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Abstract. A simulation of harmonically oscillating wing was performed using a 

Boundary Element Method computer program and the corresponding fluid forces 

generated by its motion were analysed. A symmetric 4-digit NACA airfoil was used and 

its maximum thickness was varied in order to assess the effect of changing the foil shape 

on the generated trust. It was found that with the increase of the thickness, the thrust 

coefficient per unit of mass CFx / mw decreases in magnitude. This result indicates that if 

the wing mass mw for this particular airfoil is fixed, its thickness has to be as small as 

possible in order to maximise the generated thrust. The other important finding is the 

dependence on the motion frequency (indicated by the Strouhal number St). If the foil 

thickness is fixed and St increases, CFx / mw increases in magnitude too, as reported in 

the literature for the investigated range of Strouhal number. However, as the foil 

thickness becomes larger, the motion frequency effect on the generated thrust appears 

to become less relevant, i.e. the thrust range for a slender foil is larger than that of a 

thicker one over the same motion frequency range. 
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1 INTRODUCTION 

The observation of the swimming and flying capabilities of fish and birds started the 

idea of using oscillating wings as propulsors, e.g. to replace propellers. Related 

technology applications are being investigated worldwide and a number of theoretical 

and experimental studies were published over the past decades: the review papers of 

Rozhdestvensky and Ryzhov [1] and Triantafyllou et al. [2] can introduce the reader to 

such an active field of research. Moreover, they show that there is yet a lot more to be 

learned about flapping flight. 

The numerical work presented here focuses then on an issue that has not been 

investigated, the influence of the foil shape on the forces generated by oscillating wing. 

The unsteady forces are calculated by using a panel method developed by the authors 

[3,4]. Its main feature is a novel formulation of the unsteady Kutta condition: a finite 

pressure difference is postulated at the trailing edge of the moving wing to account for 

the shedding of trailing-edge vortices and resulting thrust-producing jet [5]. 

Comparisons with published experimental data showed good agreement with the 

computational results [3,4]. Wind-tunnel experiments were also performed to validate 

the developed code and test heaving wing propulsion modes [6,7]. 

The paper is organised as follows: the used unsteady Boundary Element Method is 

detailed in the next section. The computational results are then presented and the 

influence of the foil thickness on the generated thrust is finally discussed. 

2 NUMERICAL MODEL 

A 4-digit NACA symmetric foil [8] of chord c is moving forward at a steady velocity 

Q∞ and oscillating harmonically with a heaving motion z, perpendicular to Q∞, and with 

a pitch motion γ. Both harmonic motions are defined by sinusoids and their phase angle 

is set to 90 deg. A relevant parameter of such oscillations is the Strouhal number St. It 

can be seen as a measure of the motion unsteadiness and is mathematically expressed by 

the oscillation frequency f (in Hz) multiplied by the width of the wake (assumed equal 

to two times the heave amplitude z0) and divided by the mean flow velocity, i.e. ∞∞ 2
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where the frequency of oscillation ω is in rad/s. 

The most significant kinematic parameters used in the study are c=0.1 m, pitch axis 

position from the foil leading edge xpitch=c/3, Q∞=0.4 m/s, z0=3c/4 and maximum angle 

of attack αmax=15 deg. Figure 1 displays a foil cycle in the inertia frame of reference (x, 

z) for St=0.3 (pitch amplitude γ0=28.3 deg and f=0.8 Hz). The foil is a NACA 0012 with 

a maximum thickness to chord ratio of 0.12. The instantaneous angle of attack is not 

explicitly related to the initial conditions and the pitch amplitude is determined by the 

choice of αmax [3]. 

The presented model follows the well-established approach of Katz and Plotkin [9], 

the flow is assumed incompressible and irrotational and the foil is represented by a 

finite number N of linear panels. Constant strength distributions of source σ and doublet 

µ are situated on each panel’s collocation point. The flow potential function φ* at each 

collocation point is defined as the sum of a local (perturbation) potential φ, related to the 

unknown doublet strength µ, and a free-stream potential φ∞, linked to the known fluid 

kinematic velocity. An internal Dirichlet boundary condition is imposed in order to 

meet the non-penetration condition. At each foil collocation point the source strength is 

known, σ=qk n, where n is a unit vector normal to the foil surface pointing into the foil 

and qk the fluid kinematic velocity due to the imposed motion of the foil. The governing 
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integral equation is derived by using the Laplace’s equation and Green’s third identity. 

