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Abstract. This work presents a numerical investigation of the influence of the roughness
of a cylindrical particle on the drag coefficient and the Nusselt number at Reynolds num-
bers (Re) up to 200, where the flow at the Re > 46 was unsteady. The heated cylindrical
particle is placed horizontally in a uniform flow. Immersed Boundary Method (IBM) with
a continuous forcing on a fixed Cartesian grid is used. The governing equations are the
Navier–Stokes equation and the conservation of energy. A finite-volume based discretiza-
tion and the SIMPLE algorithm with collocated-variables and Rie-Chow stabilization were
used to solve the set of equations. Numerical simulations showed that the impact of the
roughness on the drag coefficient is neglegible in comparison to the the surface averaged
Nusselt number. In particular, the Nusselt number decreases rapidly with increase of the
roughness thickness. The comparative analysis of results showed that the dependency of
the efficiency factor Ef on the the surface enlargement coefficient Sef can be approximated

by the following relation Ef ≈ S
−

5

4

ef for 10 ≤ Re ≤ 200.
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1 Introduction

Flow past a circular cylinder is a well accepted ’benchmark’ tool to study the drag forces
and heat transfer in bluff body wakes, e.g. see [1]. The extensive review of numerical
investigations of the flow dynamics past a cylinder (done in early 1980s) can be found
in [3]. It is a well known fact that at Reynolds numbers, 1 < Re < 46, the flow past a
cylinder is laminar, where a steady recirculation region with toroidal vortex occurs behind
the cylinder. The size of the recirculation region grows with increasing Reynolds number.
Here the Reynolds number is defined as Re = 2RU0/ν, where R is the radius of cylinder,
U0 is the free-stream velocity, and ν is the kinematic viscosity. At Reynolds numbers
Re ≥ 46, the flow becomes unsteady with vortex shedding (von Karman vortex shedding)
in the near wake behind the cylinder. Many simulations were done to study the role of
convection on the heat transfer near the cylinder, e.g. see [5], including the influence of a
porous layer around the cylinder on the enhancement of the heat transfer, see the work
done by [6]. In particular, Bhattacharyya & Singh [6] showed that a thin porous wrapper,
which has the same thermal conductivity as the cylinder, can significantly reduce the heat
transfer. To model the gas flow inside the porous layer they used the Dupuit-Forchheimer
relationship, which states that the velocity inside the porous media is proportional to
the bulk velocity multiplied by the porosity. The use of this assumption or the Darcy
low assumption for the modeling of particle roughness is questionable due to the fact
that the convection may not be negligible within the roughness region. The present work
investigates the flow and heat transfer from a rough solid cylinder placed horizontally in
a cross-flow with an uniform stream of air which has the Prandtl number of 0.5. The
cylinder is assumed to be heated with a uniform surface temperature. The temperature
difference between the free stream flow and the surface of the cylinder is equal to 20 K.

We consider the roughness layer to be made from the same material as the cylinder.
Thus, the main motivation of this study is to estimate the influence of the thickness of
roughness layer on the heat transfer and on the drag coefficient for a cylindrical particle.
The practical context of this study is to take into account the particle roughness by the
modeling of fluidized beds.

2 Problem formulation and governing equations

By neglecting the viscous heating effect and assuming constant thermophysical prop-
erties the incompressible Navier-Stokes equations and the energy equation in the temper-
ature formulation have the following form:

∇ · ~u = 0, (1)

∂~u

∂t
+ (~u · ∇) ~u = −

∇p

ρ
+ ν∇2~u− ν

~u

K
, (2)

∂T

∂t
+ (~u · ∇) T =

λ

ρcp
∇2T −

1

ρcp

(T − Ts)

K
. (3)
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Here ~u is the velocity vector, p is the pressure, ν is the kinematic viscosity, λ is the thermal
conductivity, ρ is the density, cp is the heat capacity, Ts is the temperature of the particle.
To set the boundary conditions on the particle surface we treat the interface as porous
with a permeability coefficient given by:

K =
ǫ3

c1 (1− ǫ)2
, c1 = 105∆x−1

max (4)

where ǫ ∈ [0, 1] is the volume fraction of gas and ∆xmax is the edge length of the largest
control volume. To calculate the volume fraction of gas in each control volume we use
a two-step algorithm. The first step in this algorithm is the description of the particle
shape by a polygon. The second step uses the Sutherland-Hodgman clipping algorithm,
for details see [7], to calculate the volume fraction of solid based on a polygon intersection
with the ’walls’ of a control volume. No-slip boundary conditions were set up on the
cylinder surface by use of the source term ~u

K
in eq.(2), for details see the work [14]. It

should be noted here, that the source terms in eqs.(2) and (3) are activated automatically,
see eq.(4), only in the cells occupied by the solid and interface corresponding to the case
if ǫ 6= 1. The thickness of the ’porous’ interface equals to one control volume cell, where
ǫ 6= 0 and ǫ 6= 1.

