height aspect ratio 4. Several instantaneous temperature fields.
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Figure 4: Averaged vertical temperature profile at mid-width.

6.1 Mean fields

The corresponding vertical temperature profile at mid-width is displayed in Figure 4.
At first sight we can observe a significant improvement for the smoothed solutions. At
the top and bottom areas, where the flow is more turbulent, some discrepancies regarding
the reference solution are still observed for both meshes. The fairly good prediction at
the cavity core even for the coarsest mesh is especially relevant. Actually, an accurate
prediction of thermal stratification of this configuration is a challenge for turbulence
modeling. In Figure 5 (left), we can see that without smoothing (ǫ = 0), the thermal
stratification is clearly underpredicted, especially for the coarsest mesh.

Let us focus now on the vertical boundary layer. It remains laminar in its upstream
part up to the point where the Tollmien-Schlichting waves traveling downstream grow up
enough to disrupt the boundary layer (see Figure 3, right). Its high sensitivity to external
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Figure 5: Averaged temperature (left) and vertical velocity (right) profiles at the horizontal mid-height
plane.

disturbances makes it difficult to predict. The corresponding temperature and vertical
velocity profiles at the cavity mid-height plane, x3 = 0.5, are displayed in Figure 5. As
expected, we can observe a strong relation between 〈T 〉 and 〈u3〉: one cannot be predicted
well if the other is not. The solutions corresponding to ǫ = 0 (labeled ’No Model’) have a
the vertical boundary layer that is too thick, whereas with the C4-smoothing, results for
the two coarse meshes agree very well with the DNS reference solution.
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Figure 6: Local Nusselt number distribution.

6.2 Heat transfer

The total Nusselt numbers are shown in Table 1. The reference value Nu = 101.94 has
been obtained from our DNS simulation16,17 with ǫ = 0. We see that both C4 simulations,
RM1 and RM2 , predict fairly well the reference value. Moreover, in Figure 7, we observe
that the heat transfer is also well captured for all randomly generated meshes whereas
the solutions obtained without smoothing (ǫ = 0) are incomparably worse. Results of the
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distribution of Nusselt number in the hot wall are shown in Figure 6. A change in the
shape is observed at nearly x3 = 0.2 for the non-smoothed results, indicating a much too
early transition toward turbulence. In contrast, the C4 results are able to capture well
most of the profile except for the most upstream part where the heat transfer is slightly
underpredicted.

DNS RM1 RM2
Mesh 128×190×462 16 × 34 × 80 8 × 17 × 40

No model C4 No model C4

Nu 101.94 121.93 100.81 128.14 102.17
Numax 454.86 437.78 451.12 342.02 459.59
Numin 8.50 10.92 10.18 27.77 7.03

Table 1: The overall, the maximum and the minimum of the averaged Nusselt number.

In Table 1, the maximum and the minimum values of the local Nusselt number are also
shown. These two quantities are of interest because they occur in two clearly different
parts of the vertical boundary layers. Maximum values occur in the upstream part of the
boundary layer where it is still almost laminar whereas minimum values are observed at
the most downstream part of the boundary layer where it has become fully turbulent. For
both coarse grids, the significant improvements are achieved for the smoothed solutions.

6.3 Grid (in)dependence analysis

A reliable modeling of turbulence at (very) coarse grids is a great challenge. The
coarser the grid, more convincing model quality is perceived. However, it might happen
that the solution is strongly dependent on meshing parameters and thus some particular
combinations could ’accidentally’ provide good results. An example of this behavior has
been observed in18 for a turbulent channel flow. In order to elucidate this point, the
same DHC problem has been solved on a series of 50 randomly generated meshes: with
(N1, N2, N3)-values limited by those given by meshes RM1 and RM2 (see Table 1), i.e.,
8 ≤ N1 ≤ 16, 17 ≤ N2 ≤ 34, and 40 ≤ N3 ≤ 80. The concentration parameters are
kept equal to those used for the DNS simulation15. Note than some of the numerical
experiments displayed in Figure 7 correspond to highly skewed grids. Results for the
overall Nusselt and the centerline stratification values are displayed in Figure 7 (left). At
first sight, we can observe that the C4 modeling predicts results well irrespective of the
meshing whereas very poor and dispersed results are obtained when the model is switched
off. The fairly good prediction of the stratification (note the dispersion obtained without
model!!) is especially important. Results for the maximum vertical velocity and the wall
shear stress scaled at the horizontal mid-height plane, x3 = 0.5, display essentially the
same (see Figure 7, right).
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Figure 7: Left: the overall Nusselt number and the centerline stratification. Right: the maximum vertical
velocity and the wall shear stress scaled by Ra−1/4 at the horizontal mid-height plane. Results have been
obtained for 50 randomly generated grids.