In the body-fixed coordinate system, at time t and for each foil collocation point it can 

be written as 

∫∫ 0
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where S and Sw indicate the foil and wake surface, respectively, and µw is the strength of 

the wake doublet distribution. To define uniquely the problem µw has to be known or 

related to the unknown doublets on S by the means of a suitable condition, i.e. the Kutta 

condition. Besides, Sw changes with time, that is, new portions of the wake surface are 

added as time advances. Hence the wake shape has to be properly modelled. This can be 

seen as an additional assumption to in effect represent initial conditions for the dynamic 

problem. 
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Figure 1: Foil harmonic cycle in the inertia coordinate system for St=0.3. 

The discretized form of Equation (2) is 

0∑∑∑
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where Bj and Cj are the appropriate two-dimensional source and doublet influence 

coefficients of panel j at the considered collocation point, respectively: they only 

depend on the foil geometry [3]. The wake influence coefficient Cwl is defined as Cj, i.e. 

it is just a function of the foil and wake geometries. M indicates the number of linear 

wake panels at time t (e.g. at the first time step M is equal to 1). At each time step a new 

wake panel is added and its contribution evaluated. The wake panels are not linked 

between them, that is, the wake is not continuous and is modelled as discrete doublet 

panels of constant strength µw and assigned length lw. Besides, the unknowns are N+1 

since at time t the doublet strengths of the previously shed wake panels are already 

derived. The wake panels’ positions must also be modelled. Following [4] it was 

assumed that the wake panels remain where shed in the inertia coordinate system, i.e. 

the wake follows the foil path (see Figure 1). The body-fixed position of the wake panel 
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closest to the trailing edge, the one added at each time step, is always set parallel to the 

chord. The panel’s length was set proportional to the time step length times the steady 

fluid velocity [9]. 

The trailing-edge condition, necessary to obtain a unique solution, was derived from 

the unsteady Bernoulli equation, the conservation of momentum equation for 

incompressible fluid and irrotational flow. It implies that the second derivative of every 

involved function, such as the fluid velocity and pressure, exists and is continuous (C
2
 

space). This is not the case everywhere in the considered domain as the airfoil is a C
0
 

profile with a singularity at the trailing edge. 

Following Cebeci et al. [10] the unsteady Bernoulli equation can be written for a 

generic point on the foil as 
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 φ 
 ρ + q ρ   +p = q ρ  + p
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where p∞ is the fluid pressure far from the oscillating foil, p the pressure, q the velocity, 

qk the kinematic velocity due to the motion of the foil and φ* the potential function. The 

fluid velocity is the sum of qk and the perturbation velocity, which is estimated by the 

means of the spatial derivative of the perturbation potential φ over the foil. Besides, ρ is 

the fluid density, which is assumed constant and uniform. In the vicinity of the trailing 

edge the unsteady Bernoulli equation can be written as 

t

 φ 
 ρ + )q - (q ρ   +p  =  

t

 φ 
 ρ + )q -(q ρ  + p

*

u
u kuu

*

l
l kll

 ∂
∂

2

1

 ∂
∂

2

1 2222 ,  (5) 

where the subscripts l and u indicate the collocation points of the lower and upper 

panels that meet at the trailing edge, respectively. It is important to underline that, as the 

trailing edge is the domain singularity point, the velocity and pressure can there assume 

more than one value, that is, a pressure difference can there exist. Equation (5) shows 

also that the unsteady Bernoulli equation alone is not sufficient to obtain the solution: it 

is necessary to specify relevant boundary conditions, e.g. the values of velocity or 

pressure. 