The principal scheme of the domain is shown in Fig. 1. The rough particle consists of
an outer cylinder with the radius R and n = 10 notches with the depth d ·R as shown in
Figure 1. The size of the domain is shown in Fig. 1. The cylindrical particle is placed in
the center of the domain with a total length of L1 = 140R and a total width of L2 = 80R,
where the center of the cylinder is placed in the point (0, 0). The depth of the notches
d · R is varied from 0 to 0.5R by changing the parameter d from 0 to 0.5 to simulate
different roughness.

3 Numerics and Validation

The set of transport equations has been discretized by a finite-volume, finite-difference
based method. The SIMPLE algorithm with collocated-variables arrangement was used
to calculate the pressure and the velocities, for details see [9]. Rhie and Chow stabilization
scheme was used for the stabilization of pressure-velocity coupling, see [10].

To set up the ’internal’ boundary conditions on the particle surface the source terms
−ν ~u

K
and − 1

ρcp

(T−Ts)
K

in eqs.(2) and (3), respectively, are linearized following recommen-

dations given by [8] as follows:

S = SC + SPφ
bc
P (5)

where φbc
P is the value of principal variable (Ts or us) inside the solid region. Applied this

equation in our case we have:

Su
C = 0, Su

P = −ν
1

K
ST
C =

1

ρcp

Ts

K
, ST

P = −
1

ρcp

1

K
(6)
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Figure 1: Size of the domain (links) and zoomed view of the particle (right) under investigation with
roughness parameter d.

Here the term 1
K

is nothing else than a number large enough to make the other terms in
the discretization equation negligible in such a way that:

SC + SPTP ≈ 0, Tp = −
ST
C

ST
P

= Ts (7)

Time marching with fixed time step was used. For every time step the outer iterations
were stopped if the normalized maximal residual of all equations is less than 10−10 corre-
sponding to 10 orders of magnitude. We used a grid with 400×600 control volumes. The
size of a control volume (CV) inside the solid particle is about one hundredth of the parti-
cle diameter. This is achieved by local refinement of the grid inside the particle. The time
step was equal to 0.1 sec, which is in non–dimensional time 6.25 · 10−4. To validate the
code and the model we reproduced the results of the flow around a cylinder at Reynolds
number Re = 20. We compared the drag coefficient CD, the angel of separation θs and
the vortex length L/R, where R is the radius of the cylinder as shown in Figure 2. Table
1 shows that the present results are in good consistent with other data published.

Next, we validated our model and the code against experimental results of [11, 12]. The
test case compares the numerical prediction of temperature profiles along the symmetry
lines with experimental data. The experimental set up included a heated inner cylinder
placed in the center of another cold cylinder. Due to the gravity field a buoyancy-induced
flow occurs. The temperature contour plot and the flow pattern are shown in Fig. 3. The
comparison of temperature profiles along the symmetry line compared with the data of
[11, 12] are given in Fig. 4. It can be seen that the agreement between our predictions
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Figure 2: Definition of angel of separation (θs) and the vortex length (L)

Authors CD θs L/R
[5] 1.99 43.24 1.79
[2] 2.000 45.3 1.82
[4] 2.152 42.96 1.842
Present 1.99 43.9 1.86

Table 1: Validation I: fluid flow past a cylinder. The definition of parameters θs and L/R is given in
Fig. 2.

and the experimental data is very good.

4 Results

To proceed with the analysis of results we describe shortly the main input parameters
we use to study the system behavior shown in Fig. 1. The inflow velocity is calculated
from the Reynolds number given by:

Re =
uin 2R

ν
(8)

where R is the outer cylinder radius, see Fig. 1. To study the heat transfer characteristics
we use the Nusselt number. In particular, we introduce the surface–averaged Nusselt
number Nuav given as follows:

Nuav =

∮

S
Nulocal ds
∮

S
1 ds

, Nulocal =
2R

Ts − T
∞

∂T

∂n
(9)

where Nulocal is the local Nusselt number, T
∞

is the free stream temperature, Ts is the
particle surface temperature and n is the inward-pointing normal.

5



F. Dierich and P. A. Nikrityuk

Figure 3: Validation II: The spatial distribution of the velocity vectors (left) and contour plot of the
temperature (right). Here the temperature is given in Kelvin.

In order to study the influence of roughness on the heat transfer we introduce the heat
transfer efficiency factor Ef , [6], given by:

Ef =
Nuav

Nu0
av

(10)

where Nu0
av is the surface average Nusselt number for the particle with zero roughness.

Thus, Ef measures the ratio between the average rate of heat transfer from a rough
particle to the average rate of heat transfer from a particle without roughness. Thus,
Ef > 1 corresponds to heat transfer enhancement and Ef < 1 corresponds to insulation.

The last parameter to characterize the roughness is the surface enlargement Sef given
by:

Sef =
Srough

S0
(11)

where S0 and Srough are the geometric surface area of the particle without roughness and
with roughness, respectively.

