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Abstract. Jellyfish are the earliest known animals to achieve locomotion using muscle
power. Medusa-like marine animals use jet propulsion principles for their swimming. As
some of the researches indicate, smaller prolate medusae create strong jets during their bell
contraction stage, while bigger oblate species produce substantially less distinct jets and
broad vortices at the bell margins during their contraction and expansion. While some
researches state that the bigger medusae are unable to create jets strong enough for their
locomotion because of their morphological limitations, and vortices therefore play the most
important role in their predominantly rowing-based swimming model, there also studies
which show the contrary - that even for the biggest medusae the jet propulsion model
provides more accurate prediction of the animal movements than the rowing model. The
role of vortices in jellyfish swimming is therefore unclear. Development of the generalized
dynamical model of medusan swimming is of interest to biologists as well as engineers.

In this paper we propose a method for modeling vortices occuring during the hydromedu-
san swimming cycle. Because of the radial symmetry, we use a 2-d model (a cross-section)
with the surface represented by two ellipsoidal bowls. A simplified approach based on non-
linear deformations of a geometric object is used to model bell contraction-expansion cycle.
We use a particle-gridless hybrid method for the analysis of incompressible flows, with av-
eraging velocities field by a Shepard’s method (partition of unity).
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1 INTRODUCTION

Jellyfish are the earliest known animals to use muscle power for swimming4. They
swim by contracting and expanding their mesogleal bell. The swimming muscles contract
to expel a portion of water rearward out of the subumbrellar cavity, thus generating a
thrust force to move the animal forward. Unlike some other marine animals, using the
same principles of locomotion, jellyfish doesn’t have a muscle-antagoinst for refilling the
bell. The bell is therefore refilled when it restores the shape after deformation it received
during the thrust phase. The bell consists of a fibre-reinforced composite material called
”mesoglea”. The elastic characteristics of the mesogleal tissue are studied, for example,
in a work of Megill et al.7

The contractile muscle fibers of medusae are only one cell layer thick, so the forces
that they can produce do not scale favorably with increasing medusa size. For a medusa
with the bell of diameter D, the mass of water that needs to be expelled from within the
bell scales as D3, while the muscle force only scales as D1. Therefore the force required
for jet propulsion increases with animal size more rapidly than the available physiological
force4. Thus, swimming performance may change dramatically with the increase of the
medusan body size, and it is impossible to predict optimal swimming parameters based
on geometric and kinematic similarity.

Experimental researches, including dye injection, filming and analyzing the resulting
flow, indicate, that smaller prolate medusae create strong jets during their bell contraction
stage. Bigger oblate medusae, however, produce substantially less distinct jets and broad
vortices at the bell margins. A hypothesis proposed by Colin and Costello2,4,9,10 is that
oblate species are using their bell’s margins as ”paddles”, thus utilizing a paddling, or
rowing, mode of swimming. According to the model presented by Dabiri et al.4, big oblate
medusae are not capable of swimming via jet propulsion. There is, however, a study of
McHenry and Jed6 which suggests that the jetting model still provides more accurate
approximation of swimming in oblate jellyfish.

The flow generated by oblate medusa’s pulsatile jets consists mostly of radially sym-
metric rotating currents called vortex rings. Researches using mechanical jet generators
demonstrate that there is a physical limit – called the ”vortex formation number” – for
the maximum size of the vortex rings. Once this number is reached, no bigger vortex
formation is possible, and the extra water creates a trailing current behind the vortex.
The energy cost for generating this current is higher than that of creating the vortex ring,
so it is optimal to generate the largest possible vortex without any trailing current9. Both
thrust and efficiency increase in direct proportion with vortex ring volume10.

To better understand the vortex formation and their effect on swimming performance,
numerous experimental studies of real live jellyfish were performed2,4,6,8,9,10. In this paper
we investigate the possibility of modeling and studying the vortices from the mathematical
and computer graphics standpoint.
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2 RELATED WORK

Müller at al. proposed a particle-based method for interaction of fluids with deformable
solids1. In their method they model the exchange of momentum between Lagrangian
particle-based fluid model and solids represented by polygonal meshes with virtual bound-
ary particles to model the solid-fluid interaction.

