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Abstract. We perform finite element simulations of aggregates in shear flow environ-

ments, in order to improve the model of hydrodynamic forces used for discrete element

simulations. The mechanistic model for the discrete element simulations implies until

now the so-called free-draining approximation for the fluid forces which is a drastic sim-

plification. From the finite element simulations we extract the fluid forces acting on the

constituents of small aggregates of 8 to 20 particles. With these highly-resolved results

we can extract parameters for the hydrodynamic force model. We find two major results:

first, inside the aggregates the fluid flow is relaxed and can for the small aggregates be

parameterized by an effective shear rate which is significantly smaller than the ambient

shear rate, while for the large aggregates, a core-shell model is proposed; and second, the

flow field in the core region of the aggregates is not aligned with the external flow, which

is the case for the forces acting on the shell particles.
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1 INTRODUCTION

Colloidal aggregates appear in different areas of chemical process engineering. They
form from nano- or micro-particles in suspensions such as gels or ointments. Their struc-
ture is of major importance in the rheology of these suspensions, and it is already well-
known in resting fluids. However, under process conditions, shear forces act on the ag-
gregates, and the fluid forces significantly affect the aggregate structure. It is difficult to
perform experiments that yield information about the restructuring of particle clusters
in shear flow environments typical for the named processes. It appears therefore to be
suitable, to apply simulations to investigate the restructuring in these multi-phase flows.

We want to perform discrete element simulations (DEM) of colloidal aggregates and
need a model to describe the forces acting in these particle systems. In general, one must
distinguish between the hydrodynamic and the particle interaction forces. In this work,
we want to concentrate on the hydrodynamic interaction. For current DEM simulations, it
is popular to use the free-draining approximation (cdf. [7, 8, 9, 16, 17]) which neglects the
influence of neighboring particles in the fluid flow. In the Stokesian dynamics approach
(cf. [6, 18]), the influence of the neighbors is incorporated in form of the mobility matrix.
In this way, each particle is represented by its first few multipoles regarding the hyrody-
namic interaction. Other approaches use geometrical descriptions for the computations
of hydrodynamic forces, such as in Higashitani et al. [14], or in Fanelli et al. [11, 12].

Depending on the process conditions, colloids can be more or less compact. This
property can be parameterized by the fraction of volume that is filled by the aggregate.
It is expected that different volume fractions lead to different restructuring behavior. It
has been shown by means of Stokesian dynamics simulations, that compact aggregates
will undergo restructuring while less dense structures will experience breakup (cf. [13]).

In this work, we describe our first steps to provide a more detailed mechanistic model for
the hydrodynamic forces. These forces can be extracted from finite element simulations.
We show results for small aggregates containing up to 20 constituent particles and of three
different volume fractions under steady shear flow conditions. From the results we obtain
parameters for the fluid forces which will lead to a more precise modeling. Eventually,
such mechanistic modeling will allow to effectively control the structure and final size of
colloidal aggregates by exposing them to a well-defined hydrodynamic environment and
thus control the suspension behavior.

2 MODELING

We consider for the DEM simulations a mechanistic model. In this model we assume
that the primary particles are of spherical shape and that the solvent has a high viscosity
such that particle Reynolds numbers are small (Re ≪ 1). One may distinguish in this
model the forces acting between particles and the hydrodynamic forces. The former can
be called internal forces while the latter may be considered as external forces and cause
aggregate restructuring or breakup.
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The internal forces are incorporated in our model by means of the Derjaguin, Landau,
Verwey and Overbeek theory (DLVO, see for example [10]). This theory combines the
effects of van der Waals attraction and repulsive electrostatic double layer forces. We
added a repulsive short-range potential (Born repulsive force) to make sure that particles
cannot overlap. These three components, van der Waals, electric double layer, and Born
forces, depend on the center-center distance of the particles, ie., they act parallel to the
bond. For the forces acting perpendicular to the bond, we introduced tangential forces
and torques with a spring-rod model. This has been described in more detail in [1, 2].

The hydrodynamic forces appear in our mechanistic model in the form of the free-
draining approximation. In the framework of this approximation, the forces acting on
each particle in the fluid are given by the Stokes drag which is defined for a single spher-
ical particle immersed in an unbounded fluid with a uniform flow velocity. As found
in standard textbooks (see e.g., [15]), a formulation of the Stokes drag force acting on
particle i is given by:

F Drag,i = 6πηa (vi − u) , (1)

with η, a, vi and u being the dynamic viscosity of the carrier fluid, the particle radius, the
velocity of the i’th particle, and the fluid velocity, respectively. Using the free-draining
approximation implies, that the influence of neighboring particles on the fluid flow is
neglected. In the present case, we choose the reference system to be attached to the
particle, that is v = 0. Under shear flow conditions we also have to make a decision
on the fluid velocity. We choose for the fluid velocity acting on particle i that velocity
which would act at the position of the particle’s center ri: u = u(ri). In this way, we
also neglect the different fluid velocities acting at different points on the particle surface.
Moreover, due to the fact that we neglect the influence of neighboring particles, all forces
are parallel to the fluid flow.