It was postulated that the pressure difference at the trailing edge could be finite rather 

than zero [3-5]. This assumption implies that the energy supplied for the wing motion 

would generate time-dependant trailing-edge vortices. Their overall effect, which 

depends on the motion initial parameters, would be a jet of fluid that propels the wing. 

As the kinetic energy is transferred from the jet back to the wing, the vortical structures 

would disappear. The postulated pressure difference at the trailing edge is then 

fundamental for such a model as it can justify the velocity difference that generates the 

thrust-producing jet. 

The devised code assumes incompressible fluid and irrotational flow and evaluates 

the global potential function φ* at each time step. These form the sufficient condition to 

calculate the velocity distribution over the foil in the body-fixed coordinate system, the 

one moving together with the foil, by estimating the spatial derivative of the potential 

function over the foil. The subsequent calculation of the pressure coefficient is followed 

by the evaluation of the centre of pressure acceleration in the inertia frame of reference. 

The latter is used for the force coefficients calculations. A time-averaged force (as 

detailed below) is obtained before computing the coefficients: a 0.6 m wing span s and a 

300 kg/m
3
 wing average density were used (the wing was assumed rectangular). The 

fluid density ρ was set to 1000 kg/m
3
 and its dynamic viscosity to 0.001 Pa s (i.e. 

water). The Reynolds number resulted then equal to 40,000 for c=0.1 m. 

Following Cebeci et al. [10] the pressure coefficient Cp at each foil collocation point 

and time step is defined as 
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Every pressure coefficient is multiplied by the respective panel length. The x and z 

body-fixed components of the non-dimensional forces are then calculated to obtain the 

non-dimensional body-fixed thrust and lift. Such a system of pressure forces acting on 

the foil can be represented by an equivalent single point force applied at the centre of 

pressure, which is defined as the point where the total moment is zero. Once the time-

dependent position of the centre of pressure is evaluated the time-averaged forces in the 

x and z directions of the inertia coordinate system can be calculated as 

xrefwx a a m  =  F   (7) 

and 

zrefwz a a m  =  F ,  (8) 

where mw is the wing mass, ax and az are the time-averaged non-dimensional centre of 

pressure accelerations in the inertia frame of reference and aref a reference acceleration. 

The force coefficients in the x and z directions of the inertia coordinate system, 

which are also called the thrust and lift coefficients, respectively, are defined as 

2
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The thrust coefficient CFx is negative, if there is thrust, and the lift coefficient CFz is 

positive, if there is lift. 

3 RESULTS AND DISCUSSION 

The 4-digit NACA foil was geometrically approximated by 200 linear panels N. Two 

hundred time steps were used for each calculation, that is, five complete oscillations and 

forty time steps Nt for each foil cycle. The time step length ∆t is defined as the time 

length of one harmonic cycle tcycle divided by Nt. The wake panels’ length lw was set 

proportional to the time step length, i.e. lw=0.75 ∆t Q∞ [3,5,9]. 

In Figure 2 the instantaneous inertia forces generated by the oscillating foil are 

plotted as a function of non-dimensional time (t/tcycle=1 at the end of the first oscillation) 

for a sample case: the foil maximum thickness t is again equal to 0.12c, i.e. the foil is a 

NACA 0012 (the other relevant kinematic parameters are as discussed above). 

The force in the x direction of the inertia coordinate system is always negative, i.e. 

thrust is always present, as expected for a potential model. The time-averaged lift is 

zero, as the harmonic motion is symmetric with respect to the x axis. It should also be 

noted that the thrust frequency is twice that of the lift. 

Figure 3 displays the pressure coefficient over the foil as a function of the collocation 

point position in the chord-wise direction of the body-fixed frame of reference, at the 

last time step of the harmonic motion (the angle of attack is maximum), for the same 

case as in Figure 2. It can be seen that a finite pressure difference exists at the trailing 

edge of the oscillating foil, as expected. This overview shows that the obtained general 

results are physically sound and reliable [3-5,11-14]. 
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Figure 2: Instantaneous forces in the x and z directions of the inertia coordinate system (the thrust Fx and 

lift Fz, respectively) as a function of non-dimensional time for St=0.3 and t=0.12c. 
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Figure 3: Pressure coefficients at the last time step as a function of the collocation point position in the 

body-fixed coordinate system for St=0.3 and t=0.12c. 