7 PERFORMANCE AT HIGHER (AND LOWER) RAYLEIGH NUMBERS

The performance of the C4-regularization has also been tested at higher (and lower)
Ra. This study covers a relatively wide range, 6.4× 108 ≤ Ra ≤ 1011, from weak to fully
developed turbulence. Within this range DNS results for five different configurations (at
Ra = 6.4 × 108, 2 × 109, 1010, 3 × 1010 and 1011, respectively) are available16,17. The
meshes used to carry out these simulations have been generated keeping the same number
of points in the boundary layer as in the coarse mesh RM1 for Ra = 1010. In this way, the
meshes2 for Ra = 3× 1010 and 1011 become 10× 19× 46 with γ2 = 2.26 and 12× 26× 62
with γ2 = 2.28, respectively.
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Figure 8: Averaged temperature (left) and vertical velocity (right) profiles at the horizontal mid-height
plane at Ra = 1011.

2Note that the grid stretching near the vertical walls has also been slightly increased with the Ra.
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7.1 Boundary layer

For the sake of brevity, in this section we focus only on the highest Ra, i.e. 1011. In
Figure 8, the temperature and the vertical velocity profiles at the horizontal mid-height
plane, x3 = 0.5, are displayed. Again, the C4 method and non-smoothed results (ǫ = 0)
obtained using a mesh that it is twice finer in each direction are compared with DNS
data. All plots depict essentially the same: the C4 method is able to capture well the flow
structure of the vertical boundary layer even for the coarsest meshes whereas the results
of the non-smoothed simulations differ largely from the reference solution.

7.2 Heat transfer

The heat flux as a function of Rayleigh number is investigated in this section. In the
last decades significant efforts, both numerical and experimentally, have been directed at
investigating the mechanisms and detailed scaling behavior on turbulent Rayleigh-Bénard
(RB) problems. Classical theory predicts that Nu ∼ Raξ with ξ = 1/3. Alternative scal-
ing theories, encouraged by experimental observations, lead to ξ = 2/719. Finally, an
asymptotic regime, the so-called Kraichnan regime, with ξ = 1/2 is presumed to exist
at very high Ra. Experimentally, power-law dependencies of heat flux with exponents
between 1/4 and 1/3 have been measured20. Regarding the Kraichnan regime, and de-
spite the great efforts devoted, no clear evidence has been observed yet21. On the other
hand, there is still controversy whether a simple power-law Nu ∼ Raξ is adequate20.
Comparatively, the DHC problem has received much less attention from the scientific
community. Nevertheless, both configurations share similar heat transfer scaling22 and
most of the ideas applied to RB configuration can be easily applied to the DHC problem.
In17 we found that Nu ≈ 0.182Ra0.275 was the power-law scaling that fitted best our DNS
results. Actually, this exponent cannot be considered ’near’ 1/3; rather, it is closer to the
2/7 ≈ 0.286 proposed by alternatives theories of turbulent natural convection flows19.
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Figure 9: Overall Nusselt number for 6.4 × 108 ≤ Ra ≤ 1011 (left) and for Ra up to 1017 (right).
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7.2.1 Comparison with DNS results

Results for the overall Nusselt number corresponding to 56 simulations within the whole
range of Rayleigh numbers studied by DNS, i.e., 6.4 × 108 ≤ Ra ≤ 1011, are displayed
in Figure 9 (left). At first sight, we observe again a fairly good agreement with the DNS
results (solid dots) and the correlation obtained from the DNS data. It must be noted
that the Nu-Ra dependence obtained with the C4 is smooth suggesting again that the
proposed model is performing well ’independently’ of Ra and meshing parameters that
may suddenly change for two consecutive points in the graph.

7.2.2 Nu-number correlation with Ra up to 1017

Since performing computations with the C4 approximation is rather cheap simulations
at very high Ra have also been performed. Following the aforesaid criteria to keep the
number of point at the vertical boundary layer constant leads to a 68 × 142 × 334 mesh
with γ2 = 3.48 for Ra = 1017. Of course, for the range 1011 < Ra ≤ 1017 there is no DNS
(or experimental) data to compare with. Anyhow, it is interesting to see that results
displayed in Figure 9 (right) show a good agreement with a 2/7 power-law scaling of
Nusselt (Nu increases approximately from 102 to 104, that is 2 orders of magnitude, when
Ra is increased 7 orders, from 1010 to 1017). This scaling law, predicted by alternatives
theories19 of turbulent natural convection, has also been experimentally measured for RB
configurations21.