3 SIMULATION METHOD

As a first step to develop a more detailed model for the hydrodynamic forces acting on
the aggregate and its constituents, we perform steady simulations of the fluid flow arround
different aggregates. The aggregates are centered in the origin of the computational
domain and are surrounded by a cubical volume of fluid. Inside the fluid volume an
external flow field with a shear rate is imposed as indicated in Figure 1. The fluid
volume is discretized using a tetrahedral unstructured mesh. This is performed by first
triangulating the surfaces of the geometry, where the surfaces of the primary particles
are covered with about 10,000 triangles each, and then using a tetrahedral mesh to fill
the volume. Since the fluid flow, for particle Reynolds numbers near zero, is assumed to
be sensitive to all boundaries, we investigate this influence in more detail. We discuss
this subject in Section 4. The present meshes contain up to 20 million tetrahedra for
the larger aggregates which is mainly due to the necessary high resolution of the primary
particles. The large number of mesh elements is the main reason why it is impractical,

3



Eva C. Schlauch, Volker Becker, Marek Behr, and Heiko Briesen

S
h

e
a

r
Fluid Flow

Figure 1: Sketch of the simulation domain. The aggregate is centered at the origin and the surrounding
fluid volume is a cube. The shear flow is set at the inflow in the manner indicated by the arrows.

with the current computational tools, to perform simulations of real life aggregates which
comprise several thousand particles.

On the finished volume meshes we perform simulations with a finite element solver
(cf. [4, 5]). We use approximately 10,000 triangular elements to discretize each of the
primary particles’ surfaces in order to get an accurate description of the pressure distri-
bution. We solve the steady Stokes equations which might be stated as follows for the
domain Ω and its boundary Γ:

−ν∇
2
v + ∇p = b in Ω (equilibrium),

∇ · v = 0 in Ω (incompressibility),
v = vD on ΓD (Dirichlet b.c.),

−pn + ν(n · ∇)v = t on ΓN (Neumann b.c.).

Here, v describes the fluid velocity, vD the prescribed velocities on the Dirichlet portion
of the boundary and p the pressure. The vector n denotes the surface normal of the
boundary, ν denotes the kinematic viscosity ν = η/ρ where η is the fluid viscosity and
ρ its density. t is a so-called “pseudo-traction” of the boundaries, while b is a body
force. The boundary conditions are discussed in Section 4 and the values for density and
viscosity are given in Table 1. The particle Reynolds number is Re = 3.675 · 10−3. The
formulation of the mathematical problem is closed by the equation for the stress tensor
σ given as follows:

σ = −pI + τ , (2)

where the first term denotes the hydrostatic stress and τ the deviatoric stress given as:

τij = η

(

∂vi

∂xj

+
∂vj

∂xi

)

. (3)

The Stokes problem is solved for the fluid velocity and pressure. Simulations are performed
on 64 processors using a parallelized version of the solver.

We compute from the pressure on the surfaces the total forces acting on each particle
in the aggregates. The hydrodynamic force acting on the i’th particle is given by a sum
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over forces acting on its surface elements. For each element of the particle’s surface, the
force can be calculated as the integral over the element area Ω(e):

f
(e)
i =

∫

Ω(e)

(−pδij + τij) n̂
(e)
j dΩ , (4)

where n̂(e) is the element surface normal vector, and δij denotes the Kronecker delta
distribution. With this scheme, not only the drag can be calculated, but a force vector
can be given for a 3-dimensional fluid force.

4 BOUNDARY CONDITIONS AND FINITE SIZE EFFECTS

The sensitivity of the hydrodynamic forces to the presence of artificial boundaries can
in principle be high under the low particle Reynolds number or creeping flow condition.
The boundary conditions in the present simulations are no-slip for the particle surfaces,
shear flow for the inflow, and parallel flow for the walls. On the one hand, the no-slip
or stick boundary condition for the aggregates leads to a natural zero flow velocity, while
on the other hand the parallel flow for the walls leads to an unnatural constraint. The
artificial walls result in a disturbance of the flow field which is felt at the position of the
aggregate and which is reduced as the distance to the walls increases.