Yoon et al. presented a particle-gridless hybrid method for the analysis of incom-
pressible flows13. Their numerical scheme included Lagrangian and Eulerian phases. The
moving-particle semi-implicit method (MPS) was used for the Lagrangian phase, and a
convection scheme based on a flow directional local grid was developed for the Eulerian
phase.

Chentanez et al. presented a method for simulating the two-way interaction between
fluids and deformable solids5. The fluids were simulated using an incompressible Eulerian
formulation where a linear pressure projection on the fluid velocities enforces mass conser-
vation, whereas elastic solids were simulated using a semi-implicit integrator implemented
as a linear operator applied to the forces acting on the nodes in Lagrangian formulation.

Hirato et al. proposed a method for generating animations of jellyfish with tentacles11.
They used a simplified computational model based on the MPS method to simulate the
fluid.

3 METHODOLOGY AND IMPLEMENTATION

3.1 Simulating the bell contraction-expansion cycle

To simulate the bell contraction-expansion cycle we use a simplified approach based
on non-linear deformations of a geometric object. Because the model of jellyfish has
radial symmetry, we use a 2D model (cross-section) with the surface of the bell repre-
sented by two hemi-ellipsoidal curves – the upper and the lower. For the model rep-
resentation shown in Figure 1 we used a piece-wise linear approximation with the ini-
tial number of nodes equal 40. Space mapping techniques based on radial basis func-
tions (RBFs) were used for non-linear approximation of shape deformations, see, for
instance, 14. Space mapping in Rn defines a relationship between each pair of points in
the original model and the model after geometric modification. Let an n-dimensional
region Ω ⊂ Rn of an arbitrary configuration be given, and let Ω contain a set of arbi-
trary control points {qi = (qi1, q

i
2, ..., q

i
n) : i = 1, 2, ..., N} for the non-deformed object, and

{di = (di1, d
i
2, ..., d

i
n) : i = 1, 2, ..., N} for the deformed object. By assumption, the points

qi and di are distinct and given on or near the surface of each of two objects. The goal
of the construction of the deformed object is to find a smooth mapping function that
approximately describes the spatial transformation. The inverse mapping function can
be given in the form

qi = f(di) + di, (1)
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where the components of the vectorf(di) are volume splines interpolating displacements
of initial points qi.

We consider a mapping function as a thin-plate interpolation15. For an arbitrary area
Ω, the thin-plate interpolation is a variational solution that defines a linear operator T
when the following minimum condition is used:∫

Ω

∑
|α|=m

m!/α!(Dαf)2dΩ→ min, (2)

where m is a parameter of the variational function and α is a multi-index. It is equivalent
to using the radial basis functions φ(r) = rlog(r) or r3 for m = 2 and 3 respectively, where
r is the Euclidean distance between two points.

The volume spline f(P ) having values hi at N points Pi is the function

f(P ) =
N∑
j=1

ξiφ(|P − Pj|) + p(P ), (3)

where p = ν0 + ν1x+ ν2y + ν3z is a degree-one polynomial. To solve for the weights ξj
we have to satisfy the constraints hi by substituting the right part of Equation (3), which
gives

hi =
N∑
j=1

ξjφ(|Pi − Pj|) + p(Pi). (4)

For 2D and 3D cases we call f(P ) a volume spline. To improve the calculation precision
we use subdivision of linear segments to increase the number of boundary points.

3.2 Fluid simulation

Particle-based methods became a de-facto standard for a class of problems where high
precision is not required. Moreover, solving Navier-Stokes equations with moving bound-
ary is a hard problem. For modeling we use almost the same scheme as proposed by
Yoon, Koshizuka and Oka13. They proposed a particle-gridless hybrid method for the
analysis of incompressible flows, where tracing of virtual moving particles is used instead
of solving nonlinear equations of velocity field. A particle interacts with other particles
according to a weight function w(r), where r is the distance between two particles. The
weight function used by Koshizuka et al. is

w(r) =


−(2r/re)

2 + 2 (0 ≤ r < 0.5re)
(2r/re − 2)2 (0.5re ≤ r < re)
0 (re ≤ r)

(5)

Density for a particle is calculated as the sum of weights of its interactions with the
other particles (all interaction happens only within the radius re):
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〈n〉i =
∑
i

w(|ri − rj|). (6)