8 CONCLUDING REMARKS

The C4-regularization of the nonlinear convective term has been considered as a sim-
ulation shortcut. The symmetries and conservation properties of the original convective
term are exactly preserved. Doing so, the production of smaller and smaller scales of
motion is restrained in an unconditionally stable manner. The numerical algorithm to
solve the governing equations is also fully-conservative and is therefore well-suited to test
the proposed simulation method. Here, a novel family of discrete linear filters have been
proposed. They are based on polynomial functions of the discrete Laplacian operator. In
this way, all the required properties are automatically satisfied.

An air-filled DHC with height aspect ratio 4 has been used as test case for the C4-
regularization method together with the new family of filters. This is a challenging con-
figuration for turbulence modeling since areas with completely different regimes coexist
and interplay. Direct comparison with DNS reference results within a relatively wide
range of Rayleigh numbers, 6.4 × 108 ≤ Ra ≤ 1011, has shown that the method is able
to capture the general pattern of the flow correctly even for very coarse meshes. The
robustness of the method has been tested by performing simulations for a series of ran-
domly generated grids. Even for highly skewed grids, all the results obtained with the
C4 method were clustered around the DNS reference solution. Finally, to study the heat
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transfer scaling, simulations at higher Ra up to 1017 have also been computed. A fairly
good agreement with a 2/7 power-law scaling of Nusselt has been measured for the whole
range, i.e.1011 ≤ Ra ≤ 1017. This scaling law, also predicted by alternatives theories of
turbulent natural convection, has also been experimentally measured for RB configura-
tions.

We can conclude that these results illustrate the great potential of the C4 smoothing
method as a simulation shortcut. Nevertheless, more simulations for a wide variety of
cases and meshes will be necessary to confirm these preliminary conclusions.
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wall-bounded flows, Physics of Fluids 18 (1) (2006) 018103.

[15] F. X. Trias, M. Soria, A. Oliva, C. D. Pérez-Segarra, Direct numerical simulations of two-
and three-dimensional turbulent natural convection flows in a differentially heated cavity
of aspect ratio 4, Journal of Fluid Mechanics 586 (2007) 259–293.

[16] F. X. Trias, A. Gorobets, M. Soria, A. Oliva, Direct numerical simulation of a differentially
heated cavity of aspect ratio 4 with Ra-number up to 1011 - Part I: Numerical methods and
time-averaged flow, International Journal of Heat and Mass Transfer 53 (2010) 665–673.

[17] F. X. Trias, A. Gorobets, M. Soria, A. Oliva, Direct numerical simulation of a differentially
heated cavity of aspect ratio 4 with Ra-number up to 1011 - Part II: Heat transfer and flow
dynamics, International Journal of Heat and Mass Transfer 53 (2010) 674–683.

[18] J. Meyers, P. Sagaut, Is plane-channel flow a friendly case for the testing of large-eddy
simulation subgrid-scale models?, Physics of Fluids 19 (2007) 048105.

[19] B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff, A. Libchaber, S. Thomae, X. Wu,
S. Zaleski, G. Zanetti, Scaling of hard thermal turbulence in Rayleigh-Bénard convection,
Journal of Fluid Mechanics 204 (1) (1989) 1–30.

[20] S. Grossmann, D. Lohse, Scaling in thermal convection: a unifying theory, Journal of Fluid
Mechanics 407 (2000) 27–56.

[21] J. Sommeria, The elusive ’ultimate state’ of thermal convection, Nature 398 (1999) 294–295.

[22] H. Yu, N. Li, R. E. Ecke, Scaling in laminar natural convection in laterally heated cavities:
Is turbulence essential in the classical scaling of heat transfer?, Physical Review E 76 (2007)
026303.

20


	INTRODUCTION
	RESTRAINING THE PRODUCTION OF SMALL SCALES:  Cn-REGULARIZATION
	Regularization modeling
	Symmetry-preserving regularization models
	Triadic interactions
	Stopping the vortex-stretching mechanism

	MATHEMATICAL BASIS
	PLAYING WITH DISCRETE OPERATORS
	Symmetry-preserving discretization of NS equations
	Discrete filtering

	CONSTRUCTING THE DISCRETE FILTER
	Playing with discrete diffusive operator, D
	Starting point: 3-point filter
	Minimizing the bandwidth of f4 ( "0362G,q)

	RESULTS FOR A TURBULENT DHC AT Ra = 1010
	Mean fields
	Heat transfer
	Grid (in)dependence analysis

	PERFORMANCE AT HIGHER (AND LOWER) RAYLEIGH NUMBERS
	Boundary layer
	Heat transfer
	Comparison with DNS results
	Nu-number correlation with Ra up to 1017


	CONCLUDING REMARKS