Since the free-draining approximation applies in principle to spherical particles im-
mersed in a uniform flow field, we start our investigation of the influence of artificial walls
with the simulation of a single particle under uniform external flow for different sizes of
the surrounding fluid volume. We find a direct dependence of the calculated drag force
on the size of the surrounding fluid volume. The result is shown in Figure 2 (a). By
contrast, we find a significantly lower wall influence for shear flows acting on aggregates
(cf. Figure 2 (b)). In the plots, R indicates the ratio of volume size to particle size, and
volume size to aggregate size, respectively. The particle size is a and the aggregate size
is taken to be the largest extent of the aggregate. The curves have been fitted using a
function of the shape given in Equation (5):

f(R) =
c1

c2 + R
+ c3 , (5)

where the ci are constants. The good quality of these fits shows that the influence of the
artificial walls behaves approximately as 1/R.

We conclude that the shear forces acting within the fluid, together with the presence
of neighboring particles in the aggregate, screen the effect of the artificial walls enough
to confine the simulations to a modest fluid volume. We had chosen for the generation
of our meshes a volume size ratio of R = 60 which, according to Figure 2 (b), does not
introduce artefacts from the artificial walls. Furthermore, for future simulations, we may
select the value for the ratio R as low as ten without introducing artificial wall effects.

From Figure 2 (a) we can conclude that the drag force on a spherical particle in a fluid
volume depends strongly on the presence of other boundaries. One can already at this
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Figure 2: Influence of the artificial walls on the flow field at the position of (a) a single spherical particle
in a uniform flow, and (b) a complete aggregate of 8 particles under shear flow conditions. We show
the drag force on each particle: one particle in (a), eight particles in (b). For a single particle, we can
give a theoretical value for the drag from the Stokes drag force. This is not possible for the aggregate.
Nevertheless, it can be clearly seen, that the value for the single particle in a uniform flow will converge
only slowly with the theoretical value while we find no significant change in the drag forces for the
constituents in the aggregate.

point understand that the introduction of neighboring particles will significantly influence
the drag force on each of the particles.

5 SIMULATION RESULTS FOR STEADY CASES

Steady simulations are performed for two different sizes and three different types of
aggregates. The general type of aggregates under consideration is constructed in a ran-
domized approach with reaction-limited aggregation (RLA, cf. [19]). With this approach
we are able to construct colloidal aggregates of different compactness. The reaction lim-
iting the aggregation is characterized by a sticking efficiency ǫ, by which we describe the
probability of each particle to stick to another. A lower probability will ensure compact
aggregates, while a higher probability will provide us with bigger yet less dense structures
(which can be observed in Figure 3). The three types of aggregates can be distinguished
by their sticking efficiency of 1.00, 0.10, and 0.01, respectively.

We prepare ten aggregates of each type containing 8 primary particles and repeat
this for a second size of 20 particles per aggregate. Simulations are performed under
the settings given in Table 1. We use the same mesh for three simulations and adjust
the inflow and outflow to appropriate walls, and change the shear direction. A typical
resulting pressure distribution is shown for two large aggregates of different type (sticking
efficiency of 0.01 and 1.00) in Figure 3. In the figures, the flow has a velocity gradient
from top to bottom such that the flow is from left to right at the top and from right to
left at the bottom. The highest pressure values are found at the outermost particles in
both cases according to the higher flow velocities. In the following we describe the finite
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Parameter Variable Value

number of primary particles N 8, 20
particle diameter a 735 nm
shear rate G 50 s−1

fluid density ρ 1000 kg/m3

fluid viscosity η 0.001 kg/ms

Table 1: Aggregate and fluid parameters applied in the simulations.

(a) (b)

Figure 3: Pressure distribution on the surfaces of two aggregates of different compactness as calculated
by the finite element simulations: RLA aggregate with sticking efficiency of (a) ǫ = 0.01 and (b) ǫ = 1.00.
Both aggregates contain the same number of primary particles (20). Unit of pressure is [nNm

−2].

element simulation results for both sizes of aggregates.

5.1 Aggregates comprising 8 particles

Due to the shear rate of the applied external fluid flow, the hydrodynamic forces acting
on a particle inside the aggregate should depend on its position along the shear axis as
the force is related to the relative velocity of external flow and particle. We do in fact
find in our simulations a clear correlation between the drag forces on the constituents of
the aggregates on the one hand and the position in the direction of the velocity gradient
(shear direction) on the other hand (cf. Figure 1). This can be seen in Figure 4 for the
three aggregate types. We do a least-squares fit on the data. The slope from the fit
can be used to determine an effective shear rate, where we reformulate the free-draining
formulation of the drag forces under shear flow conditions as follows (cf. Equation (1)):

Fx,i = 6πηaGeff zi . (6)
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Here, zi denotes the position of particle i in the direction of the velocity gradient, Fx,i

the drag force acting on particle i along the flow direction x, and Geff the effective shear
rate. Equation (6) can be rearranged to gain an equation for Geff :