The equation for the calculation of the drag coefficient have the following form:

CD =
FD

ρu2
∞
R

~F =

∮

(

−p~n+ ν
(

∇~u+∇~uT
)

· ~n
)

ds (12)

In this work the numerical simulations were done for five Reynolds numbers 10, 20,
40, 100 and 200. For each Reynolds number we investigate systematically the influence
of the roughness of the cylinder on the surface averaged Nusselt number. The roughness
of the particle is varied through the increase of d, see Fig. 1.
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Figure 4: Validation II: The temperature profiles at the vertical symmetry line. Here the experimental
data correspond to the results of [11, 12]

Sef d Re = 10 Re = 20 Re = 40
1.00 0.00 2.76 1.99 1.50
1.08 0.10 2.74 1.98 1.49
1.29 0.20 2.76 2.00 1.50
2.12 0.50 2.93 2.12 1.60

Table 2: Drag coefficient (CD) in different Re and Sef

Fig. 5 shows an example of the velocity distribution near the particle surface for Re
= 40 and d = 0.50. It can be seen that the velocity is zero in the dimples. Thus,
the air in the dimples plays the role of an isolator, which decreases the convective heat
transfer. This effect can be clearly seen in the Fig. 6, which depicts the contour plots of
the nondimensional temperature T−T∞

Ts−T∞

for different Re and roughness ratios. It should
be noted that in the case of Re = 100 we used time-averaging procedure to obtain the
spatial distribution of the mean time temperature. Fig. 7 shows the snapshot of the
nondimensional temperature contour plot calculated for Re = 100. Our results show
that due to the ’isolation’ effect produced by the dimples the thermal boundary layer
thickness increases in comparison to the cases with less roughness. Thus, the temperature
gradient in the dimples is decreased. But at the same time we have the increase of the
temperature gradient in front of the stagnation point on the particle surface. This can
be seen in the Fig. 8, which shows contour plots of the non-dimensional temperature

gradient
√

∂T
∂x

2
+ ∂T

∂y

2 2R
∆T

. It can be seen that the local heat transfer changes dramatically.

In particular, we have temperature gradients concentrated on the particle ledges. This
effect can play a very import role at the combustion of rough particles leading to the local
speed-up of combustion rate on the convex shaped interfaces.
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Figure 5: Velocity plot of non-dimensional vectors ~u
uin

in Re = 40 and d = 0.5, Sef = 2.12

Next, we show the contour plots of the non-dimensional temperature, see Fig. 6. The
increase of the Re number at a constant value of Sef leads to the decrease of the thermal
boundary layer, which is well know fact. But at the same time the increase of the surface
enlargement at a constant value of Re leads to the increase of the thickness of the effective
thermal boundary layer and as a result, the surface averaged Nusselt number decreases
with the increase of Sef . This effect is demonstrated in Fig. 9. It can be seen that the
efficiency factor Ef is proportional to the surface enlargement coefficient Sef as follows

Ef = S
−

5

4

ef .
In comparison to the behavior of the Nusselt number, the drag coefficient CD increases

insignificantly, up to 7%, with the increase of the roughness, see Tab. 4.
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(a) Re = 10, d = 0.1, Sef = 1.08 (b) Re = 40, d = 0.1, Sef = 1.08 (c) Re = 100, d = 0.1, Sef =
1.08

(d) Re = 10, d = 0.5, Sef = 2.12 (e) Re = 40, d = 0.5, Sef = 2.12 (f) Re = 100, d = 0.5, Sef =
2.12

Figure 6: Contour plots of the isotherms T−T∞

Ts−T∞

for different Re and roughnesses.
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Figure 7: Snapshot of the isotherms T−T∞

Ts−T∞

for the Re = 100 and Sef = 2.12.

Figure 8: Contour plots of the non-dimension temperature gradient
√

∂T
∂x

2

+ ∂T
∂y

2 2R
∆T

for Re = 40 and

Sef = 1 (left), and Sef = 2.12 (right), respectively. The maximum in the left figure is 5.2 and the
maximum in the right figure is 5.81.
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Figure 9: Effect of surface enlargement(Sef) on the efficiency factor (Ef ).

5 Conclusions

A numerical investigation of steady laminar and unsteady flow past a heated cylindrical
particle with different roughness was carried out. The effect of the thickness of the
roughness layer on the flow and heat transfer were systematically investigated. Based on
the presented numerical data and discussions several conclusions can be summarized as
follows:

1. The roughness has significant impact on the surface averaged Nusselt number. In
particular, the Nusselt number decreases rapidly with increase of the roughness
thickness.

2. The dependency of the efficiency factor Ef on the surface enlargement coefficient Sef

can be approximated by use of the following relation Ef ≈ S
−

5

4

ef for 10 ≤ Re ≤ 200.

3. The impact of the roughness on the drag coefficient is small in comparison to the
surface averaged Nusselt number.
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