In order to analyse the influence of the foil shape on the generated thrust it was 

decided to vary its maximum thickness t while preserving the foil geometry 

classification. The thickness is maximal at one third of the chord for a 4-digit NACA 

foil. Foils with different maximum thickness in the body fixed frame of reference are 

plotted in Figure 4 to visualise their different shapes. 
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Figure 4: 4-digit NACA airfoils. 

Table 1 lists the thrust coefficient as a function of the foil maximum thickness. As t 

increases, CFx increases in magnitude. However, the result is not consistent with the 

observations of natural flyers and swimmers because it does not take properly into 

account the foil shape. In other words, as the wing mass largely varies with t (see the 

second column of Table 1), the thrust coefficients as defined by Equation (9) can not be 

used to compare the performance of such different propulsors. 

 

CFx 
t / c mw [kg] 

St=0.2 St=0.3 St=0.4 

0.01 0.012 -0.201 -0.403 -0.694 

0.03 0.037 -0.244 -0.453 -0.756 

0.06 0.074 -0.281 -0.493 -0.803 

0.09 0.111 -0.305 -0.517 -0.827 

0.12 0.148 -0.326 -0.537 -0.846 

0.15 0.185 -0.346 -0.557 -0.865 

0.20 0.246 -0.380 -0.592 -0.883 

0.25 0.308 -0.415 -0.630 -0.916 

0.30 0.370 -0.451 -0.665 -0.950 

0.40 0.493 -0.519 -0.727 -1.012 

Table 1: Thrust coefficient as a function of the foil maximum thickness and wing mass for three different 

values of the Strouhal number. 
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The ratio CFx / mw as a function of the maximum thickness (see Figure 5) provides a 

better comparison. As t increases, the thrust coefficient per unit of mass decreases in 

magnitude, that is, if the wing mass is fixed, its thickness has to be as small as possible 

in order to maximise the generated thrust. This result agrees more closely with the 

structure of birds wings and fish fins. 
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Figure 5: Thrust coefficient per unit of wing mass as a function of the foil thickness for three different 

values of the Strouhal number. 

The influence of the Strouhal number on the generated thrust was also investigated 

(Table 1 and Figure 5). If the foil thickness is fixed and St increases, CFx / mw increases 

in magnitude. This is supported by results already reported in the literature for the 

investigated range of Strouhal number (e.g. see [1]). Besides, as the foil thickness 

becomes larger, the motion frequency effect on the generated thrust appears to be less 

relevant, that is, the thrust range for a slender foil is larger than that of a thicker one 

over the same St range. This again points in the direction of slender wings being more 

effective for propulsion purposes. However, it is important to point out that other 

parameters influence the forces generated by such propulsors. For example, the added 

mass has a relevant effect on accelerated motions in water [14-16] and the structural 

behaviour of the moving wing should also be accounted for when the design of flapping 

wing is addressed [6,7,14,17]. 

4 CONCLUSIONS 

The computational results presented here show that the foil shape has a noticeable 

influence on the thrust generated by oscillating wings. To allow a meaningful 

comparison between different foil shapes the thrust coefficients were normalised using 

the respective wing masses. Slender wings produce the largest thrust coefficients per 

unit of mass. Besides, as the foil thickness increases, the motion frequency effect on the 

generated thrust becomes less relevant, that is, the thrust range for a slender foil is larger 

than that of a thicker one over the same Strouhal number range. The result agrees with 
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the observation of natural flyers and swimmers. However, other features of flapping 

flight, such as the fluid-structure interaction and the added mass effect, are deemed to be 

significant for a more precise calculation of the generated time-dependent forces. For 

example, the added mass effect appears to be especially important for bodies 

accelerating in water as the magnitude and time behaviour of the generated forces 

largely change, if such an affect is taken into account [15,16]. This is currently being 

investigated in the case of flapping flight and, once the study is completed, the relevant 

numerical results will be submitted for publication. 
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