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Abstract. In the talk, we discuss a posteriori error estimates for elliptic and parabolic
viscous flow problems and give an overview of the results obtained in this field with the
help of a new (functional) approach that was earlier applied to many problems in math-
ematical physics. This method provides guaranteed and computable error bounds that do
not involve mesh dependent constants and are valid for any approximation from the en-
ergy space. Functional a posteriori error estimates has been derived on purely functional
grounds with the help of the techniques that are close to those used in the analysis of ex-
istence and regularity of boundary value problems. They do not attract specific properties
of approximations or method used (such as, e.g., Galerkin orthogonality, higher regu-
larity, superconvergence effects) . Problems considered in rotating frame (which involve
additional terms generated by Coriolis force) are especially interesting in atmosphere and
ocean models. We present forms of a posteriori estimates derived for such type (elliptic
and parabolic) problems that give guaranteed upper bounds for the energy norm of the er-
ror and also provide reliable error indicators. Computational properties of the estimates
are demonstrated by a number of numerical examples.
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1 INTRODUCTION

In the talk we give an overview of new a posteriori error estimation methods that in the
last decade were developed for mathematical models in fluid mechanics. These estimates

• contain no mesh–dependent constants;

• valid for any conforming approximation;

• provide computable and guaranteed bounds of approximation errors.

They provide fully reliable verification of approximate solutions obtained by various nu-
merical methods and can be efficiently used in scientific and engineering computations.

First estimates of such a type were obtained by a variational technique1,2,3. Later, a
different derivation based upon the analysis of integral identities has been developed4,5.

2 Stokes problem

This classical model in the theory of viscous incompressible is represented by the rela-
tions

ut − ν∆u = f −∇p in Ω, (1)

divu = 0, (2)

u(x, 0) = û(x), (3)

u = u0 on ∂Ω, (4)

where u is the velocity field, p is the pressure function, ν > 0 is the viscosity parameter,
and û(x) and u0 are solenoidal functions that define the initial and boundary conditions,
respectively.

2.1 Stationary Stokes problem

In the stationary case, the problem is to find u(x) and p(x) such that

− ν∆u = f −∇p in Ω, (5)

divu = 0, (6)

u = u0 on ∂Ω. (7)

Henceforth, we assume that

f ∈ L2(Ω,Rn) and u0 ∈
◦
J(Ω),

where
◦
J(Ω) denotes the closure of smooth solenoidal functions with compact supports in

Ω with respect to the norm of H1(Ω,Rd). We denote H1(Ω,Rd) by V and define V0 as
the subspace of V containing the functions with zero traces on ∂Ω (for problems with
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mixed boundary conditions V0 contains functions vanishing on the Dirichlét part of the
boundary). We recall that the (Friedrichs) inequality

‖w‖ ≤ CFΩ‖∇w‖ (8)

holds for w ∈ V0. The set
◦
J(Ω) + u0 consists of functions w + u0, where w ∈

◦
J(Ω). The

space of square summable functions with zero mean is denoted by L0.

A generalized solution u ∈
◦
J(Ω) + u0 of (5)–(7) is defined by the integral relations∫

Ω

ν∇u : ∇w dx =
∫
Ω

f · w dx, ∀w ∈
◦
J(Ω). (9)

or ∫
Ω

ν∇u : ∇w dx =
∫
Ω

(f · w + pdivw) dx, w ∈ V0. (10)

It was shown4,5 that the above integral relations imply the estimate

ν‖∇(u− v)‖ ≤ ‖τ + qI− ν∇v‖+ CFΩ‖Divτ+f‖, (11)

where v is an arbitrary solenoidal function satisfying the boundary conditions. It should
be noted that the right hand side does not involve unknown functions and it is directly
computable.

If q ∈ H1(Ω), then a somewhat different form of the estimate follows by changing τ to
η, where

τ = η − qI, (12)

which gives

ν‖∇(u− v)‖ ≤ ‖η − ν∇v‖+ CFΩ‖Divη+f−∇q‖. (13)

Estimates (11) and (13) have a clear meaning. Estimate (11) shows that the upper bound
of the error can be represented as the sum of two parts related to the decomposition of
the Stokes system as

σ = −pI + ν∇u,
−Divσ = f.

Its right-hand side vanishes if and only the above relations are exactly satisfied. Since v is
a solenoidal field satisfying the boundary condition, the right-hand side of the majorant
is zero if and only if v = u. Similarly, (13) shows that the upper bound of the error can
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be represented as the sum of two parts related to the decomposition of the Stokes system
as

σ̄ = ν∇u, −Divσ̄ = f −∇p.