Geff =
m

6πηa
, (7)

where m denotes the slope extracted from the data. For all three aggregate types we
find that the effective internal shear rate, extracted from the slope by Equation (7), is
smaller than the external shear rate. The values are given in Table 2. The error bounds

G 50.0 s−1

Geff for ǫ = 1.00 42.62 s−1 ± 1.4%
Geff for ǫ = 0.10 44.31 s−1 ± 1.7%
Geff for ǫ = 0.01 42.67 s−1 ± 1.6%

Table 2: Effective shear rates as extracted with a least-squares fit from the simulation data. The values
cannot be distinguished from each other clear enough. Nevertheless, all three of them are significantly
smaller than the external shear rate. This implies a shielding effect of the fluid flow inside the aggregate
from the external flow.

of all three values overlap, which means that we cannot clearly distinguish them one from
another. We expect the effective shear rate to be smaller for compact aggregates than for
less dense structures. This effect is probably not visible here, because the aggregates are
very small.

5.2 Aggregates comprising 20 particles

The larger aggregates exhibit the same clear correlation between drag force and position
along shear direction. But for these aggregates, another effect can be observed which we
interpret as a shielding of the core region of the aggregate. As it is shown in Figure 5, in all
three data sets there is a lower slope in the core region of the aggregates than in the outer
regions. The lower slope indicates lower forces in this core region and thus a shielding
by the outer particles from the external fluid flow. A second result, which is caused by
the presence of neighboring particles in the flow, is the fact that the hydrodynamic force
can have a component perpendicular to the external flow. When this effect is taken into
account for the model, it will lead to a different restructuring behavior than just drag
forces. As an example, the result for aggregates with ǫ = 1.00 is shown in Figure 6, where
we plot the absolute value of the force components for each of the primary particles. One
observes that for larger radii, the drag forces outweigh the perpendicular forces. But in the
core region the perpendicular force components cannot be neglected in the hydrodynamic
force model. This holds for aggregates of ǫ = 0.10 and ǫ = 0.01 as well.
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Figure 4: Distribution of drag inside of the small aggregates along the velocity gradient. Aggregates
contain 8 particles each and the plots show the results for 10 different aggregates under 3 different angles
of attack (30 data sets). Plots (a), (b) and (c) contain the data for the three aggregate types with sticking
efficiencies of 1.00, 0.10 and 0.01, respectively.

9



Eva C. Schlauch, Volker Becker, Marek Behr, and Heiko Briesen

-4

-3

-2

-1

 0

 1

 2

 3

 4

-6 -4 -2  0  2  4  6

F
x

[p
N

]

z [µm]

(a)

-4

-3

-2

-1

 0

 1

 2

 3

 4

-6 -4 -2  0  2  4  6

F
x

[p
N

]

z [µm]

(b)

-4

-3

-2

-1

 0

 1

 2

 3

 4

-6 -4 -2  0  2  4  6

F
x

[p
N

]

z [µm]

(c)

Figure 5: Distribution of drag inside of the larger aggregates along the velocity gradient. Aggregates
contain 20 particles each and the plots show the results for 10 different aggregates under 3 different
angles of attack (30 data sets). Plots (a), (b) and (c) contain the data for the three aggregate types with
sticking efficiencies of 1.00, 0.10 and 0.01, respectively.
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Figure 6: Force components acting on the constituents of (a) an 8-particle, and (b) a 20-particle aggregate,
ǫ = 1.00. The absolute values are shown. The drag forces on the primary particles are dominant in the
outer regions as expected but the perpendicular forces cannot be neglected for particles in the core region.

6 CONCLUSIONS AND OUTLOOK

High-resolution simulations offer insights into the hydrodynamic forces acting inside
colloidal aggregates. The computational domain can be kept small in case of shear flow
environments; this way, simulations of aggregates with up to 20 constituent particles
become feasible. The differences between aggregates of different compactness are not sig-
nificant and we attribute this to the fact that the structures under consideration were
comparatively small. Based on simulations of two sizes of aggregates, the following con-
clusions can be drawn: First, the effective shear rate inside the aggregates is lower than
the applied one. This means, that the flow inside the aggregate is shielded from the ex-
ternal flow. Moreover, the core region of the large aggregates is shielded more efficiently
by the outer particles, and we expect this effect to be stronger for even larger aggregate
structures. Second, the force components perpendicular to the outer flow are important
for the modeling of the core region of both sizes of aggregates.

We propose that the hydrodynamic forces inside aggregates immersed in a shear flow
environment should be described by effective shear rates, and for aggregates with 20 and
more primary particles, a core-shell model with respect to the velocity gradient should be
introduced into the mechanistic model in order to replace the free draining approximation.
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