A gradiend vector between two particles i and j possessing scalar quantities φi and φj
at coordinates ri and rj is equal to (φj − φi)(rj − ri)/|rj − ri|2. The gradient vector at
the particle i is given as the weighted average of these gradient vectors:

〈∇φ〉i =
d

n0

∑
j 6=i

[
φj − φi
|rj − ri|2

(rj − ri)w(|rj − ri|)
]
, (7)

where d is the number of space dimensions and n0 is the particle number density.
Diffusion is modeled by distribution of a quantity from a particle to its neighbors using

the weight function:

〈∇2φ〉i =
2d

λn0

∑
j 6=i

[(φj − φi)w(rj − ri)], (8)

This model is conservative, because the quantity lost by the particle i is obtained by
the particle j.

The continuity equation for incompressible fluid can be written as follows:

Dρ

Dt
= −ρ(∇ · u) = 0. (9)

The velocity divergence at the particle i is given by:

〈∇ · u〉 =
d

n0

∑
j 6=i

(uj − ui) · (rj − ri)
|rj − ri|2

w(|rj − ri|). (10)

Then the pressure is calculated as:

u∗∗i − u∗i
∆t

= −1

ρ
〈∇P n+1〉i, (11)

〈∇2P n+1〉i =
ρ

∆t
〈∇ · u∗〉i, (12)

where u∗ is the temporal velocity obtained from the explicit calculation and u∗∗i is
the new-time velocity. The left side of (12) is calculated using the Laplacian model (8).
The right side is the velocity divergence, calculated by (10). It gives a system of linear
equations represented by an unsymmetric matrix, which is solved by an unsymmetric-
pattern multifrontal method17. UMFPACK library is used for solving the system18.

Instead of using a higher-order gridless convection scheme as it was proposed by Yoon
et al.13 to approximate flow directions, we apply averaging of the velocities field by a
simple scheme, based on Shepard’s method (partition of unity)16.
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3.3 Fluid and solid interaction

Usually in particle-based methods boundary particles are used to approximate the no-
penetration condition1. Repulsion and adhesion forces between the particles are used to
simulate the no-penetration, no-slip and actio = reactio conditions on the boundary of
the solid.

In this work we model the interaction between fluid particles and the surface of the bell
in a form of elastic collision and reflection of the fluid particles off the boundary surface.

3.4 Algorithm

Initially, the 2D boundary is specified as an array of points. Initial deformations are
assigned to the bell margin points. Particles are placed on a regular grid inside the
bounding box, except the inner area of the bell. Then, the following steps are performed
iteratively:

1. The averaged density is calculated for every particle. A ball is generated for every
particle, and the density is defined as the volume of the ball divided by the number
of particles inside the ball.

2. The bell margin points are moved by a step along the deformation vectors. For the
rest of the points their displacement vectors are calculated using RBFs.

3. A cubic spline is fit through the displaced boundary points. Because some segments
become too long, they are subdivided by inserting new points.

4. A Poisson equation in a matrix form is solved (about 10000 linear equations), giving
new particle densities.

5. Gradient vectors are calculated (7). For every particle, the speed vector is calculated,
and the particle is then moved along the vector by the time step ∆t.

6. The new values for density of the displaced particles are interpolated back to the
nodes of regular grid.

4 RESULTS AND DISCUSSION

We have implemented this method and used it to model and visualize vortex formation
for a simple oblate medusa with different swimming parameters. The program was written
in C++. A UMFPACK library was used to solve large sparse systems of linear equations.
The calculation took approximately 1 sec per step on an Intel Core 2 Quad computer,
however, because we have not parallelized the program to use all processor cores on the
system, only 1 core was actually used for the calculation. An example of visualization
(Figure 1) shows the ability of proposed approach to simulate vortices observed for real
medusae.
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Figure 1: Example of vortex simulation. Contraction (above) and expansion (below) steps.

Future works may include solving an optimization problem of finding optimal param-
eters of pulsation and contraction/expansion for different medusa models and different
modes of swimming, e. g. fast swimming, slow swimming, the most energetically efficient
swimming and so on. These swimming patterns are discussed by Dabiri et al.4,10
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