If v belongs to a wider class which includes H1 functions satisfying the boundary condi-
tions, then getting an upper bound of the distance to u exploits the following result.
Lemma. Let Ω be a bounded domain with Lipschitz continuous boundary. Then, for
any function f ∈ L0 one can find a function wf ∈ V0 such that divwf = f and

‖∇wf‖ ≤ cΩ‖f‖, (14)

where cΩ is a positive constant dependent only on Ω.
For n = 2 it was proved by Babuska and A. K. Aziz and in the general case by O.

Ladyzhenskaya and V. Solonnikov.
For nonsolenoidal approximations, we have the estimate

ν‖∇(u−v̂)‖≤ ‖τ+qI−ν∇v̂‖+ CFΩ‖Divτ+f‖+ 2νcΩ‖divv̂‖, (15)

where τ ∈ H(Ω,Div) and q ∈ L0 (which means that the function has zero mean).
Estimates of ‖p− q‖ can also be derived with the help of Lemma. The main idea is as

follows. Since (p− q) ∈ L0, we know that

divw̃ = p− q and ‖∇w̃‖ ≤ cΩ‖p− q‖

for a certain vector-valued function w̃ ∈ V0. Hence,

‖p− q‖2 =
∫

Ω
divw̃(p− q) dx.

Similar estimates can be derived for the generalized Stokes problem6, models with
nonlinear viscosity4,7,

µu− ν∆u = f −∇p in Ω, (16)

divu = 0 in Ω. (17)

and for the evolutionary problem (1)–(4)8.

3 Oseen problem

Oseen problem is considered as a linearization of the Navier–Stokes system

−Div(ν∇u) + Div(u⊗ u) = f −∇p, (18)

divu = 0, (19)

u = u0 on ∂Ω. (20)
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where Ω is a connected bounded domain with Lipschitz boundary ∂Ω, ν > 0 is the
viscosity parameter, u0 is given vector–valued functions such that divu0 = 0, u ⊗ w is
the tensor with components {u⊗ w}ij := uiwj. In the Oseen formulation, the convective
term is replaced by div(a⊗ u), where a is a given solenoidal vector–valued function.

For this problem, the estimate analogous to (15) has been obtained4,5.

ν‖∇(u− v̂)‖ ≤ ‖τ + qI + a⊗ v − ν∇v̂‖+ CνΩ‖f + Divτ‖+ cΩ‖divv̂‖, (21)

where cΩ depends on cΩ, CνΩ, ‖a‖, and ν.

4 Viscous flow problems in rotating coordinate system

In certain models, the Navier-Stokes problem is considered in a rotating coordinate
system. Then, additional terms arise in the equation of motion, which has the form

∂tu+div(u× u)+2ω × v+ω × (ω × r)−Divσ = f, (22)

σ = −pI + νε(u), (23)

divu = 0, (24)

u = u0 on ∂Ω. (25)

In (22), the term 2ω × v is due to the Coriolis force and the term ω × (ω × r) is related
to the centrifugal force (the latter term is usually appended to the source function and
disappears from the equation). The vector ω is oriented along the axis x3, and its value
depends on the rotation velocity. Mathematical properties of such models were studied
by a number of authors9.

A linearized version of (22)–(25) can be viewed as a certain generalization of the Stokes
problem. It is defined by the relations

−Divσ + µu+ ω × u = f, (26)

σ = −pI + νε(u), (27)

divu = 0, (28)

u = u0 on ∂Ω. (29)

This system of equations arises if the problem is solved by semi–discrete approximations
(then µ > 0 comes from an approximation of the term ∂tu).

A generalized solution of the problem (26)–(29) is defined by the integral relation∫
Ω

(ν∇u : ∇w + µu · w + (ω × u) · w)dx =
∫
Ω

f · wdx,

which holds for any w ∈
◦
J (Ω). As in the models considered before, this integral relation

generates an estimate of the difference between u and any v ∈
◦
J +u0.
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Let τ ∈ HDiv, q ∈ L0, and define

r(v, τ) := f − µv − ω × v + Divτ,

d(v, τ, q) := τ + qI− ν∇v.

We obtain the estimate10 in terms of the weighted norm

‖u− v‖2
νµ ≤

(
‖ 1√

ν
d(v, τ, q)‖+ CνΩ‖(1− α)r(v, τ)‖

)2

+ ‖ α√
µ

r(v, τ)‖2, (30)

which is valid for any α ∈ [0, 1]. Estimates for nonsolenoidal velocity fields and for
approximations of the pressure function can be also derived10.

5 Computational applications

From the computational point of view the estimates has been studied in 11,12,13. Below
we represent one example associated with a flow throughout a rotating cylinder (Fig. 1)
On the next picture (Fig. 2), we depict errors computed by comparing with a referenced

Figure 1: Test problem

solution (constructed on a very fine mesh) and errors found by the error majorant. For
two different marking criteria the results are quite similar.
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Figure 2: Indication of errors (”bulk” and ”max” criteria)
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